
HAL Id: hal-03268388
https://laas.hal.science/hal-03268388v1

Submitted on 23 Jun 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Accelerating the Computation of Dead and Concurrent
Places using Reductions

Nicolas Amat, Silvano Dal Zilio, Didier Le Botlan

To cite this version:
Nicolas Amat, Silvano Dal Zilio, Didier Le Botlan. Accelerating the Computation of Dead and Con-
current Places using Reductions. 27th International SPIN Symposium on Model Checking of Software,
Jul 2021, Aarhus, Denmark. �10.1007/978-3-030-84629-9_3�. �hal-03268388�

https://laas.hal.science/hal-03268388v1
https://hal.archives-ouvertes.fr

Accelerating the Computation of Dead and
Concurrent Places using Reductions

Nicolas Amat1, Silvano Dal Zilio1, and Didier Le Botlan1

1LAAS-CNRS, Université de Toulouse, CNRS, INSA, Toulouse, France

Abstract

We propose a new method for accelerating the computation of a con-
currency relation, that is all pairs of places in a Petri net that can be
marked together. Our approach relies on a state space abstraction, that
involves a mix between structural reductions and linear algebra, and a
new data-structure that is specifically designed for our task. Our algo-
rithms are implemented in a tool, called Kong, that we test on a large
collection of models used during the 2020 edition of the Model Checking
Contest. Our experiments show that the approach works well, even when
a moderate amount of reductions applies.

1 Introduction
We propose a new approach for computing the concurrency relation of a Petri
net, that is all pairs of places that can be marked together in some reachable
states. This problem has practical applications, for instance because of its use
for decomposing a Petri net into the product of concurrent processes [9, 10]. It
also provides an interesting example of safety property that nicely extends the
notion of dead places. These problems raise difficult technical challenges and
provide an opportunity to test and improve new model checking techniques [11].

Naturally, it is possible to compute the concurrency relation by first com-
puting the complete state space of a system and then checking, individually,
the reachability of each pair of places. But this amounts to solving a quadratic
number of reachability properties—where the parameter is the number of places
in the net—and one would expect to find smarter solutions, even if it is only for
some specific cases. We are also interested in partial solutions, where computing
the whole state space is not feasible.

We recently became interested in this problem because we see it as a good
testbed for a new model checking technique that we are actively developing [1, 4,
5]. It is an abstraction technique, based on the use of structural reductions [3],
that we successfully implemented into a symbolic model checker called Tedd.
The idea is to compute reductions of the form N1 BE N2, where: N1 is an initial
Petri net (that we want to analyse); N2 is a residual net (hopefully simpler than
N1); and E is a system of linear equations. The goal is to preserve enough
information in E so that we can rebuild the reachable markings of N1 knowing
only those of N2. While there are many examples of the benefits of structural

1

reductions when model checking Petri nets, the use of an equation system (E)
for tracing back the effect of reductions is new, and we are hopeful that this
approach can be applied to other problems. For example, we proved recently [1]
that this approach also works well when combined with SMT.

In this paper, we confirm that the same holds true when we tackle the con-
current places problem. In practice, we can often reduce a net N1 into another
net N2 with far fewer places. We show that we can reconstruct the concurrency
relation of N1 from the one of N2, using a surprising and very efficient “inverse
transform” that depends only on E and does not involve computing reachable
markings. (This is a model checking paper where no transitions are fired!) This
is useful since the number of places is a predominant parameter when computing
the concurrency relation. Note that we are not concerned with how to compute
the relation on N2, but only by how we can accelerate its calculation on N1.

Related Work. Several works address the problem of finding or characteriz-
ing the concurrent places of a Petri net. This notion is mentioned under various
names, such as coexistency defined by markings [18], concurrency graph [27] or
concurrency relation [12, 20, 19, 24, 28]. The main motivation is that the concur-
rency relation characterizes the sub-parts, in a net, that can be simultaneously
active. Therefore it plays a useful role when decomposing a net into a collec-
tion of independent components. This is the case in [28], where the authors
draw a connection between concurrent places and the presence of “sequential
modules (state machines)”. Another example is the decomposition of nets into
unit-safe NUPNs (Nested-Unit Petri Nets) [9, 10], for which the computation of
the concurrency relation is one of the main bottlenecks.

We know only a couple of tools that support the computation of the con-
currency relation. A recent tool is part of the Hippo platform [28], available
online. Our reference tool is cæsar.bdd, from the CADP toolbox [8, 17], that
uses BDD techniques to explore the state space of a net and find concurrent
places. It supports the computation of a partial relation and can output the
“concurrency matrix” of a net using a specific textual format [11]. We adopt the
same format since we use cæsar.bdd to compute the concurrency relation on
the residual net, N2, and as a yardstick in our benchmarks.

Concerning our use of structural reductions, our main result can be inter-
preted as an example of reduction theorem [22], that allows to deduce properties
of an initial model (N1) from properties of a simpler, coarser-grained version
(N2). But our notion of reduction is more complex and corresponds to the
one pioneered by Berthelot [3] (with the equations added). Several tools use
reductions for checking reachability properties but none specializes in comput-
ing the concurrency relation. We can mention TAPAAL [7], an explicit-state
model checker that combines partial-order reduction techniques and structural
reductions or, more recently, ITS Tools [26], which combines several techniques,
including structural reductions and the use of SAT and SMT solvers.

Outline and Contributions. We define the semantics of Petri nets and the
notion of concurrent places in Sect. 2. This section also introduces a simplified
notion of “reachability equivalence”, called polyhedral abstraction, that gives a
formal definition to the relation N1 BE N2. Section 3 contains our main contri-
butions. We describe a new data-structure, called Token Flow Graph (TFG),

2

that captures the particular structure of the equation system generated with
our approach. We prove several results on TFGs that allow us to reason about
the reachable places of a net by playing a token game on this graph. We use
TFGs (Sect. 4) to define an algorithm that implements our “inverse transform”
and show how to adapt it to situations where we only have partial knowledge
of the residual concurrency relation. Our approach has been implemented and
computing experiments (Sect. 5) show that reductions are effective on a large
set of models. We perform our experiments on an independently managed col-
lection of Petri nets (588 instances) corresponding to the safe nets used during
the 2020 edition of the Model Checking Contest [2]. We observe that, even with
a moderate amount of reductions (say we can remove 25% of the places), we
can compute complete results much faster with reductions than without (often
with speed-ups greater than ×100). We also show that we perform well with
incomplete relations, where we are both faster and more accurate. We include
the proofs of all our results in the appendix.

2 Petri Nets and Polyhedral Abstraction
A Petri net N is a tuple (P, T,pre,post) where P = {p1, . . . , pn} is a finite set
of places, T = {t1, . . . , tk} is a finite set of transitions (disjoint from P), and
pre : T → (P → N) and post : T → (P → N) are the pre- and post-condition
functions (also called the flow functions of N). We often simply write that p is
a place of N when p ∈ P . A state m of a net, also called a marking, is a total
mapping m : P → N which assigns a number of tokens, m(p), to each place of
N . A marked net (N,m0) is a pair composed of a net and its initial marking
m0.

A transition t ∈ T is enabled at marking m ∈ NP when m(p) > pre(t, p) for
all places p in P . (We can also simply write m > pre(t), where > stands for the
component-wise comparison of markings.) A marking m′ is reachable from a
marking m by firing transition t, denoted m t−→m′, if: (1) transition t is enabled
at m; and (2) m′ = m− pre(t) + post(t). When the identity of the transition
is unimportant, we simply write this relation m−→m′. More generally, marking
m′ is reachable from m in N , denoted m −→? m′ if there is a (possibly empty)
sequence of reductions such that m −→ · · · −→m′. We denote R(N,m0) the set
of markings reachable from m0 in N .

A marking m is k-bounded when each place has at most k tokens and a
marked Petri net (N,m0) is bounded when there is a constant k such that
all reachable markings are k-bounded. While most of our results are valid in
the general case—with nets that are not necessarily bounded and without any
restrictions on the flow functions (the weights of the arcs)—our tool and our
experiments focus on the class of 1-bounded nets, also called safe nets.

Given a marked net (N,m0), we say that places p, q ofN are concurrent when
there exists a reachable marking m with both p and q marked. The Concurrent
Places problem consists in enumerating all such pairs of places.

Definition 2.1 (Dead and Concurrent places). We say that a place p of (N,m0)
is not-dead if there is m in R(N,m0) such that m(p) > 0. In a similar way,
we say that places p, q are concurrent, denoted p ‖ q, if there is m in R(N,m0)
such that both m(p) > 0 and m(q) > 0. By extension, we use the notation p ‖ p

3

p0

p1 p2

p3

p4

p5

p6

t0

t1

t2

t3

t4

BEM t5

a2

t7p6

t6

p0

1

Figure 1: An example of Petri net, M1 (left), and one of its polyhedral abstrac-
tion, M2 (right), with EM , (p5 = p4), (a1 = p1 +p2), (a2 = p3 +p4), (a1 = a2).

when p is not-dead. We say that p, q are nonconcurrent, denoted p # q, when
they are not concurrent.

