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ABSTRACT

The widespread use of machine learning models, especially within
the context of decision-making systems impacting individuals,
raises many ethical issues with respect to fairness and interpretabil-
ity of these models. While the research in these domains is booming,
very few works have addressed these two issues simultaneously.
To solve this shortcoming, we propose FairCORELS, a supervised
learning algorithm whose objective is to learn at the same time fair
and interpretable models. FairCORELS is a multi-objective variant
of CORELS, a branch-and-bound algorithm, designed to compute
accurate and interpretable rule lists. By jointly addressing fairness
and interpretability, FairCORELS can achieve better fairness/accu-
racy tradeoffs compared to existing methods, as demonstrated by
the empirical evaluation performed on real datasets. Our paper also
contains additional contributions regarding the search strategies for
optimizing the multi-objective function integrating both fairness,
accuracy and interpretability.

1 INTRODUCTION

Machine learning models are now becoming more and more com-
mon in high stake decision-making systems (e.g., credit scoring [56],
predictive justice [37] and automatic recruiting [47]). These systems
can have an important impact on individuals as decisions based on
wrong predictions can adversely affect human lives (e.g., people
being wrongly denied parole [60]). Thus, ethical aspects such as
the fairness and transparency of machine learning models have
become not only a desirable feature but also legal requirements.
For instance, the European General Data Protection Regulation
(GDPR) has a provision requiring explanations of the rationale for
the decisions of machine learning models that have a significant
impact on individuals [26]. In fact, understanding these models can
be considered as a prerequisite towards quantitatively evaluating
other criteria such as fairness, reliability and robustness [7, 20].
Two main approaches have emerged in the literature to facilitate
the understanding of machine learning models: black-box explana-
tion and transparent-box design [27, 42, 44, 48]. Black-box explana-
tions techniques consist in providing a posteriori explanations that
are either global [17, 41] or local approximations [53] of the black-
box model. In contrast, transparent-box design aim at building
transparent models, which are inherently interpretable [4, 9, 43, 57].
For instance, when they have small or of reasonable size [44],
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the following models can be considered as interpretable: rules
sets [18, 43, 46, 54], rule lists [3, 59, 61], decision trees [9, 51] and
scoring systems [39, 57, 64]. For the rest of the paper, we focus on
rule lists, which are the interpretable model that we have considered
in our work.

With respect to fairness, a significant amount of work has been
done in recent years to design fairness-aware machine learning
models [12, 25], which we will review in Section 2.2. Nonetheless,
despite the progress made in both directions, very few works have
focused on learning interpretable models that are simultaneously
fair and accurate.

To address this issue, in this paper, we propose FairCORELS: a su-
pervised learning algorithm whose objective is to learn at the same
time fair and interpretable models. FairCORELS leverages on the
recent advancements, provided by CORELS, for learning certifiably
optimal rule lists [3, 4] by adapting them to also take into account
fairness constraints. In particular, given a statistical notion of fair-
ness and a sensitive attribute, our algorithm searches for the rule
list optimizing the decrease of both unfairness and classification
error.

More precisely, the main contributions of our work can be sum-
marized as follows.

e We formulate the problem of learning fair rule lists as a multi-
objective version of the problem addressed by CORELS [3,
4]. Then, we propose FairCORELS, a supervised learning
algorithm which aims at designing fair rule lists with higher
accuracy.

e We introduce a bi-objective method to face both fairness and
accuracy. This method benefits from guarantees provided by
CORELS on the quality of the solution.

e We design a new lower bound for the unfairness objective
to prune the search tree expanded by CORELS. In additions,
we devise several branching strategies to improve the effec-
tiveness of the tree search expansion for fair rule lists.

e We evaluate FairCORELS on four public datasets, using sta-
tistical parity as the fairness measure, and compare its per-
formances to previous results.

The outline of the paper is as follows. First in Section 2, we review
the background notions on fairness and multi-objective optimiza-
tion necessary to the understanding of our work. Afterwards in
Section 3, we introduce our multi-objective optimization frame-
work for learning fair rule lists before describing FairCORELS, our
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learning algorithm for realizing this task. Finally, we report on
the experiments conducted in Section 4 before concluding with
research directions for future works in Section 5.

2 PRELIMINARIES

In this section, we review the notions necessary to the understand-
ing of our work by first examining the relevant literature on fair-
ness metrics and learning methods for fairness enhancement. Af-
terwards, we introduce rule lists as well as CORELS, a supervised
learning algorithm for producing certifiably optimal rule lists. Fi-
nally, we give some details on multi-objective optimization.

2.1 Fairness metrics

The literature on fairness in machine learning has boomed in recent
years, and it would be impossible to provide a complete review of
the existing fairness notions in this paper. We refer the interested
reader to the following surveys [6, 14, 50, 58] for a detailed overview
of these notions. In a nutshell, three families of fairness notions
have emerged in recent years: causal notions of fairness [36, 40, 49],
which rely on causal assumptions to estimate the effects of sensitive
attributes and build algorithms that ensure a tolerable level of
discrimination with respect to these attributes, individual notions of
fairness [21, 29], which require the same decisions for individuals
that are similar, and statistical notions of fairness.

In this work, we focus primarily on statistical definitions of fair-
ness in our multi-objective optimization framework. This family of
fairness notions requires the approximate parity of some statistical
measure f across a given set of subgroups of the population accord-
ing to a particular sensitive attribute that can lead to discrimination
(e.g., female or male). For simplicity, we focus on the case of two
subgroups hereafter referred to as respectively the minority group
and the majority group. In general, the statistical measure f is a
function of the predictions of the machine learning model on the
different subgroups. For instance in this paper, we have used statis-
tical parity [10, 21, 23, 33, 66] as fairness notion. Other commonly
used definitions include predictive parity [13, 38], predictive equal-
ity [13, 16], equal opportunity [28] equalized odds [13, 28, 38, 62]
and conditional use accuracy equality [6]. A description of these
statistical measures can be found in Table 1.

Let X = Uﬁ\ilxi be a set of data points where each data point
x; € {0,1} is a list of J binary attributes. We assume that X has
a 2-partition P = {Ppin, Pmaj} Where Py is called the minority
group and Pp, 4y is called the majority group. Let Y = Ufi 1Yi where
y; corresponds to a decision attribute (value) for x;. We define a
dataset D as a triplet (X, P, Y). We assume that the set of attributes
is divided into protected (sensitive) and unprotected attributes. The
sensitive attributes are used to defined the minority and major-
ity groups. The notion of unfairness with respect to a particular
classifier and dataset can be defined as followed.

Definition 2.1 (Unfairness). Let C be a classifier trained on dataset
D, and fmin (respectively finq;j) be a statistical measure based on
the predictions of C respectively on the minority and majority
groups. We define the unfairness of C as | fmin — finajl-

This generic definition of unfairness can be instantiated by using
any of the statistical measures of fairness mentioned previously. For
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instance, the statistical parity requires that individuals from both
the minority and majority groups should have the same probability
to be assigned the positive decision. In this context, we define
unfairness as:

in €Pmaj predi in €Pmin predi
|Prminl

in which x; is a sample from the dataset D and pred; refers to
the prediction of a particular classifier with respect to the decision
attribute for x;.

While our focus is not on individual fairness, we will also use
the notion of inconsistency [63] as a way of measuring the result-
ing individual fairness provided by our contribution. In a nutshell,
its purpose is to quantify the tendency of a model to predict the
same outcome to similar individuals. We measure it as the aver-
age prediction’s difference between each instance and its k closest
neighbours:

(1)

unfairness =
|Pmaj|

N
X X 1 1
inconsistency = N Z |pred; — T Z pred;| (2)
i=1 xj€kNN(x;)
That is, the closest the value of the inconsistency is to zero, the
higher the individual fairness.

2.2 Fairness-enhanced learning

While many approaches have been proposed in the literature to
enhance the fairness of machine learning methods, they can be cate-
gorized in three main families, namely preprocessing techniques [11,
23, 30, 63], algorithmic modification techniques [10, 31, 32, 62] and
postprocessing techniques [28]. In a nutshell, preprocessing tech-
niques aim at changing the characteristics of the input data (e.g., by
removing existing correlations with the sensitive attribute) so that
any classifier trained on this data achieves fairness with respect
to its outcome. In contrast, algorithmic modification techniques
integrate the fairness constraints directly into a learning algorithm
to ensure that the outputted model is fair. Finally, postprocessing
techniques modify the outcome of an already trained model to
ensure fairness.

Our work falls within the algorithmic modification approach in
the sense that we propose a fairness-aware algorithm for learning
fair rule lists. Existing related works include the seminal work of
Calders and Verwer (2010) [10], which consists in training as many
classifiers as subgroups considered in the population, using at test
time the classifier associated to the corresponding subgroups. Here-
after, we focus on the related work with respect to training a fair and
interpretable classifier, which is the objective of our method. Kami-
ran, Calders and Pechenizkiy (2010) [31] have proposed a learning
algorithm incorporating the discrimination and accuracy gains into
the splitting criterion of a decision tree classifier. In particular, they
have devised three combination strategies, namely the difference,
the ratio or the sum between accuracy gain and discrimination gain.
They have also added a leaf relabeling postprocessing technique
that changes the label of selected leaves to improve the fairness.