Relation with Linear Arithmetic Constraints. Many results in Petri net
theory are based on a relation with linear algebra and linear programming tech-
niques [23, 25]. A celebrated example is that the potentially reachable markings
of a net (N,m0) are non-negative, integer solutions to the state equation prob-
lem, m = I · σ + m0, with I an integer matrix defined from the flow functions
of N and σ a vector in Nk. It is known that solutions to the system of linear
equations σT · I = ~0 lead to place invariants, σT ·m = σT ·m0, that can provide
some information on the decomposition of a net into blocks of nonconcurrent
places, and therefore information on the concurrency relation.

For example, for netM1 (Fig. 1), we can compute invariant p4−p5 = 0. This
is enough to prove that places p4 and p5 are concurrent, if we can prove that at
least one of them is not-dead. Likewise, an invariant of the form p + q = 1 is
enough to prove that p and q are 1-bounded and cannot be concurrent. Unfor-
tunately, invariants provide only an over-approximation of the set of reachable
markings, and it may be difficult to find whether a net is part of the few known
classes where the set of reachable markings equals the set of potentially reach-
able ones [16].

Our approach shares some similarities with this kind of reasoning. A main
difference is that we will use equation systems to draw a relation between the
reachable markings of two nets; not to express constraints about (potentially)
reachable markings inside one net. Like with invariants, this will allow us,
in many cases, to retrieve information about the concurrency relation without
“firing any transition”, that is without exploring the state space.

In the following, we will often use place names as variables, and markings
m : P → N as partial solutions to a set of linear equations. For the sake of
simplicity, all our equations will be of the form x = y1+· · ·+yl or y1+· · ·+yl = k
(with k a constant in N).

Given a system of linear equations E, we denote fv(E) the set of all its
variables. We are only interested in the non-negative integer solutions of E.
Hence, in our case, a solution to E is a total mapping from variables in fv(E)
to N such that all the equations in E are satisfied. We say that E is consistent
when there is at least one such solution. Given these definitions, we say that the
mapping m : {p1, . . . , pn} → N is a (partial) solution of E if the system E , bmc
is consistent, with bmc the sequence of equations p1 = m(p1) , · · · , pn = m(pn).

4

(In some sense, we use bmc as a substitution.) For instance, places p, q are
concurrent if the system p = 1 + x , q = 1 + y , bmc is consistent, where m is a
reachable marking and x, y are some fresh (slack) variables.

Given two markings m1 : P1 → N and m2 : P2 → N, from possibly different
nets, we say that m1 and m2 are compatible, denoted m1 ≡ m2, if they have
equal marking on their shared places: m1(p) = m2(p) for all p in P1∩P2. This is
a necessary and sufficient condition for the system bm1c , bm2c to be consistent.

Polyhedral Abstraction. We recently defined a notion of polyhedral abstrac-
tion based on our previous work applying structural reductions to model count-
ing [1, 5]. We only need a simplified version of this notion here, which entails an
equivalence between the state space of two nets, (N1,m1) and (N2,m2), “up-to”
a system E of linear equations.

Definition 2.2 (E-equivalence). We say that (N1,m1) is E-equivalent to
(N2,m2), denoted (N1,m1) BE (N2,m2), if and only if:

(A1) E , bmc is consistent for all markings m in R(N1,m1) and R(N2,m2);

(A2) initial markings are compatible, meaning E , bm1c , bm2c is consistent;

(A3) assume m′
1,m

′
2 are markings of N1, N2, respectively, such that E , bm′

1c ,
bm′

2c is consistent, then m′
1 is reachable if and only if m′

2 is reachable:

m′
1 ∈ R(N1,m1) ⇐⇒ m′

2 ∈ R(N2,m2).

By definition, relation BE is symmetric. We deliberately use a symbol ori-
ented from left to right to stress the fact that N2 should be a reduced version
of N1. In particular, we expect to have less places in N2 than in N1.

Given a relation (N1,m1) BE (N2,m2), each marking m′
2 reachable in N2

can be associated to a unique subset of markings in N1, defined from the so-
lutions to E , bm′

2c (by condition A1 and A3). We can show that this gives a
partition of the reachable markings of (N1,m1) into “convex sets”—hence the
name polyhedral abstraction—each associated to a reachable marking in N2.
Our approach is particularly useful when the state space of N2 is very small
compared to the one of N1. In the extreme case, we can even find examples
where N2 is the “empty” net (a net with zero places, and therefore a unique
marking), but this condition is not a requisite in our approach.

We can illustrate this result using the two marked nets M1,M2 in Fig. 1, for
which we can prove that M1 BEM

M2. We have that m′
2 , a2 = 1 , p6 = 1 is

reachable inM2, which means that every solution to the system p0 = 0,p1+p2 =
1 , p3 + p4 = 1 , p4 = p5 , p6 = 1 gives a reachable marking of M1. Moreover,
every solution such that pi > 1 and pj > 1 gives a witness that pi ‖ pj . For
instance, p1, p4, p5 and p6 are certainly concurrent together. We should exploit
the fact that, under some assumptions about E, we can find all such “pairs of
variables” without the need to explicitly solve systems of the form E , bmc; just
by looking at the structure of E.

For this current work, we do not need to explain how to derive or check
that an equivalence statement is correct in order to describe our method. In
practice, we start from an initial net, (N1,m1), and derive (N2,m2) and E
using a combination of several structural reduction rules. You can find a precise
description of our set of rules in [5] and a proof that the result of these reductions

5

always leads to a valid E-equivalence in [1]. In most cases, the system of linear
equations obtained using this process exhibits a graph-like structure. In the
next section, we describe a set of constraints that formalizes this observation.
This is one of the contributions of this paper, since we never defined something
equivalent in our previous works. We show with our benchmarks (Sect. 5) that
these constraints are general enough to give good results on a large set of models.

3 Token Flow Graphs
We introduce a set of structural constraints on the equations occurring in an
equivalence statement (N1,m1) BE (N2,m2). The goal is to define an algorithm
that is able to easily compute information on the concurrency relation of N1,
given the concurrency relation on N2, by taking advantage of the structure of
the equations in E.

We define the Token Flow Graph (TFG) of a system E of linear equations
as a Directed Acyclic Graph (DAG) with one vertex for each variable occurring
in E. Arcs in the TFG are used to depict the relation induced by equations in
E. We consider two kinds of arcs. Arcs for redundancy equations, q →• p, to
represent equations of the form p = q (or p = q + r + . . .), expressing that the
marking of place p can be reconstructed from the marking of q, r, . . . In this
case, we say that place p is removed by arc q→• p, because the marking of q
may influence the marking of p, but not necessarily the other way round.

The second kind of arcs, a◦→p, is for agglomeration equations. It represents
equations of the form a = p+ q, generated when we agglomerate several places
into a new one. In this case, we expect that if we can reach a marking with
k tokens in a, then we can certainly reach a marking with k1 tokens in p and
k2 tokens in q when k = k1 + k2 (see property Agglomeration in Lemma 3.2).
Hence information flows in reverse order compared to the case of redundancy
equations. This is why, in this case, we say that places/nodes p and q are
removed. We also say that node a is inserted ; it does not appear in N1 but
may appear as a new place in N2. We can have more than two places in an
agglomeration.

A TFG can also include nodes for constants, used to express invariant state-
ments on the markings of the form p+ q = k. To this end, we assume that we
have a family of disjoint sets K(n) (also disjoint from place and variable names),
for each n in N, such that the “valuation” of a node v ∈ K(n) will always be n.
We use K to denote the set of all constants.

Definition 3.1 (Token Flow Graph). A TFG with set of places P is a directed
(bi)graph (V,R,A) such that: V = P ∪ S is a set of vertices (or nodes) with
S ⊂ K a finite set of constants; R ∈ V ×V is a set of redundancy arcs, v→•v′;
and A ∈ V × V is a set of agglomeration arcs, v ◦→ v′, disjoint from R.

The main source of complexity in our approach arises from the need to
manage interdependencies between A and R nodes, that is situations where
redundancies and agglomerations alternate. This is not something that can be
easily achieved by looking only at the equations in E and what motivates the
need to define a specific data-structure.

We define several notations that will be useful in the following. We use the
notation v → v′ when we have (v→•v′) in R or (v◦→v′) in A. We say that a node

6

R |- p5 = p4
A |- a1 = p2 + p1
A |- a2 = p4 + p3
R |- a1 = a2

p0 p6a2

a1

p3

p4

p1 p2 p5

Figure 2: Equations generated from netM1, in Fig.1, and associated TFG JEM K

v is a root if it is never the target of an arc. A sequence of nodes (v1, . . . , vn)
in V n is a path if we have vi → vi+1 for all i < n. We use the notation v →? v′

when there is a path from v to v′ in the graph, or when v = v′. We write v◦→X
when X is the largest subset {v1, . . . , vk} of V such that X 6= ∅ and v ◦→ vi ∈ A
for all i ∈ 1..k. Similarly, we write X →• v when X is the largest, non-empty
set of nodes {v1, . . . , vk} such that vi→• v ∈ R for all i ∈ 1..k.