More recently, Raff, Sylvester and Mills (2018) [52] have applied
the difference combination method from [31] to CART decision
trees [9] to create both fair decision tree and fair random forest [8].
Zhang and Ntoutsi (2019) [65] improved this combination strategy
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Fairness notion

Statistical measure

Statistical parity
Predictive parity
Predictive equality
Equal opportunity
Equalized odds

Probability of being assigned the positive class
Positive predictive value

False positive rate

False negative rate

False negative rate and False positive rate

Conditional use accuracy equality | Positive predictive value and Negative predictive value

Table 1: Summary of some statistical notions of fairness along with the related statistical measure to be equalized.

by introducing the so-called fair information gain, which corre-
sponds to the default accuracy gain if there is no unfairness or to
the product of both fairness gain and accuracy gain otherwise. In
addition, they relied on the use of an Hoeffding tree [19] to provide
better fairness and accuracy in the online setting.

Finally, Aghaei, Azizi and Vayanos (2019) [2] proposed MIP-DT
which adds regularization terms to a mixed-integer programming
model to penalize unfairness for creating a generic class of fair
decision trees according to individual fairness. Compared to pre-
vious techniques modifying the splitting criterion, this technique
proposes an exact approach for learning discrimination-aware in-
terpretable model. While our approach for learning fair rule lists is
also an exact approach, it differs from [2] on several points. First,
FairCORELS relies on statistical notions of fairness while MIP-DT
relies on individual notions of fairness. Moreover, MIP-DT achieves
good accuracy/fairness trade-offs at the cost of important computa-
tional overhead (i.e., ~ 15900 seconds on Adult Income). In contrast,
FairCORELS achieves similar performances with a smaller compu-
tational footprint (i.e., ~ 180 seconds on Adult Income) thanks to
the performance of CORELS!.

2.3 Rule list

Rule lists [4, 55] (also known as decision lists) are classifiers formed
by an ordered list of if-then rules with antecedents in the if clauses
and predictions in the then clauses (e.g., Rule lists 1 and 2).

if [capital_gain:>7055.5] then (income:>50K)

else if [marital_status:single] then (income:<=50K)

else if [gender:Female] then (income:<=50K)

else if [education:masters_doctorate] then (income:>50K)
else if [education:bachelors] then (income:>50K)

else (income:<=50K)

Rule list 1: Example of a rule list that predicts salary cate-

gory for Adult Income. This rule list found by FairCORELS
has unfairness = 0.19 and accuracy = 0.8239.

if [capital_gain:>7055.5] then (income:>50K)

else if [marital_status:single] then (income:<=50K)
else if [education:masters_doctorate] then (income:>50K)
else (income:<=50K)

Rule list 2: Example of a rule list that predicts salary cate-

gory for Adult Income. This rule list found by FairCORELS
has unfairness = 0.05 and accuracy = 0.8078.

! Their experiments were run on a computer with 20 CPUs and 64 GB of RAM. Our
experiments were conducted on an Intel Xeon Processor E3-1271 v3 (3.60 GHz) with
32GB of RAM.

More precisely, a rule list r = (dp, 8p, qo,K) of length K > 0 is a
(K + 1)—tuple consisting of K distinct association rules p;. — g,
in which py € d is the antecedent of the association rule and
qk € Jp its associated consequent, followed by a default prediction
qo- Classifying a new data point with a rule list is straightforward.
To realize this, the rules are applied sequentially until one rule
triggers, in which case the associated prediction is reported. If
no rule is triggered, then the default prediction — which typically
predicts the majority outcome - is reported. As shown in [55], rule
lists generalize decision trees. More precisely for a given size (i.e.,
the depth of a decision tree or the maximum width of a rule for a
rule list), rules lists are strictly more expressive than decision trees.
A consequence is that we can obtain more compact models using
rule lists, which leads to more interpretability.

CORELS [4] is a classification [45] algorithm that enables to learn
provably optimal rule lists. CORELS represents the search space of
rule lists as a trie (i.e,, prefixed tree) formed by pre-mined rules
from the training data, and uses branch-and-bound techniques to
find the optimal rule list. For a given rule list r = (dj, 5y, g0, K), the
objective function to minimize is :

R(r,X,Y) = misc(r,X,Y) + A.K (3)

in which misc(-) = (1 — accuracy(+)) is the classification error, K
is the number of rules in prefix r and A > 0 the regularization
parameter used to penalize longer rule lists. The first part of the
objective function aims to obtain accurate rule list whereas the sec-
ond part has for objective to reduce the size of the optimal rule list
to limit over-fitting while also increasing interpretability. CORELS
proposes various search strategies and leverages on a collection of
bounds to efficiently prune the search space. Our work is actually
an extension of CORELS design to ensure fair and accurate models.

2.4 Multi-objective optimization

Optimizing a decision process implies to make a particular choice
among a set of alternatives. More precisely, each alternative be-
longs to the set of feasible solutions and its quality can be assess
through a given objective function. In mono-objective optimiza-
tion, the aim is to find the global optimum, which corresponds to a
solution having the best value for this objective function. However,
in many applications, one has to consider the concurrent optimiza-
tion of several objective functions. A multi-objective optimization
problem [15, 22] can be defined as follows:

Definition 2.2 (Multi-objective optimization problem).

minimize Z(V)={z1(V),...,zm(V)}
subjectto Ve Q
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in which V is the set of decision variables, m > 2 the number of
objective functions, z; the i’ h objective function and Q represents
the set of feasible solutions.

Contrary to mono-objective optimization, solving a multi-objective
optimization problem produces a set of solutions offering a trade-off
between the different objective functions. The comparison between
solutions is usually done using a dominance relation, generally the
Pareto dominance defined as follows:

Definition 2.3 (Pareto dominance). A solution v dominates a so-
lution v’ if v is at least as good as v’ for all objectives, and v is
strictly better than v’ for at least one objective.

The set of non-dominated solutions of a multi-objective opti-
mization problem describes a Pareto frontier.

Various approaches exist for solving multi-objective optimization
problems. In this paper, we focus on methods that convert a multi-
objective optimization problem into a mono-objective optimization
one. They simply consist in combining the different objective func-
tions into a single one before optimizing it. The most basic method
is the weighted-sum-of-objective-functions in which the objective
function to be optimized is a linear combination of the different
ones. Another scalar method is the distance-to-a-reference method,
which consists in defining an “ideal” reference point, encoded as a
vector in which each coordinate is the “ideal” value of an objective
function. The resulting objective function is the distance between
the current objective functions vector and the ideal one. Finally, the
last common technique we have used is the e-constraint method,
which aims at optimizing only one of the objective functions given
a set of constraints on the others. By varying these constraints, we
are able to generate the Pareto Front.

3 BI-OBJECTIVE OPTIMIZATION TO LEARN
FAIR AND ACCURATE RULE LISTS

We consider the problem of learning fair rule lists. Given a dataset
D = (X,P,Y), our objective is to learn a rule list model charac-
terizing the trade-off between the accuracy and the fairness, or
equivalently between the misclassification error and the unfair-
ness. Recall that the objective of the original CORELS method is to
minimize the misclassification error misc(-) and the model size K,
weighted using a parameter A.

3.1 An overview of the proposed approach

For taking into account both accuracy and fairness, a straight-
forward approach is to consider the weighted-sum-of-objective-
functions mentioned previously. In this mono-objective approach,
the objective of the original CORELS method (Section 2.3) is com-
bined to an unfairness objective (Section 2.1) as follows:

B x misc(r,X,Y) + (1 — f) X unfairness(r, X) + A.K (4)

in which f is the parameter to control the balance between misclas-
sification error and unfairness. With such approach, one is able to
approximate the Pareto front directly by varying ff and 1. However,
several issues make such an approach unsuitable for our problem.
First, combining the two objectives (unfairness with misclassifica-
tion error) is likely to give coarse results as it approximates both
objectives. Second and more importantly, CORELS’ original bounds
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do not hold anymore if the objective function is modified. Indeed,
by keeping the same bounds, the optimality of the solution returned
is not guaranteed anymore as CORELS’ would prune subtrees based
on a wrong basis. Finally, when dealing with high fairness values,
we observed empirically an uncontrollable behaviour between the
regularized sum and the regularization term (1.K), leading to very
short rule lists.

In addition, we have also evaluated the distance-to-a-reference
method in which the “ideal” reference point for misclassification
and unfairness is set to (0, 0). However, this approach has the same
limitation as the weighted-sum approach due to the invalidity of
the CORELS’ original bounds in this case.

Our proposition: Pareto Front generation for a given number of
points. To create the Pareto Front, we propose an e-constraint
method that optimizes the original accuracy objective while re-
specting a minimum level of fairness. A pseudo code of our method
is given in Algorithm 1. This approach allows us to exploit CORELS’
original bounds, and to build the frontier of the accuracy/fairness
trade-offs by varying the constraint on fairness. We use € to control
the lower bound of fairness desired in an increasing way. That
is, the value 0.0 corresponds to a complete relaxation of fairness
(i.e., no minimum fairness is enforced) whereas the value 1.0 for
€ corresponds to a of 100% of fairness enforced on the training
set. Algorithm 1 uses our modified version of CORELS, denoted by
FairCORELS and presented in the next section. FairCORELS takes
as input the training set D1 and the fairness parameter € and return
an optimal rule list that optimizes the original accuracy objective
function within at least 100 X €% of fairness. We use a routine
Evaluate(r, D gy) that returns a pair (fairness, accuracy) to eval-
uate the fairness and accuracy (respectively) of a rule list r of a
testing set Dy

Algorithm 1 first computes the extreme points, optimizing either
fairness or accuracy (Lines 2 to 8), which give the maximum and
minimum possible values for fairness. Then, we use these values,
and the number of points E, to change € for the minimum amount
of fairness enforced at each call in the while loop (Lines 10 to 17).
Last, we remove dominated solutions at Line 18.