We display an example of Token Flow Graphs in Fig. 2, where “black dot”
arcs model edges in R and “white dot” arcs model edges in A. The idea is that
each relation X →• v or v ◦→X corresponds to one equation v =

∑
vi∈X vi in

E, and that all the equations in E should be reflected in the TFG. We want
to avoid situations where the same place is removed more than once, or where
some place occurs in the TFG but is never mentioned in N1, N2 or E. All these
constraints can be expressed using a suitable notion of well-formed graph.

Definition 3.2 (Well-Formed TFG). A TFG G = (V,R,A) for the equiva-
lence statement (N1,m1) BE (N2,m2) is well-formed when all the following
constraints are met, where P1 and P2 stand for the set of places in N1 and N2:

(T1) no unused names: V \K = P1 ∪ P2 ∪ fv(E),

(T2) nodes in K are roots: if v ∈ V ∩K then v is a root of G,

(T3) nodes can be removed only once: it is not possible to have p ◦→ q and
p′ → q with p 6= p′, or to have both p→• q and p ◦→ q,

(T4) we have all and only the equations in E: we have v ◦→ X or X →• v if
and only if the equation v =

∑
vi∈X vi is in E.

Given a relation (N1,m1) BE (N2,m2), the well-formedness conditions are
enough to ensure the unicity of a TFG (up-to the choice of constant nodes) when
we set each equation to be either in A or in R. In this case, we denote this TFG
JEK. In practice, we use a tool called Reduce to generate the E-equivalence from
the initial net (N1,m1). This tool outputs a sequence of equations suitable to
build a TFG and, for each equation, it adds a tag indicating if it is a Redundancy
or an Agglomeration. We display in Fig. 2 the equations generated by Reduce
for the net M1 given in Fig. 1.

A consequence of condition (T3) is that a well-formed TFG is necessarily
acyclic; once a place has been removed, it cannot be used to remove a place
later. Moreover, in the case of reductions generated from structural reductions,
the roots of the graph are exactly the constant nodes and the places that occur

7

in N2 (since they are not removed by any equation). The constraints (T1)–
(T4) are not artificial or arbitrary. In practice, we compute E-equivalences
using multiple steps of structural reductions, and a TFG exactly records the
constraints and information generated during these reductions. In some sense,
equations E abstract a relation between the semantics of two nets, whereas a
TFG records the structure of reductions between places during reductions.

Configurations of a Token Flow Graph. By construction, there is a strong
connection between “systems of reduction equations”, E, and their associated
graph, JEK. We show that a similar relation exists between solutions of E and
“valuations” of the graph (what we call configurations thereafter).

A configuration c of a TFG (V,R,A) is a partial function from V to N. We
use the notation c(v) = ⊥ when c is not defined on v and we always assume
that c(v) = n when v is a constant node in K(n).

Configuration c is total when c(v) is defined for all nodes v in V ; otherwise it
is said partial. We use the notation c|N for the configuration obtained from c by
restricting its support to the set of places in the netN . We remark that when c is
defined over all places of N then c|N can be viewed as a marking. By association
with markings, we say that two configurations c and c′ are compatible, denoted
c ≡ c′, if they have same value on the nodes where they are both defined:
c(p) = c′(p) when c(v) 6= ⊥ and c′(v) 6= ⊥. We also use bcc to represent the
system v1 = c(v1) , · · · , vk = c(vk) where the (vi)i∈1..k are the nodes such that
c(vi) 6= ⊥. We say that a configuration c is well-defined when the valuation of
the nodes agrees with the equations associated with the A and R arcs of JEK.

Definition 3.3 (Well-Defined Configurations). Configuration c is well-defined
when for all nodes p the following two conditions hold: (CBot) if v → w then
c(v) = ⊥ if and only if c(w) = ⊥; and (CEq) if c(v) 6= ⊥ and v◦→X or X→•v
then c(v) =

∑
vi∈X c(vi).

We prove that the well-defined configurations of a TFG JEK are partial
solutions of E, and reciprocally. Therefore, because all the variables in E are
nodes in the TFG (condition T1) we have an equivalence between solutions of
E and total, well-defined configurations of JEK.

Lemma 3.1 (Well-defined Configurations are Solutions). Assume JEK is a well-
formed TFG for the equivalence (N1,m1) BE (N2,m2). If c is a well-defined
configuration of JEK then E , bcc is consistent. Conversely, if c is a total con-
figuration of JEK such that E , bcc is consistent then c is also well-defined.

We can prove several properties related to how the structure of a TFG
constrains possible values in well-formed configurations. These results can be
thought of as the equivalent of a “token game”, which explains how tokens can
propagate along the arcs of a TFG. This is useful in our context since we can
assess that two nodes are concurrent when we can mark them in the same
configuration. (A similar result holds for finding pairs of nonconcurrent nodes.)

Our first result shows that we can always propagate tokens from a node to
its children, meaning that if a node has a token, we can find one in its successors
(possibly in a different well-defined configuration). In the following, we use the
notation ↓v for the set of successors of v, meaning: ↓p ,

⋃
{q ∈ V | p →? q}.

Property (Backward) states a dual result; if a child node is marked then one of
its parents must be marked.

8

Lemma 3.2 (Token Propagation). Assume JEK is a well-formed TFG for the
equivalence (N1,m1) BE (N2,m2) and c a well-defined configuration of JEK.

(Forward) if p, q are nodes such that c(p) 6= ⊥ and p→? q then we can find a
well-defined configuration c′ such that c′(q) > c′(p) = c(p) and c′(v) = c(v)
for every node v not in ↓p.

(Backward) if c(p) > 0 then there is a root v such that v →? p and c(v) > 0.

(Agglomeration) if p ◦→ {q1, . . . , qk} and c(p) 6= ⊥ then for every sequence
(li)i∈1..k of Nk, if c(p) =

∑
i∈1..k li then we can find a well-defined con-

figuration c′ such that c′(p) = c(p), and c′(qi) = li for all i ∈ 1..k, and
c′(v) = c(v) for every node v not in ↓p.

Until this point, none of our results rely on the properties of E-equivalence.
We now prove that there is an equivalence between reachable markings and
configurations of JEK. More precisely, we prove (Th. 3.3) that every reachable
marking in N1 or N2 can be extended into a well-defined configuration of JEK.
This entails that we can reconstruct all the reachable markings of N1 by looking
at well-defined configurations obtained from the reachable markings of N2. Our
algorithm (see next section) will be a bit smarter since we do not need to
enumerate exhaustively all the markings of N2. Instead, we only need to know
which roots can be marked together.

Theorem 3.3 (Configuration Reachability). Assume JEK is a well-formed TFG
for the equivalence (N1,m1) BE (N2,m2). If m is a marking in R(N1,m1) or
R(N2,m2) then there exists a total, well-defined configuration c of JEK such that
c ≡ m. Conversely, given a total, well-defined configuration c of JEK, if marking
c|N1

is reachable in (N1,m1) then c|N2
is reachable in (N2,m2).

Proof (sketch). Take m a marking in R(N1,m1). By property of E-abstraction,
there is a reachable marking m′

2 in R(N2,m2) such that E , bmc , bm′
2c is con-

sistent. Therefore we can find a non-negative integer solution c to the system
E , bmc , bm′

2c. And c is total because of condition (T1). For the converse
property, we assume that c is a total and well-defined configuration of JEK and
that c|N1

is a marking of R(N1,m1). By Lemma 3.1, since c is well-defined, we
have that E , bcc is consistent, and therefore so is E , bc|N1

c , bc|N2
c. This entails

c|N2
in R(N2,m2) by condition (A3), as needed.

In the following, we will often consider that nets are safe. This is not a
problem in practice since our reduction rules preserve safeness. Hence we do
not need to check if (N2,m2) is safe when (N1,m1) is. The fact that the nets
are safe has consequences. In particular, as a direct corollary of Th. 3.3, we can
assume that, for any well-defined configuration c, if c|N2

is reachable in (N2,m2)
then c(v) ∈ {0, 1}.

By Th. 3.3, if we take reachable markings inN2—meaning we fix the values of
roots in JEK—we can find places of N1 that are marked together by propagating
tokens from the roots to the leaves (Lemma 3.2). In our algorithm, next, we
show that we can compute the concurrency relation of N1 by looking at just
two cases: (1) we start with a token in a single root p, with p not dead, and
propagate this token forward until we find a configuration with two places of
N1 marked together; or (2) we do the same but placing a token in two separate
roots, p1, p2, such that p1 ‖ p2. We base our approach on the fact that we

9

can extend the notion of concurrent places (in a marked net), to the notion of
concurrent nodes in a TFG, meaning nodes that can be marked together in a
“reachable configuration”.

4 Dimensionality Reduction Algorithm
We define an algorithm that takes as inputs a well-formed TFG JEK plus the
concurrency relation for the net (N2,m2), say ‖2, and outputs the concurrency
relation for (N1,m1), say ‖1. Actually, our algorithm computes a concurrency
matrix, C, that is a matrix such that C[v, w] = 1 when the nodes v, w can
be marked together in a “reachable configuration”, and 0 otherwise. We prove
(Th. 4.1) that the relation induced by C matches with ‖1 on N1. For the case
of “partial relations”, we use C[v, w] = • to mean that the relation is undecided.
In this case we say that matrix C is incomplete.