3.2 FairCORELS

To compute a model optimizing accuracy within a given minimal
fairness, a simple adaptation of CORELS would consist in accepting
solutions within the branch-and-bound method only when they
satisfy the minimal fairness constraint?. However, this approach
has the main drawback that it leads to useless exploration of the
search space as the algorithm is completely uninformed regarding
the amount of fairness in the sub-trees it can explore. To avoid
these useless computations, we design an unfairness lower bound
for CORELS. Our unfairness lower bound relies on the fact that
instances captured by the prefix will always be classified similarly
for any rule list based on this prefix. Thus, after a prefix evaluation,
we compute its unfairness lower bound, which is the minimum
unfairness value that any rule list based on this prefix can have. If
this value is greater than (1 — €), we prune the entire subtree. In

2Qur implementation actually minimizes the misclassification error with a maximum
acceptable unfairness (which is equivalent)
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Algorithm 1 ParetoFront(Dr, DE,, E, €)

Algorithm 2 ulb(r, D) : Unfairness lower bound computation

Input: Dr: training dataset; D, testing dataset; E : Number of
points of the Pareto Front to be calculated; e: fairness parame-
ter;

Output: L : List of non-dominated ( fairness, accuracy) tuples

L]
2. r « FairCORELS(DT, e = 1.0)

. (fairnessy, accuracyy) < Evaluate(r, D)

. (fairnessrg, accuracyrg) < Evaluate(r, D)

: L« LU{(fairnessy, accuracyo)}

r « FairCORELS(DrT, e = 0.0)

. (fairnessi, accuracyy) < Evaluate(r, Dgy)

: (fairnesst1, accuracyry) < Evaluate(r, D)

: L« LU {(fairnessy, accuracyi)}

o A fairnesstg — fairnessy

11: f « fairnesstg
12: while f >fairnesst; do
13: r « FairCORELS(DrT, € = f)

O ® N U W

14: (f,accuracy) <<« Evaluate(r, Dg,)
15 L LU{(f,accuracy)}
16: fef-A

17: end while
18: L <« eliminateDominatedSolutions(L)
19: return L

practice, this new bound leads to rule lists with a better quality in
shorter computational time as demonstrated later in Section 4.2.

The details of the bound computation are described in Algorithm
2. In this algorithm, we compute in Line 1 a vector of Booleans capt
in which capt; is true if and only if the data point x; is captured by
the prefix (i.e., x; is classified by a rule contained in the prefix and
does not fall into the default decision). In Line 2, we also compute
a vector of Booleans pred in which pred; is true if and only if the
data point x; is classified positively by the prefix. The rest of the
algorithm is straightforward as it computes exactly how much
unfairness is contained in the prefix.

FairCORELS, our new version of CORELS, is depicted in Algo-
rithm 3. We refer the reader to the original CORELS papers for a
detailed understanding of the algorithm [3, 4]. The integration of
the fairness lower bound is performed at Line 13 before exploring
any subtree. We use u(r, X, Y) (respectively b(r, X, Y)) to denote an
oracle that measures the unfairness (respectively accuracy objective
function) of a rule list r given X and Y.

4 EXPERIMENTS

In this section, we report on the experiments that we have con-
ducted to evaluate (1) the impact of the unfairness lower bound,
(2) the accuracy/fairness trade-offs provided by FairCORELS using
Algorithm 1, for different datasets using the statistical parity as the
fairness notion and (3) the performance of FairCORELS compared
to existing solutions, namely FairForest [52] and FAHT [65].

4.1 Experimental setting

Description of datasets. We conduct our experiments on four pub-
lic datasets that are extensively used in the fairness literature due

Input: r: prefix of rules; D1 = (X, P, Y) : training dataset ;
Output: b : Unfairness lower bound
1: capt < Compute_capt(r, D)

2: pred « Compute_pred(r, D)

2ix; €Ppmg; Predi X capt;
|Pmaj|
|Pmajl— Xx;ep,,,; (-predi) X capt;

> captured instances vector
> prediction vector

3: MinScoremqj <

4 MaxScoremqaj «—

|Pmaj|
Yx.eP. .. predi X capt;
5. MinScoremin « —t——min
| | |Pmin| ( )
Pmin - Z €P, . —|predl- X capt;i
6: MaxScoremin «— Xi€ min
. |Pmin|
7. if MaxScoremin < MinScorep,j then
8: Ib « MinScoremqaj — MaxScoremin
9: else if MaxScoremqj < MinScoremin then
10: Ib < MinScoremin — MaxScoremqj
11: else
12: b0
13: end if