The complexity of computing the concurrency relation is highly dependent
on the number of places in the net. For this reason, we say that our algorithm
performs some sort of a “dimensionality reduction”, because it allows us to solve
a problem in a high-dimension space (the number of places in N1) by solving it
first on a lower dimension space (since N2 may have far fewer places) and then
transporting back the result to the original net. In practice, we compute the
concurrency relation on (N2,m2) using the tool cæsar.bdd from the CADP
toolbox; but we can rely on any kind of “oracle” to compute this relation for us.
This step is not necessary when the initial net is fully reducible, in which case
the concurrency relation for N2 is trivial and all the roots in JEK are constants.

We assume that JEK is a well-formed TFG for the relation (N1,m1) BE

(N2,m2); that both nets are safe; and that all the roots in JEK are either
constants (inK(0)∪K(1)) or places inN2. We use symbol ‖2 for the concurrency
relation on (N2,m2) and ‖1 on (N1,m1). To simplify our notations, we assume
that v ‖2 w when v is a constant node in K(1) and w is not-dead. On the
opposite, v #2 w when v ∈ K(0) or w is dead.

Our algorithm is divided into two main functions, Matrix and Propagate.
In the main function, Matrix, we iterate over the non-dead roots of JEK and
recursively propagates a “token” to its successors (the call to Propagate in
line 4). After this step, we know all the live nodes in C. The call to Propagate
has two effects. First, we retrieve the list of successors of the live roots. Second,
as a side-effect, we update the concurrency matrix C by finding all the concurrent
nodes that arise from a unique root. We can prove all such cases arise from
redundancy arcs that are “under node v”. Actually, we can prove that if v → w1

and v→•w2 (with w1 6= w2) then the nodes in the set ↓v \↓w2 are concurrent to
all the nodes in ↓w2. Next, in the second foreach loop of Matrix, we compute
the concurrent nodes that arise from two distinct live roots (v, w). In this case,
we can prove that all the successors of v are concurrent with successors of w:
all the pairs in ↓v × ↓w are concurrent.

We can prove that our algorithm is sound and complete using the theory
that we developed on TFGs and configurations.

Theorem 4.1. If C is the matrix returned by a call to Matrix(JEK, ‖2) then for
all places p, q in N1 we have p‖1 q if and only if either C[p, q] = 1 or C[q, p] = 1.

We can perform a cursory analysis of the complexity of our algorithm. By

10

Function Matrix(JEK : TFG, ‖2 : concurrency relation on (N2,m2))
Result: the concurrency matrix C

1 C← ~0 /* the matrix is initialized with zeros */
2 foreach root v in JEK do
3 if v ‖2 v then
4 succs[v]← Propagate(JEK,C, v)

5 foreach pair of roots (v, w) in JEK do
6 if v ‖2 w then
7 foreach (v′, w′) ∈ succs[v]× succs[w] do C[v′, w′]← 1

8 return C

Function Propagate(JEK : TFG, C : concurrency matrix, v : node)
Result: the successors of v in JEK. As a side-effect, we add to C all the

relations that stem from knowing v not-dead.

1 C[v, v]← 1
2 succs← {v} /* succs collects the nodes in ↓v */
3 succr← {} /* auxiliary variable used to store ↓w when

v→• w */
4 foreach w such that v ◦→ w do succs← succs ∪ Propagate(JEK,C, w)
5 foreach w such that v→• w do
6 succr← Propagate(JEK,C, w)
7 foreach (v′, w′) ∈ succs× succr do C[v′, w′]← 1
8 succs← succs ∪ succr

9 return succs

construction, we update the matrix by following the edges of JEK, starting from
the roots. Since a TFG is a DAG, it means that we could call function Propagate
several times on the same node. However, a call to Propagate(JEK,C, v) can
only update C by adding a 1 between nodes that are successors of v (information
only flows in the direction of →). It means that Propagate is idempotent; a
subsequent call to Propagate(JEK,C, v) will never change the values in C. As
a consequence, we can safely memoize the result of this call and we only need
to go through a node at most once. More precisely, we need to call Propagate
only on the nodes that are not-dead in JEK. During each call to Propagate, we
may update at most O(N2) values in C, where N is the number of nodes in JEK,
which is also O(|C|), the size of our output. In conclusion, our algorithm has a
linear time complexity (in the number of live nodes) if we count the numbers
of function calls and a linear complexity, in the size of the output, if we count
the number of updates to C. This has to be compared with the complexity of
building then checking the state space of the net, which is PSPACE.

In practice, our algorithm is very efficient, highly parallelizable, and its exe-
cution time is often negligible when compared to the other tasks involved when
computing the concurrency relation. We give some results on our performances
in the next section.

11

Extensions to Incomplete Concurrency relations. With our approach,
we only ever writes 1s into the concurrency matrix C. This is enough since we
know relation ‖2 exactly and, in this case, relation ‖1 must also be complete (we
can have only 0s or 1s in C). This is made clear by the fact that C is initialized
with 0s everywhere. We can extend our algorithm to support the case where
we only have a partial knowledge of ‖2. This is achieved by initializing C with
the special value • (undefined) and adding rules that let us “propagate 0s” on
the TFG, in the same way that our total algorithm only propagates 1s. For
example, we know that if C[v, w] = 0 (v, w are nonconcurrent) and v ◦→ w′

(we know that always c(v) > c(w′) on reachable configurations) then certainly
C[w′, w] = 0. Likewise, we can prove that following rule for propagating “dead
nodes” is sound: if X→• v and C[w,w] = 0 (node w is dead) for all w ∈ X then
C[v, v] = 0.

Partial knowledge on the concurrency relation can be useful. Indeed, many
use cases can deal with partial knowledge or only rely on the nonconcurrency
relation (a 0 on the concurrency matrix). This is the case, for instance, when
computing NUPN partitions, where it is always safe to replace a • with a 1.
It also means that knowing that two places are nonconcurrent is often more
valuable than knowing that they are concurrent; 0s are better than 1s.

We have implemented an extension of our algorithm for the case of incom-
plete matrices using this idea and we report some results obtained with it in
the next section. Unfortunately, we do not have enough space to describe the
full algorithm here. It is slightly more involved than for the complete case and
is based on a collection of six additional axioms:

• If C[v, v] = 0 then C[v, w] = 0 for all node w in JEK.

• If v ◦→X or X→• v and C[w,w] = 0 for all nodes w ∈ X then C[v, v] = 0.

• If v ◦→X or X→• v and C[v, v] = 0 then C[w,w] = 0 for all nodes w ∈ X.

• If v ◦→ X or X →• v then C[w,w′] = 0 for all pairs of nodes w,w′ ∈ X
such that w 6= w′.

• If v◦→X or X→•v and C[w, v′] = 0 for all nodes w ∈ X then C[v, v′] = 0.

• If v ◦→X or X →• v and C[v, v′] = 0 then C[w, v′] = 0 for all nodes w in
X.

While we can show that the algorithm is sound, completeness takes a differ-
ent meaning: we show that when nodes p and q are successors of roots v1 and
v2 such that C[vi, vi] 6= • for all i ∈ 1..2 then necessarily C[p, q] 6= •.

5 Experimental Results
We have implemented our algorithm in a new tool, called Kong (for Koncurrent
places Grinder). The tool is open-source, under the GPLv3 license, and is
freely available on GitHub (https://github.com/nicolasAmat/Kong). We have
used the extensive database of models provided by the Model Checking Contest
(MCC) [2, 14] to experiment with our approach. Kong takes as inputs safe Petri
nets defined using the Petri Net Markup Language (PNML) [15]. The tool does

12

https://github.com/nicolasAmat/Kong

not compute net reductions directly but relies on another tool, called Reduce,
that is developed inside the Tina toolbox [6, 21]. For our experiments, we also
need to compute the concurrency matrix of reduced nets. This is done using
the tool cæsar.bdd (version 3.4, published in August 2020), that is part of the
CADP toolbox [8, 17], but we could adopt any other technology here1.

Benchmarks and Distribution of Reduction Ratios. Our benchmark is
built from a collection of 588 instances of safe Petri nets used in the MCC 2020
competition. Since we rely on how much reduction we can find in nets, we
computed the reduction ratio (r), obtained using Reduce, on all the instances
(see Fig. 3). The ratio is calculated as the quotient between how many places
can be removed and the number of places in the initial net. A ratio of 100%
(r = 1) means that the net is fully reduced ; the residual net has no places and
all the roots are constants. We see that there is a surprisingly high number
of models whose size is more than halved with our approach (about 25% of
the instances have a ratio r > 0.5), with approximately half of the instances
that can be reduced by a ratio of 30% or more. We consider two values for the
reduction ratio: one for reductions leading to a well-formed TFG (in dark blue),
the other for the best possible reduction with Reduce (in light orange).

Figure 3: Distribution of reduction ratios over the safe instances in the MCC

We observe that we lose few opportunities to reduce a net due to our well-
formedness constraint. Actually, we mostly lose the ability to simplify some
instances of “partial” marking graphs that could be reduced using inhibitor arcs
(a feature not supported by cæsar.bdd). We evaluated the performance of
Kong on the 424 instances of safe Petri nets with a reduction ratio greater than
1%. We ran Kong and cæsar.bdd on each of those instances, in two main
modes: first with a time limit of 1 h to compare the number of totally solved
instances (when the tool compute a complete concurrency matrix); next with a
timeout of 60 s to compare the number of values (the filling ratios) computed
in the partial matrices. Computation of a partial concurrency matrix with
cæsar.bdd is done in two phases: first a “BDD exploration” phase that can be
stopped by the user; then a post-processing phase that cannot be stopped. In
practice this means that the execution time is often longer (because of the post-
processing phase) when we do not use Kong: the mean computation time for
cæsar.bdd alone is about 62 s, while it is less than 21 s when we use Kong and
cæsar.bdd together. In each test, we compared the output of Kong with the
values obtained on the initial net with cæsar.bdd and achieved 100% reliability.

1we used version v3.4 of cæsar.bdd, part of CADP version 2020-h "Aalborg", published
in August 2020.

13

Results for Totally Computed Matrices. We report our results on the
computation of complete matrices and a timeout of 1 h in the table below.
We report the number of computed matrices for three different categories of
instances, Low/Fair/High, associated with different ratio ranges. We observe
that we can compute more results with reductions than without (+25%). As
could be expected, the gain is greater on category High (+53%), but it is still
significant with the Fair instances (+32%).

Reduction
Ratio (r)

Test
Cases

Computed Matrices

Kong cæsar.bdd

Low r ∈]0, 0.25[160 90 88 ×1.02
Fair r ∈ [0.25, 0.5[112 53 40 ×1.32
High r ∈ [0.5, 1] 152 97 63 ×1.53
Total r ∈]0, 1] 424 240 191 ×1.25

To understand the impact of reductions on the computation time, we com-
pare cæsar.bdd alone, on the initial net, and Kong + Reduce + cæsar.bdd
on the reduced net. We display the result in a scatter plot, using a logarithmic
scale (Fig. 4, left), with one point for each instance: time using reductions on
the y-axis, and without on the x-axis. We use colours to differentiate between
Fair instances (light orange) and High ones (dark blue), and fix a value of 3600 s
when one of the computation timeout. Hence the cluster of points on the right
part of the plots are when cæsar.bdd alone timeouts. We observe that the
reduction ratio has a clear impact on the speed-up and that almost all the data
points are below the diagonal, meaning reductions accelerate the computation
in almost all cases, with many test cases exhibiting speeds-up larger than ×10
or ×100 (materialized by dashed lines under the diagonal).

Results with Partial Matrices. We can also compare the “accuracy” of
our approach when we have incomplete results. To this end, we compute the
concurrency relation with a timeout of 60 s on cæsar.bdd. We compare the
filling ratio obtained with and without reductions. For a net with n places, this
ratio is given by the formula 2 |C|/(n2 + n), where |C| is the number of 0s and
1s in the matrix. We display our results using a scatter plot with linear scale,
see Fig. 4 (right). Again, we observe that almost all the data points are on one
side of the diagonal, meaning in this case that reductions increase the number
of computed values, with many examples (top line of the plot) where we can
compute the complete relation in 60 s only using reductions. The graphic does
not discriminate between the number of 1s and 0s, but we obtain similar good
results when we consider the filling ratio for only the concurrent places (the 1s)
or only the nonconcurrent places (the 0s).

6 Conclusion and Further Work
The concurrency problem is difficult, especially when we cannot compute the
complete state space of a net. We propose a method for transporting this
problem from an initial “high-dimensionality” domain (the set of places in the
net) into a smaller one (the set of places in the residual net). Our experiments

14

Figure 4: Comparing Kong (y-axis) and cæsar.bdd (x-axis) for instances with
r ∈ [0.25, 0.5[(light orange) and r ∈ [0.5, 1] (dark blue). One diagram (left)
compares the computation time for complete matrices; the other (right) com-
pares the filling ratio for partial matrices with a timeout of 60 s.

confirm our intuition that the concurrency relation is much easier to compute
after reductions (if the net can be reduced) and we provide an easy way to map
back the result into the original net.

Our approach is based on a combination of structural reductions with linear
equations first proposed in [4, 5]. Our main contribution, in the current work,
is the definition of a new data-structure that precisely captures the structure
of these linear equations, what we call the Token Flow Graph (TFG). We use
the TFGs to accelerate the computation of the concurrency relation, both in
the complete and partial cases. We have many ideas on how to apply TFGs to
other problems and how to extend them. A natural application would be for
model counting (our original goal in [4]), where the TFG could lead to new al-
gorithms for counting the number of (integer) solutions in the systems of linear
equations that we manage. Another possible application is the max-marking
problem, which means finding the maximum of the expression

∑
p∈P m(p) over

all reachable markings. On safe nets, this amounts to finding the maximal num-
ber of places that can be marked together. We can easily adapt our algorithm
to compute this value and could even adapt it to compute the result when the
net is not safe.

We can even manage a more general problem, related to the notion of max-
concurrent sets of places. We say that the set S is concurrent if there is a
reachable m such that m(p) > 0 for all places p in S. (This subsume the case of
pairs and singleton of places.) The set S is max-concurrent if no superset S′) S
is concurrent. Computing the max-concurrent sets of a net is interesting for
several reasons. First, it gives an alternative representation of the concurrency
relation that can sometimes be more space efficient: (1) the max-concurrent sets
provide a unique cover of the set of places of a net, and (2) we have p ‖ q if and
only if there is S max-concurrent such that {p, q} ⊂ S. Obviously, on safe nets,
the size of the biggest max-concurrent set is the answer to the max-marking
problem.

For future work, we would like to answer even more difficult questions, such

15

as proofs of Generalized Mutual Exclusion Constraints [13], that requires check-
ing invariants involving a weighted sums over the marking of places, of the form∑

p∈P wp.m(p). Another possible extension will be to support non-ordinary
nets (which would require adding weights on the arcs of the TFG) and nets
that are not safe (which can already be done with our current approach, but
require changing some of the “axioms” used in our algorithm). Finally, another
interesting direction for works would be to find reductions that preserve the
concurrency relation (but not necessarily reachable states). As you can see,
there is a lot to be done, which underlines the interest of studying TFGs.

Acknowledgements.

We would like to thank Pierre Bouvier and Hubert Garavel for their insightful
suggestions that helped improve the quality of this paper.

References
[1] N. Amat, B. Berthomieu, and S. Dal Zilio. On the combination of polyhe-

dral abstraction and SMT-based model checking for Petri nets. In Inter-
national Conference on Application and Theory of Petri Nets and Concur-
rency (Petri Nets), volume 12734 of LNCS. Springer, 2021.

[2] E. Amparore, B. Berthomieu, G. Ciardo, S. Dal Zilio, F. Gallà, L. M.
Hillah, F. Hulin-Hubard, P. G. Jensen, L. Jezequel, F. Kordon, D. Le Bot-
lan, T. Liebke, J. Meijer, A. Miner, E. Paviot-Adet, J. Srba, Y. Thierry-
Mieg, T. van Dijk, and K. Wolf. Presentation of the 9th edition of the
model checking contest. In Tools and Algorithms for the Construction and
Analysis of Systems (TACAS). Springer, 2019.

[3] G. Berthelot. Transformations and Decompositions of Nets. In Petri Nets:
Central Models and their Properties, LNCS, pages 359–376. Springer, 1987.

[4] B. Berthomieu, D. Le Botlan, and S. Dal Zilio. Petri net reductions for
counting markings. In International Symposium on Model Checking Soft-
ware (SPIN), volume 10869 of LNCS, pages 65–84. Springer, 2018.

[5] B. Berthomieu, D. Le Botlan, and S. Dal Zilio. Counting Petri net mark-
ings from reduction equations. International Journal on Software Tools for
Technology Transfer, 2019.

[6] B. Berthomieu, P.-O. Ribet, and F. Vernadat. The tool TINA – Construc-
tion of abstract state spaces for Petri nets and time Petri nets. International
Journal of Production Research, 42(14):2741–2756, July 2004.

[7] F. M. Bønneland, J. Dyhr, P. G. Jensen, M. Johannsen, and J. Srba. Stub-
born versus structural reductions for petri nets. Journal of Logical and
Algebraic Methods in Programming, 102:46–63, 2019.

[8] P. Bouvier and H. Garavel. Efficient algorithms for three reachability prob-
lems in safe Petri nets. In International Conference on Application and The-
ory of Petri Nets and Concurrency (Petri Nets), volume 12734 of LNCS.
Springer, 2021.

16

[9] P. Bouvier, H. Garavel, and H. Ponce-de León. Automatic decomposition
of Petri nets into automata networks – a synthetic account. In Application
and Theory of Petri Nets and Concurrency, volume 12152. Springer, 2020.

[10] H. Garavel. Nested-unit Petri nets. Journal of Logical and Algebraic Meth-
ods in Programming, 104:60–85, Apr. 2019.

[11] H. Garavel. Proposal for Adding Useful Features to Petri-Net Model Check-
ers. Research Report 03087421, Inria Grenoble - Rhône-Alpes, Dec. 2020.

[12] H. Garavel and W. Serwe. State Space Reduction for Process Algebra
Specifications. In Algebraic Methodology and Software Technology, LNCS.
Springer, 2004.