4: return b

—_

Algorithm 3 FairCORELS(Dr, €)

Input: D1 = (X, P,Y): training dataset; e: fairness parameter;
Output: r¢: Rule list #¢ with minimum objective z¢ such that
u(r¢,X,Y)<e
1: (r€,z%,S) « Pre-processing() > Pre-processing to
initialize best rule list r¢ and objective z¢ and to compute a set
of pre-mined rules S

2: Q « queue([()]) > Initialize queue with empty prefix

3: while Q not empty do

4 r « Q.pop() > Remove prefix r from the queue

5: ur — u(r,X,Y) > Compute unfairness of r

6: if b(r,X,Y) < z° then > Objective lower bound

7 z— R(r,X,Y)

8: if z < z° and u, < (1 —¢€) then

9: %,z « (r,2) > Update best rule list and
objective

10: end if

11 forsin S do > Branch: Enqueue r’s children

12: if s not in r then

13: if ulb(r U {s}, Dt) < (1 — €) then > Apply the
unfairness pruning

14: Q.push((r,s))

15: end if

16: end if

17: end for

18: end if

19: end while
20: return r°
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to their biased nature, namely COMPAS [5], Adult Income [24], Ger-
man Credit [24] and Default Credit [24]. In a nutshell, the COMPAS
dataset gathers 6,167 records from criminal offenders in Florida
during 2013 and 2014 each described by 11 attributes with the
classification task considered being to predict whether or not a sub-
ject will reoffend within two years after the screening. We use the
race (i.e., african-american or caucasian) as the sensitive attribute.
The Adult Income dataset contains information about more than
45,000 individuals from the 1994 U.S. census, each described by
14 attributes. For this dataset, the sensitive attribute is the gender
while the objective of the decision task is to predict whether an
individual makes more or less than 50,000$ per year in terms of
income. The German Credit dataset aims to classify people accord-
ing to whether or not they have a good or bad credit risk. This
dataset contains 1,000 individuals, each described by 20 attributes
with the age range of the individual (over or below 25 years old)
being the sensitive attribute. Finally, the Default Credit dataset is
composed of information of 30,000 Taiwanese credit card users
and aims to classify whether a user will default with the gender
being the sensitive attribute. A detailed summary of these datasets
is presented in Table 2. For each dataset, we report the size of the
dataset (i.e., the number of data points), the dimensionality in terms
of number of attributes and the number of binary attributes, the
sensitive attribute and decision attribute.

Setup. We use both the unfairness and accuracy to evaluate
FairCORELS. In particular, we rely on statistical parity as described
in Section 2.1 as the unfairness metric. To compare with results
found in FairForest [52], we also use the inconsistency metric
(also defined in Section 2.1) as well as the delta, which is defined as
follows.

delta = accuracy — unfairness (5)

To build the Pareto front for each dataset, we use Algorithm 1.
In particular, for each step of the algorithm, we run FairCORELS
with a 10-fold cross validation and report the average values for the
accuracy, the unfairness, the delta as well as the inconsistency. To
select the value of A yielding to better performance, we run an hyper-
parameter search on each fold, using HyperOpt3. This enables us
to observe that in practice A does not vary too much when using
different values for €. For instance on Adult Income, the average
(respectively standard deviation) of A is 3e — 3 (respectively le — 3).
Our experiments were conducted on an Intel Xeon Processor E3-
1271 v3 (3.60 GHz) with 32GB of RAM. FairCORELS is implemented
in C++ and based on the original source code of CORELS®.

4.2 Results

Impact of the unfairness lower bound. Before exposing our main
results with respect to the trade-off between fairness and accu-
racy, we have assessed the impact of the unfairness lower bound
presented in Section 3 experimentally. To realize this, we first evalu-
ated FairCORELS with several branching strategies using best-first
search and breadth-first search (BFS). We have observed that BFS
outperforms the best-first search when dealing with high number

3https://github.com/hyperopt/hyperopt
“https://github.com/nlarusstone/corels
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of attributes. While it is clear that rule lists with smaller depths
should be explored first while using BFS, the order in which the
rule lists with the same depths should be explored is not obvious.
Therefore, we have tested several customized BFS strategies when
breaking ties between the best two prefixes (left and right nodes)
of the priority queue with a same length. These different strategies
are depicted below:

e CORELS’s original BFS: choose the right node.

e FIFO BFS: choose the node that was inserted first in the
queue.

o Objective-aware BFS: choose the node with the best objective
function.

e Lower-bound aware BFS: choose the node with the best lower
bound.

e Random BFS: break ties at random.

In Table 3, we report the results using the Adult Income dataset
for an unfairness parameter of 0.01 by setting the maximum number
of nodes in the trie to 107. For each strategy, we describe the number
of explored nodes before finding the best solution (i.e., Nodes), the
accuracy of that solution on the test set (i.e., Accuracy) and the
number of subtrees pruned when using the unfairness lower-bound.
These results clearly show the benefits of using our unfairness lower
bound as it finds better solutions quicker by pruning a considerable
portion of the search tree.

Unfairness and accuracy trade-offs. We use Algorithm 1 to com-
pute the set of non-dominated solutions in terms of both unfairness
and misclassification error minimization. In particular, we use the
objective-aware BFS (cf. Table 3) exploration strategy. The Pareto
frontiers in Figure 1 show, for each dataset, the accuracy-fairness
trade-offs achieved by FairCORELS. For instance, on Adult Income,
FairCORELS is able to reduce the unfairness from 0.19 to 0.01 while
only increasing the error from 0.17 to 0.20. Figure 2 gives a close-up
look at the tradeoffs achieved by FairCORELS on Adult Income for
€ >= 0.95. As suggested in recent works [34, 35], providing the
Pareto frontier instead of a unique model gives the possibility to
the stakeholders or policymakers to select the right model in a
domain-specific manner.

Comparison with others methods. To compare our method with
other fairness-enhanced approaches [52, 65], we have selected 5
points along the Pareto fronts of both German Credit and Adult In-
come datasets: the rule list with the best (1) accuracy, (2) unfairness,
(3) delta, (4) accuracy for € >= 0.95 and (5) accuracy for € >= 0.99.
We also apply the same analysis to the COMPAS and Default Credit
datasets.

As shown in Table 4, FairCORELS achieves better unfairness/ac-
curacy trade-offs compared to both FairForest and FAHT. In partic-
ular, FairCORELS achieves an unfairness of 0.0493 for an accuracy
of 0.8115 on Adult Income. In comparison, FAHT achieves an unfair-
ness of 0.1629 for an accuracy of 0.8183 on the same dataset. One of
the strength of FairCORELS is that it allows to efficiently compute
the Pareto front, thus allowing to easily visualize the achievable
trade-offs. In addition, since the obtained models are interpretable,
we can inspect them to decide whether or not they are legitimate or
relevant. For instance, on German Credit, when the fairness require-
ment is high (¢ >= 0.99), the accuracy of the solution found by
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Dataset #Size | #Attributes (#Bin. attr.) Sensitive Attribute Decision attribute
COMPAS 6,167 | 11/25 Race: African-American/Caucasian | 2 years recidivism
Adult Income 45,222 | 14/69 Gender: Male/Female Income > 50k
German Credit | 1,000 | 20/80 Age: > 25 Good/Bad credit score
Default Credit | 30,000 | 25/90 Gender : Male/Female Default of payment
Table 2: Summary of the datasets used.
Without unfairness bound | With unfairness bound Subtrees pruned with the bound
Nodes Accuracy Nodes Accuracy
Original CORELS 18,365,708 79.17% 16, 523, 605 79.25% 233,631
FIFO 1,446, 553 78.68% 1,439,512 78.68% 282,272
Objective-aware 6,478,865 (79.25%) 6,232,246 79.25% 532,822
Lower-bound aware | 3,119,577 (78.68%) 3,103, 109 78.68% 363, 866
Random 5,447,942 (79.17%) 4,453,465 79.25% 212,324
Table 3: Impact of the unfairness lower-bound on different BFS strategies.
COMPAS Adult Income
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0 0
0 N
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© ©
E 0.11 c
= =
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Figure 1: Pareto front (unfairness, misclassification error) for COMPAS, Adult Income, German Credit and Default Credit.

FairCORELS is not better than predicting the majority class. How-
ever, by slightly relaxing the fairness constraint, we able to find
meaningful models with better accuracy.

Table 5 shows that FairCORELS also achieves good performances
on both COMPAS and Default Credit. In addition, Figure 3 shows for
the model with best accuracy (respectively best Delta) on COMPAS

dataset, the relative importance of the attributes on the prediction
outcome as well as the description of the corresponding models.
We used the FairML [1] library to audit the models we produced.
For a given rule list, FairML shows for each feature, its relative
importance in the decision-making process. We can clearly see that,
in the models with higher accuracy, the sensitive attributes are
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German Credit Adult Income
Accuracy Delta  Unfairness Inconsistency | Accuracy Delta Unfairness Inconsistency