[13] A. Giua, F. DiCesare, and M. Silva. Generalized mutual exclusion con-
traints on nets with uncontrollable transitions. In IEEE International Con-
ference on Systems, Man, and Cybernetics. IEEE, 1992.

[14] L. Hillah and F. Kordon. Petri Nets Repository: A tool to benchmark
and debug Petri net tools. In Application and Theory of Petri Nets and
Concurrency, volume 10258 of LNCS. Springer, 2017.

[15] L.-M. Hillah, F. Kordon, L. Petrucci, and N. Treves. PNML framework: an
extendable reference implementation of the Petri Net Markup Language.
In International Conference on Applications and Theory of Petri Nets.
Springer, 2010.

[16] T. Hujsa, B. Berthomieu, S. Dal Zilio, and D. Le Botlan. Checking marking
reachability with the state equation in Petri net subclasses. 44 pages, Nov.
2020.

[17] INRIA. CADP. https://cadp.inria.fr/, 2020.

[18] R. Janicki. Nets, sequential components and concurrency relations. Theo-
retical Computer Science, 29(1-2), 1984.

[19] A. Kovalyov. A Polynomial Algorithm to Compute the Concurrency Re-
lation of a Regular STG. In Hardware Design and Petri Nets. Springer,
Boston, MA, 2000.

[20] A. V. Kovalyov. Concurrency relations and the safety problem for Petri
nets. In Application and Theory of Petri Nets 1992, LNCS, Berlin, Heidel-
berg, 1992. Springer.

[21] LAAS-CNRS. Tina Toolbox. http://projects.laas.fr/tina, 2020.

[22] R. J. Lipton. Reduction: a method of proving properties of parallel pro-
grams. Communications of the ACM, 18(12), 1975.

[23] T. Murata. Petri nets: Properties, analysis and applications. Proceedings
of the IEEE, 77(4):541–580, 1989.

[24] A. Semenov and A. Yakovlev. Combining partial orders and symbolic
traversal for efficient verification of asynchronous circuits. In Proceedings
of ASP-DAC’95/CHDL’95/VLSI’95 with EDA Technofair, 1995.

17

https://cadp.inria.fr/
http://projects.laas.fr/tina

[25] M. Silva, E. Terue, and J. M. Colom. Linear algebraic and linear pro-
gramming techniques for the analysis of place/transition net systems. In
Advanced Course on Petri Nets, pages 309–373. Springer, 1996.

[26] Y. Thierry-Mieg. Structural reductions revisited. In Application and The-
ory of Petri Nets and Concurrency, volume 12152 of LNCS, pages 303–323.
Springer, 2020.

[27] R. Wisniewski, A. Karatkevich, M. Adamski, A. Costa, and L. Gomes. Pro-
totyping of Concurrent Control Systems with Application of Petri Nets and
Comparability Graphs. IEEE Transactions on Control Systems Technology,
26(2), 2018.

[28] R. Wiśniewski, M. Wiśniewska, and M. Jarnut. C-exact hypergraphs in
concurrency and sequentiality analyses of cyber-physical systems specified
by safe Petri nets. IEEE Access, 7, 2019.

18

A Proofs

A.1 Proof of Lemma 3.1: Well-defined Configurations are
Solutions

Lemma. Assume JEK is a well-formed TFG for the equivalence (N1,m1) BE

(N2,m2). If c is a well-defined configuration of JEK then E , bcc is consistent.
Conversely, if c is a total configuration of JEK such that E , bcc is consistent
then c is also well-defined.

Proof. We prove each property separately.
Assume c is a well-defined configuration of JEK. Since E is a system of

reduction equations, it is a sequence of equalities φ1, . . . , φk where each equation
φi has the form xi = y1 + · · ·+ yn. Also, since JEK is well-formed we have that
Xi→• vi or xi ◦→Xi (only one case is possible) with Xi = {y1, . . . , yn} for all
indices i ∈ 1..k. We define I the subset of indices in 1..k such that c(xi) is
defined. By condition (CBot) we have c(xi) 6= ⊥ if and only if c(v) 6= ⊥ for all
v ∈ Xi. Therefore, if c(xi) 6= ⊥, we have by condition (CEq) that φi , bcc is
consistent. Moreover the values of all the variables in φi are determined by bcc
(these variables have the same value in every solution). As a consequence, the
system combining bcc and the (φi)i∈I has a unique solution. On the opposite,
if c(xi) = ⊥ then no variables in φi are defined by bcc. Nonetheless, we know
that system E is consistent. Indeed, by property of E-equivalence, we know
that E , bm1c has solutions, so it is also the case with E. Therefore the system
combining the equations in (φi)i/∈I is consistent. Since this system shares no
variables with the equations in (φi)i∈I , we have that E , bcc is consistent.

For the second case, we assume c total and E , bcc consistent. Since c is
total, condition (CBot) is true (c(v) 6= ⊥ for all nodes in JEK). Assume we have
(N1,m1) BE (N2,m2). For condition (CEq), we rely on the fact that JEK is
well-formed. Indeed, for all equations in E we have a corresponding relation
X→•v or v ◦→X. Hence E , bcc consistent implies that c(v) =

∑
w∈X c(w).

A.2 Proof of Lemma 3.2: Token Propagation
Lemma. Assume JEK is a well-formed TFG for the equivalence (N1,m1) BE

(N2,m2) and c a well-defined configuration of JEK.

(Agglomeration) if p ◦→ {q1, . . . , qk} and c(p) 6= ⊥ then for every sequence
(l1, . . . , lk) in Nk such that c(p) =

∑
i∈1..k li we can find a well-defined

configuration c′ such that c′(p) = c(p), and c′(qi) = li for all i ∈ 1..k, and
c′(v) = c(v) for every node v not in ↓p.

(Forward) for every pair (p, q) of nodes such that c(p) 6= ⊥ and p →? q we
can find a well-defined configuration c′ such that c′(q) > c′(p) = c(p) and
c′(v) = c(v) for every node v not in ↓p.

(Backward) if c(p) > 0 then there is a root v such that v →? p and c(v) > 0.

Proof. We prove each property separately.
(Agglomeration Propagation): we prove that we can update the successors
of p by following the order induced by the tree-like structure of the TFG. To

19

this end, we introduce the notion of level of a node. The level of a node v in
JEK, denoted lvl(v), is the length of longest path r →? v from a root r of JEK
to v. The level can only increase when we follow an arc and is always defined
since we have no cycles in the TFG.

Take a node p at level l such that p ◦→ X, with X = {q1, . . . , qk}, and a
sequence (l1, . . . , lk) ∈ Nk such that c(p) =

∑
i∈1..k li. We define configuration

c′ as follows. Take c′(qi) = li for all i ∈ 1..k, and c′(p) = c(p), and c′(v) =
c(v) for all the nodes v such that v /∈ ↓p or lvl(v) 6 l. We still need to find
suitable values, c′(w), for all the nodes w that are successors of the nodes in
X. We proceed “levels after levels”. Note that, by construction, we have that
lvl(w) > l + 1. If c′(w) is in the last defined level and w ◦→ Y , then c′ cannot
be already defined over Y (otherwise it would mean that these nodes can be
removed twice). In this case we are free to choose any possible valuation such
that

∑
w′∈Y c

′(w′) = c′(w) and we continue recursively with the successors of
Y . If Y →•w then all the nodes in Y are in a level smaller than w and therefore
c′ is defined over Y . In this case we choose c′(w) =

∑
w′∈Y c

′(w′). Since we have
a finite DAG, this process terminates with c′ a total configuration. The proof
proceeds by showing that c′ is a well-defined configuration, which is obvious.
(Forward Propagation): take a well-defined configuration c of JEK and as-
sume we have two nodes p, q such that c(p) 6= ⊥ and p →? q. The proof is
by induction on the length of the path from p to q. The initial case is when
p = q, which is trivial. Otherwise, assume p → r →? q. It is enough to find a
well-defined configuration c′ such that c′(r) > c′(p) = c(p). Since the nodes not
in ↓p are not in the paths from p to q, we can ensure c′(v) = c(v) for any node
v not in ↓p. The proof proceeds by a case analysis on p→ r.

(Case R) assume p → r is a R-arc, meaning p →• r. More generally, it
follows that X →• r with p ∈ X. Then by (CEq) we have c(r) =
c(p) +

∑
v∈X,v 6=p c(v) > c(p) and we can choose c′ = c.

(Case A) in this case we have p ◦→ X with r ∈ X. By (Agglomera-
tion Propagation) we can find a well-defined configuration c′ such that
c′(r) = c′(p) = c(p) (and also c′(v) = 0 for all v ∈ X \ {r}).

(Backward Propagation): take a well-defined configuration c of JEK and
assume we have c(p) > 0. The proof is by induction on the longest possible path
from a root to node p. We re-use the notion of levels introduced previously. The
initial case is when p is itself a root, lvl(p) = 0, and is trivial. Otherwise there
must be at least one predecessor node q such that q → p. Like in the previous
proof, we proceed by case analysis.

(Case R) we have X→•p with X 6= ∅. By (CEq) we have c(p) =
∑

v∈X c(v) >
0. Hence there must be at least one node q in X such that c(q) > 0 and
necessarily lvl(p) > lvl(q) + 1.

(Case A) in this case we have q ◦→X with p ∈ X. By (CEq) we have c(q) =
c(p) +

∑
v∈X\{p} c(v) > c(p) as needed, with lvl(p) = lvl(q) + 1.

20

A.3 Proof of Theorem 3.3: Configuration Reachability
Theorem. Assume JEK is a well-formed TFG for the equivalence (N1,m1) BE

(N2,m2). If m is a marking in R(N1,m1)∪R(N2,m2) then there exists a total,
well-defined configuration c of JEK such that c ≡ m. Conversely, if c is a total,
well-defined configuration of JEK then marking c|N1

is reachable in (N1,m1) if
and only if c|N2

is reachable in (N2,m2).

Proof. Take m a marking in R(N1,m1). The other case is totally symmetric.
By property of E-abstraction, there exists a reachable markingm′

2 in R(N2,m2)
such that E , bmc , bm′

2c is consistent. Therefore we can find a non-negative
integer solution c to the system E , bmc , bm′

2c, meaning a valuation for all the
variables and places in fv(E), N1 and N2 such that E , bcc is consistent and
c(p) = m(p) if p ∈ N1 and c(p) = m′

2(p) if p ∈ N2. Because of condition (T1),
this solution is total over all the nodes of JEK (the only other possible case is
for constants, whose values are fixed).

For the converse property, we assume that c is a total and well-defined config-
uration of JEK and that c|N1

is a marking of R(N1,m1). Since c is a well-defined
configuration, from Lemma 3.1 we have that E , bcc is consistent. Therefore we
have that E , bc|N1

c , bc|N2
c is consistent. By definition of the E-abstraction,

condition (A3), we have c|N2
in R(N2,m2), as needed.

A.4 Safe Configurations
For the sake of simplicity, we can assume that all the leaf nodes in JEK are
places in N1. This is true for TFGs computed from structural reductions and
this will simplify our proofs: for every node v we can always assume that there
is p in N1 such that v →? p.

In our proof, we also implicitly assume that all the constants in E are either
0 or 1. We could relax this last constraint, but this would needlessly complicate
our algorithm.

Lemma A.1 (Safe Configurations). Assume JEK is a well-formed TFG for
(N1,m1) BE (N2,m2) with (N1,m1) and (N2,m2) safe Petri nets. Then
for every total, well-defined configuration c of JEK such that c|N2

reachable in
(N2,m2), and every node v, we have c(v) ∈ {0, 1}.

Proof. We prove the result by contradiction. Take a total and well-defined
configuration c such that c|N2

is reachable in (N2,m2) and a node v such that
c(v) > 1 and v →? p, with p a place of N1. By Lemma 3.2, we can find a well-
defined configuration c′ of JEK such that c′(p) > c′(v) = c(v) and c′(w) = c(w)
for every node w not in ↓v. Therefore c′|N2

is also reachable in (N2,m2). This
contradicts the fact that the nets are safe since, by Th. 3.3, we would have a
reachable marking that is not 1-bounded.

A.5 Checking Dead Places using Configurations
By our configuration reachability theorem (Th. 3.3), if we take reachable mark-
ings in N2—meaning we fix the values of roots in JEK—we can find places of
N1 that are marked together by propagating tokens from the roots to the leaves
(Lemma 3.2). We prove that we can compute the concurrency relation of N1

by looking at just two cases: (1) we start with a token in a single root p, with

21

p not dead, and propagate this token forward until we find a configuration with
two places of N1 marked together; or (2) we do the same but placing a token in
two separate roots, p1, p2, such that p1 ‖ p2. We base our approach on the fact
that we can extend the notion of concurrent places (in a marked net), to the
notion of concurrent nodes in a TFG. Those are the nodes that can be marked
together in a “reachable configuration”.

Definition A.1 (Concurrent Nodes). The concurrency relation of JEK, denoted
C, is the relation between pairs of nodes in JEK such that v C w if and only if
there is a total, well-defined configuration c where: (1) c is reachable, meaning
c|N2

∈ R(N2,m2); and (2) c(v) > 0 and c(w) > 0.

Like with the concurrency relation on nets, we have that C is symmetric and
v C v means that v is not-dead (there is a valuation with c(v) > 0). We can also
extend this relation to define a notion of max-concurrent sets of nodes.

By definition, if p, q are places in N2 then p C q only if p ‖ q in (N2,m2). We
say in this case that p, q are concurrent roots. We can extend this notion to
constants. We say that two roots v1, v2 are concurrent when v1 C v2 and that
root v1 is not-dead when v1 C v1. This include cases where v1 or v2 are in K(1)
(they are constants with value 1).

Since the places of N1 are nodes in JEK, we also have that p C q if and only
if p ‖ q in (N1,m1). This is the relation we use in our algorithm of Sect. 4.

We prove some properties about the relation C that are direct corollaries of
our token propagation properties. For all the following results, we implicitly
assume that JEK is a well-formed TFG for the relation (N1,m1) BE (N2,m2),
that both marked nets are safe, that all the roots in JEK are either constants or
places in N2; and that C is the concurrency relation of JEK.

We start with a property (Lemma A.2) stating that the successors of a “live
node” must also be not-dead. Lemma A.3 provides a dual result, useful to prove
the completeness of our approach; it states that it is enough to explore the live
roots to find all the live nodes.

Lemma A.2 (Propagation of Live Nodes). If v C v and v →? w then w C w.

Proof. Assume v C v. This means that there is a total, well-defined configuration
c such that c(v) > 0 and c|N2

∈ R(N2,m2). Now take a successor node of v, say
v →? w. By Lemma 3.2, we can find another reachable configuration c′ such
that c′(w) > c′(v) = c(v) and c′(x) = c(x) for all nodes x not in ↓v. Therefore
w C w.

Lemma A.3 (Live Nodes Come from Live Roots). If v C v then there is a root
v0 such that v0 C v0 and v0 →? v.

Proof. Assume v C v. Then there is a total, well-defined configuration c such
that c|N2

∈ R(N2,m2) and c(v) > 0. By the backward propagation property
of Lemma 3.2 we know that there is a root, say v0, such that c(v0) > c(v) and
v0 →? v. Hence v0 is not-dead in JEK.

A.6 Checking Concurrent Places using Configurations
We can prove similar results for concurrent nodes instead of live ones. We
consider the two cases mentioned at the beginning of the section: when concur-
rent nodes are obtained from two concurrent roots (Lemma A.4); or when they

22

are obtained from a single live root (Lemma A.5), because of redundancy arcs.
Finally Lemma A.6 provides the associated completeness result.

Lemma A.4. Assume v, w are two nodes in JEK such that v /∈ ↓w and w /∈ ↓v.
If v C w then v′ C w′ for all pairs of nodes (v′, w′) ∈ ↓v × ↓w.

Proof. Assume v C w, v /∈ ↓w and w /∈ ↓v. There must exist a total and well-
defined configuration c such that c(v), c(w) > 0 and c|N2

∈ R(N2,m2).
Take a successor v′ in ↓v, by applying the token propagation from Lemma 3.2

we can construct a total and well-defined configuration c′ of JEK such that
c′(v′) > c′(v) = c(v) and c′(x) = c(x) for any node x not in a ↓v. This is the
case of w, hence c′(w) = c(w) > 0.

We can use the token propagation property again, on c′. This gives a total
and well-defined configuration c′′ such that c′′(w′) > c′′(w) = c′(w) = c(w) and
c′′(x) = c′(x) for any node x not in ↓w.

If we prove that v′ /∈ ↓w we will then have c′′(v′) = c′(v′) > c(v), and
therefore v′ C w′ as needed. We prove this result by contradiction. Indeed,
assume v′ ∈ ↓w. Hence, ↓v ∩ ↓w 6= ∅. Moreover, since E is a well-formed TFG,
there must exists (condition T3) three nodes p, q, r such that X→•r, p ∈ ↓v∩X
and q ∈ ↓w∩X. In a similar way than the proof of Lemma 3.2 we can propagate
the tokens contained in v, w to p, q, and obtain c′′(r) > 1 from (CEq), which
contradicts our assumption that the nets are safe.

Lemma A.5. If v C v and v→• w then v′ C w′ for every pair of nodes (v′, w′)
such that v′ ∈ (↓(v) \ ↓w) and w′ ∈ ↓w.

Proof. Assume v C v and v→•w. Hence there is a total, well-defined configura-
tion c such that c(v) > 0 and c|N2

∈ R(N2,m2). Furthermore, since v→•w, we
must have c(w) > 0 (condition CEq).