Best accuracy 0.7505 0.6962 0.0543 0.2045 0.8225 0.6238 0.1987 0.0496

Best unfairness 0.7000 0.7000 0.0000 0.0000 0.7521 0.7521 0.0000 0.0000
FairCORELS | Best delta 0.7434 0.7043 0.0391 0.1936 0.7928 0.7845 0.0083 0.0285

Best accuracy for € >= 0.95 0.7444 0.6976 0.0469 0.1966 0.8115 0.7621 0.049%4 0.0307

Best accuracy for € >=0.99 | 0.7000 0.7000 0.0000 0.0000 0.7928  0.7845 0.0083 0.0285
Fair Forest Decision tree 0.6990 0.6908 0.0082 0.0070 0.7511 0.7444 0.0067 0.0033

Random Forest 0.7000 0.7000 0.0000 0.0000 0.7530 0.7530 0.0000 0.0000
FAHT - - - - 0.8183 0.6554 0.1629 -

Table 4: Results of FairCORELS on German Credit and Adult Income and comparison with existing solutions.

0.05

0.04

0.03

unfairness

0.01 -1

0.00

0.19 0.20 0.21 0.22 0.23 0.24 0.2t
error

Figure 2: Accuracy-fairness tradeoffs of FairCORELS on Adult
Income, for € >= 0.95

used in a discriminatory manner. In the models with higher Delta,
a form of positive discrimination, favouring individuals that were
originally discriminated, can be observed.

5 CONCLUSION

In this paper, we presented FairCORELS, a fairness-aware algo-
rithm to learn fair interpretable models by design. We formulated
the problem of learning fair rule lists as a bi-objective formulation
of the problem of learning rule list, in which we jointly minimize
the unfairness as well as the classification error. The proposed
FairCORELS algorithm is embedded in a bi-objective optimization

method to compute the set of non-dominated solutions. We also
design a new lower bound for the unfairness objective to prune
the search space efficiently, and a collection of branching strate-
gies to improve the effectiveness of the search for fair rule lists.
Our experiments show that this technique aims at finding better
fairness/accuracy trade-offs. While in this work, we have focused
on statistical parity, as part of our future work, we will design ad-
ditional unfairness lower bounds for other statistical notions of
fairness. In addition, we envision to integrate individual notions of
fairness in our framework.



Learning Fair Rule Lists

Preprint, Under review, August 2019

COMPAS Default Credit
Accuracy Delta  Unfairness Inconsistency | Accuracy Delta Unfairness Inconsistency
Best accuracy 0.6777 0.4165 0.2612 0.1170 0.8209 0.8042 0.0167 0.0597
Best unfairness 0.5446 0.5446 0.0000 0.0000 0.7788 0.7788 0.0000 0.0000
FairCORELS | Best delta 0.6518 0.6357 0.0161 0.1189 0.8209 0.8042 0.0167 0.0597
Best accuracy for € >= 0.95 0.6648 0.6201 0.0447 0.1359 0.8209 0.8042 0.0167 0.0597
Best accuracy for € >=0.99 | 0.5552 0.5520 0.0032 0.0139 0.8106 0.8010 0.0095 0.0577

Table 5: Results of FairCORELS on COMPAS and Default Credit.

sex:Male -
charge_degree:Felony -
race:African-American -

priors_2-3 -

age:23-25 -

age:>45 -

sex:Female -

priors_1 -

race:Caucasian -
charge_degree:Misdemeanor -
priors_0 -

age:26-45 -
juvenile-crimes_=0 -
juvenile-misdemeanors_=0 -

juvenile-felonies_=0 -

-100 -75 -50 -25 0 25 50 75 100

if [priors:>3] then recidivism

else
else
else
else
else
else
else
else
else
else

if [juvenile-felonies:>@] then recidivism
if [age:26-45] then not recidivism

if [age:>45] then not recidivism

if [priors:2-3] then recidivism

if [age:18-20] then recidivism

if [race:Caucasian] then not recidivism
if [juvenile-crimes:>0] then recidivism
if [priors:@] then not recidivism

if [sex:Female] then not recidivism
recidivism

Rule list 3: Best accuracy on COMPAS.

sex:Male -
charge_degree:Felony -
age:26-45 -
race:Caucasian -

priors_2-3 -

priors_1 -

race:Hispanic -

sex:Female -

age:>45 -
charge_degree:Misdemeanor -
race:African-American -
priors_0 -

juvenile-crimes_=0 -
juvenile-felonies_=0 -

juvenile-misdemeanors_=0 -

25 50 75 100

o-

-100 -75 -50 -25

if [age:>45] then not recidivism

else if [priors:@] then not recidivism
else if [race:Caucasian] then recidivism
else if [priors:>3] then recidivism

else if [age:26-45] then not recidivism
else recidivism

Rule list 4: Best delta on COMPAS.

Figure 3: Models with best accuracy and best delta on COMPAS.
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