Take w′ in ↓w. From Lemma 3.2 we can find a total, well-defined configura-
tion c′ such that c′(w′) > c′(w) = c(w) > 0 and c′(x) = c(x) for any node x not
in ↓w. Since v is not in ↓w we have c′(v) = c(v). Likewise, places from N2 are
roots and therefore cannot be in ↓w. So we have c′|N2

≡ c|N2
, which means c′|N2

is reachable in (N2,m2). At this point we have v C w′.
Now, consider v′ 6= w such that v → v′. We can use the forward propagation

lemma a second time on c′ to find a total and well-defined configuration c′′ such
that c′′(v′) > c′′(v) = c′(v) and c′′(x) = c(x) for all nodes x not in ↓v, and
so, c′′|N2

is reachable in (N2,m2). Since configuration c′′ is well-defined we have
(condition CEq) that c′′(v) = c′′(w). We also have v′ /∈ ↓w and w /∈ ↓v′ since
v → w, v → v′ and JEK is a well-formed TFG that must satisfy (T3). Finally,
using Lemma A.4 is enough to prove that v′′ C w′ for every node v′′ ∈ ↓v′.

Lemma A.6. If v C w and v 6= w then one of the following two conditions is
true.

(Redundancy) There is a live node v0 such that v0 →• w0 and either (w,w)
or (w, v) are in (↓v0 \ ↓w0)× ↓w0.

(Agglomeration) There is a pair of distinct roots (v0, w0) such that v0 C w0

with v ∈ ↓v0 and w ∈ ↓w0.

23

Proof. Assume v C w. Then there is a total, well-defined configuration c such
that c|N2

∈ R(N2,m2) and c(u), c(v) = 1 (the nets are safe). By the backward-
propagation property in Lemma 3.2 there exists two roots v0 and w0 such that
c(v0) = c(w0) = 1 with v ∈ ↓v0 and w ∈ ↓w0. We need to consider two cases,
either v0 6= w0 or v0 = w0.

The case where v0 6= w0 corresponds to condition (Agglomeration).
In the case where v0 = w0, we prove that there must be a node v1 such that

v0 →? v1 and v1 →• w1 with either (v, w) or (w, v) in (↓v1 \ ↓w1) × ↓w1. We
prove this result by contradiction. Indeed, if no such node exists then both v
and w can be reached from v0 by following only edges in A. Using the backward
propagation property twice, and since v 6= w, this means that we can find a
configuration c′ such that c′|N2

≡ c|N2
and c′(v0) > c(v) + c(w) > 2, which

contradicts our hypothesis that the nets are safe.

A.7 Proof of Theorem 4.1: our Algorithm is Sound and
Complete

We prove a slightly different property that entails Th. 4.1. The following prop-
erty makes use of the notations introduced in the previous section and proves
an equivalent result but for all the nodes in JEK, not only for the places in N1.

Theorem. If C is the matrix returned by a call to Matrix(JEK, ‖), with ‖ the
concurrency relation between roots of JEK (meaning N2 augmented with the
constants), then for all nodes v, w we have v C w if and only if either C[v, w] = 1
or C[w, v] = 1.

Proof. We can first remark that the call to Matrix(JEK, ‖) will always terminate.
We divide the proof into two different cases: first we prove that the computation
of live nodes (the diagonal of C and the live nodes of C) is sound and complete.
Next, we prove the same result for concurrent nodes.
(Non-dead Places) The result is a direct consequence of Lemmas A.2 and A.3.
(Concurrent Places) We need to consider the two cases describe in
Lemma A.6. The second foreach loop in the code of Matrix takes care of
the cases where concurrency is a consequence of two distinct live roots. The
second case corresponds to the foreach loop at line 7 in the code of Propagate,
for the matrix, and Lemma A.4 for C. Finally, Lemma A.6 implies that this
phase of the computation is complete.

A.8 Axioms for Computing Incomplete Concurrency Ma-
trices

Our algorithm for the case of incomplete matrices is based on a collection of six
additional axioms used to “propagate 0s” in the matrix C. We state each axiom
separately and, in each case, we prove a property that states that the axiom is
sound. Completeness takes a different meaning in this case. Indeed, we cannot
prove that we find all the pairs of nonconcurrent nodes. But we can prove a
result about the accuracy, meaning that all verdicts C[v, w] 6= • must originate
from some roots p, q such that C[p, q] is defined. More precisely, two concurrent
nodes (C[v, w] = 1) must come from concurrent roots (or one live root), and
two nonconcurrent nodes (C[v, w] = 0) imply that roots leading to v must all
be nonconcurrent from roots leading to w.

24

In the following, we use the notation v C̄ w to say ¬(vCw); meaning v, w are
nonconcurrent according to C. With our notations, v C̄ v means that v is dead:
there is no well-defined, reachable configuration c with c(v) > 0.

A.8.1 Propagation of Dead Nodes.

We prove that a dead node, v, is necessarily nonconcurrent from all the other
nodes. Also, if all the “direct successors” of a node are dead then also is the
node.

Lemma A.7. Assume v a node in JEK. If v C̄ v then for all nodes w in JEK we
have v C̄ w.

Proof. Assume v C̄ v. Then for any total and well-defined configuration c such
that c|N2

is reachable in (N2,m2) we have c(v) = 0. By definition of the con-
currency relation C, v cannot be concurrent to any node.

Lemma A.8. Assume v a node in JEK such that v ◦→X or X→•v. Then v C̄ v
if and only if w C̄ w for all nodes w in X.

Proof. We prove by contradiction both directions.
Assume v C̄ v and take w ∈ X such that w C w. Then there is a total, well-

defined configuration c such that c(w) > 0. Necessarily, since v C̄ v we have
c(v) = 0, which contradicts (CEq).

Next, assume v C v and w C̄ w for every node w ∈ X. Then there is a total,
well-defined configuration c such that c(v) > 0. Necessarily, for all nodes w ∈ X
we have c(w) = 0, which also contradicts (CEq).

These properties imply the soundness of the following three axioms:

• If C[v, v] = 0 then C[v, w] = 0 for all node w in JEK.

• If v ◦→X or X→• v and C[w,w] = 0 for all nodes w ∈ X then C[v, v] = 0.

• If v ◦→X or X→• v and C[v, v] = 0 then C[w,w] = 0 for all nodes w ∈ X.

A.8.2 Independency between Siblings.

We prove that direct successors of a node are nonconcurrent from each other
(in the case of safe nets). This is basically a consequence of the fact that
c(v) = c(w) + c(w′) + . . . and c(v) 6 1 implies that at most one of c(w) and
c(w′) can be equal to 1 when the configuration is fixed.

Like with our “safeness property”, we assume for the sake of simplicity that
all the leaves in JEK are places in N1.

Lemma A.9. Assume v a node in JEK such that v ◦→X or X→• v. For every
pair of nodes w,w′ in X, we have that w 6= w′ implies wC̄w′.

Proof. The proof is by contradiction. Take a pair of distinct nodes w,w′ in X
and assume w C w′. Then there exists a total and well-defined configuration c
such that c(w) > 1 and c(w′) > 1, with c|N2

reachable in (N2,m2). Since c
must satisfy (CEq) we have c(v) > 2, which contradicts the fact that our nets
are safe, see Lemma A.1.

25

This property implies the soundness of the following axiom:

• If v ◦→ X or X →• v then C[w,w′] = 0 for all pairs of nodes w,w′ ∈ X
such that w 6= w′.

A.8.3 Heredity and Independency.

We prove that if v and v′ are nonconcurrent, then v′ must be nonconcurrent from
all the direct successors of v (and reciprocally). This is basically a consequence of
the fact that c(v) = c(w)+ . . . and c(v)+c(v′) 6 1 implies that c(w)+c(v′) 6 1.

Lemma A.10. Assume v a node in JEK such that v ◦→ X or X →• v. Then
for every node v′ such that v C̄ v′ we also have w C̄ v′ for every node w in X.
Conversely, if w C̄ v′ for every node w in X then v C̄ v′.

Proof. We prove by contradiction each property separately.
Assume v C̄ v′ and take w ∈ X such that w C v′. Then there is a total, well-

defined configuration c such that c(w), c(v′) > 0. Necessarily, since v C̄ v′ we
must have c(v) = 0 or c(v′) = 0. We already know that c(v′) > 0, so c(v) = 0,
which contradicts (CEq) since w ∈ X.

Next, assume w C̄ v′ for all nodes w ∈ X and we have v C v′. Then there is a
total, well-defined configuration c such that c(v), c(v′) > 0. Necessarily, for all
nodes w ∈ X we have c(w) = 0 or c(v′) = 0. We already know that c(v′) > 0,
so c(w) = 0 for all nodes w ∈ X, which also contradicts (CEq).

These properties imply the soundness of the following two axioms:

• If v◦→X or X→•v and C[w, v′] = 0 for all nodes w ∈ X then C[v, v′] = 0.

• If v ◦→X or X →• v and C[v, v′] = 0 then C[w, v′] = 0 for all nodes w in
X.

26

	Introduction
	Petri Nets and Polyhedral Abstraction
	Token Flow Graphs
	Dimensionality Reduction Algorithm
	Experimental Results
	Conclusion and Further Work
	Proofs
	Proof of Lemma 3.1: Well-defined Configurations are Solutions
	Proof of Lemma 3.2: Token Propagation
	Proof of Theorem 3.3: Configuration Reachability
	Safe Configurations
	Checking Dead Places using Configurations
	Checking Concurrent Places using Configurations
	Proof of Theorem 4.1: our Algorithm is Sound and Complete
	Axioms for Computing Incomplete Concurrency Matrices
	Propagation of Dead Nodes.
	Independency between Siblings.
	Heredity and Independency.

