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Towards Safe Human-Quadrotor Interaction:
Mixed-Initiative Control via Real-Time NMPC

Bárbara Barros Carlos1, Antonio Franchi2,3 and Giuseppe Oriolo1

Abstract—This paper presents a novel algorithm for blending
human inputs and automatic controller commands, guarantee-
ing safety in mixed-initiative interactions between humans and
quadrotors. The algorithm is based on nonlinear model predictive
control (NMPC) and involves using the state solution to assess
whether safety- and/or task-related rules are met to mix control
authority. The mixing is attained through the convex combination
of human and actual robot costs and is driven by a continuous
function that measures the rules’ violation. To achieve real-time
feasibility, we rely on an efficient real-time iteration (RTI) variant
of a sequential quadratic programming (SQP) scheme to cast the
mixed-initiative controller. We demonstrate the effectiveness of
our algorithm through numerical simulations, where a second
autonomous algorithm is used to emulate the behavior of pilots
with different skill levels. Simulations show that our scheme
provides suitable assistance to pilots, especially novices, in a
workspace with obstacles while underpinning computational
efficiency.

I. INTRODUCTION

Quadrotors have been widely used across various appli-
cations, resulting in a significant market expected to grow
exponentially. Due to this increasing demand, one can en-
visage that, in the future, learning to fly a quadrotor will
become a taken-for-granted skill, just as learning to drive a
car nowadays. A first step towards making this idea a realistic
prospect could be a mixed-initiative control approach that
guarantees the aerial system’s “working conditions” while the
novice operator learns to fly it. In other words, as long as
some safety- and/or task-related rules are met, the operator
commands are obeyed. Once novices start working in the
context of complex tasks, it is essential to provide them with
assistance that gradually decreases as their skill increases –
here, skill refers to the knowledge and ability that allow the
use of the robot to accomplish a task. Conversely, one could
think of an experienced operator who already has the skill level
that enables him/her to fly a quadrotor. But as his/her cognitive
load is primarily focused on the short-term aspect of the task,
he/she cannot consider other underlying factors in the long run
(e.g., safety). It is then essential to have a control approach
that supervises the long-term task to prevent the operator from
being overwhelmed by (too) high engagement.
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To fill these gaps, this paper proposes an efficient mixed-
initiative controller based on nonlinear model predictive con-
trol (NMPC) to enforce safety in human-quadrotor interac-
tions. The primary objective of this study is to provide a
“safety-layer” controller over which one may define metrics
to assess pilots’ learning curves. The technical difficulties as-
sociated with the proposed controller are twofold: first, satisfy
both the existing constraints and the human intentions; second,
solve the underlying optimization problems that include a
high-dimensional quadrotor system under the available com-
putation time. We demonstrate how to handle these difficulties
using concepts of zone MPC [1] and online weight adaptation
within the real-time iteration (RTI) scheme – an efficient
Newton-type algorithm for real-time NMPC applications. We
exploit high-performance numerical optimization algorithms
to further speed up solution times, including a structure-
exploiting convex solver and linear algebra kernels for small-
to-midsize matrices. The mixed-initiative controller is vali-
dated in simulation against a second autonomous algorithm
that emulates pilots with different skill levels.

A. Related works
One way robots and humans can interact is to put the human

in the loop with some blending scheme [2]: the human and
the automatic controller have control over the robot, and both
systems must adapt to ensure task completion. For example, in
exoskeleton systems, the interplay between robot and human
may be characterized as an interaction between teacher and
student in a learning process. The teacher (robot) tries to min-
imize the student (human) error, applying a minimal effort [3].
In the context of autonomous cars, the driver interacts with
the automatic controller that aims at reducing the driver’s
workload and, at the same time, taking prompt actions in
case of human failure [4], [5]. For human-swarm systems, the
interaction paradigm is less obvious. As the size of the swarm
increases, control should become more focused on the swarm
as a whole rather than on the individuals, given the human’s
limited capacity to multitask. In this case, the interaction is
more concerned with the human-swarm ability to accomplish
a particular task than with the swarm spatial positioning [6].

Other interactive approaches rely on methods designed
from the human perspective, where, in general, the presence
of haptic cues (e.g., force feedback) increases situational
awareness. These methods lean heavily in favor of perceiving
the human as the source of action and the robot as the
passive collaborator. For instance, virtual fixtures have been
used to inform the operator of the highest comfort posi-
tion, distance from the target position, proximity to unsafe



kinematic configurations, or misalignment in contact-driven
surface conditioning tasks [7], [8]. Obstacle avoidance is
one of the most critical requirements to be met in many
robotics scenarios. In this matter, researchers have been using
haptic feedback to warn the operator about instantaneous
collisions [9], [10]. Several human-collaborative schemes are
compared in [11] where it is shown that haptic feedback is one
of the main aspects. Among other considerations, it should be
noted that the method used to generate assistive haptic cues
strongly determines the usefulness of kinesthetic guidance to
a large extent. For this reason, considerable effort has been
put into introducing new assistive methods to improve task
performance explicitly. The authors in [12] propose a force-
feedback telepresence method based on an external wrench
estimation that enables the operator to feel, e.g., wind and
contact forces. The work in [13] uses the gradient of an
artificial potential field to generate repulse forces that help
humans to avoid touching adjacent vessels while operating
surgical robots. Interested readers are referred to [14], [15]
for the introduction of other noteworthy methods.

B. Contributions and paper structure

The main contributions of this work are twofold:
• A mixed-initiative control scheme for human-quadrotor

systems based on NMPC with safety guarantees.
• Numerical simulations that show the effectiveness and

computational efficiency of the proposed algorithm.
The proposed mixed-initiative (MI) control approach for
human-quadrotor interaction leads to major advantages com-
pared to existing methods if applied to our scenario. Unlike
[2]–[5], our approach offers a rigorous predictive diagnosis of
interaction degradation so that most of the control authority
is allocated to the most capable agent, ultimately yielding a
time-varying synergy between the human and the automatic
controller. While the predictive behavior is relevant in a highly
nonlinear context (disregarded in previous works), the dynamic
synergy is particularly important to manage the control au-
thority in conflict situations, i.e., when human and automatic
controller commands are rather different. To the best of our
knowledge, this is the first work that subsumes the advantages
of the RTI scheme, zone MPC, and high-performance algo-
rithms to synthesize a nonlinear MI controller cognizant of
how to mix control authority to enforce safety and with real-
time capabilities. For this reason, this work makes a significant
contribution to human-robot interaction literature.

The paper is structured as follows. Section II states the
problem we want to solve. Section III provides the details
of the proposed algorithm. The numerical testbeds and the
obtained results are discussed in Section IV. Section V offers
some hints on future work.

C. Notation

The n × n identity matrix is denoted by In. An all-ones
vector of dimension n is denoted by 1n, whereas 0n denotes
a n-vector of zeros. When dealing with norms of vectors x ∈
Rn, we denote by ‖x‖ the Euclidean norm. The set of positive
real-valued numbers is denoted by R>0.

II. PROBLEM STATEMENT

The fundamental problem in mixed-initiative control is how
to blend human inputs and automatic controller commands to
realize the former as closely as possible while enforcing safety.
In this context, the formulation of our problem hinges upon
the following components:
• A robot represented by a nonlinear system

ξ̇ = f(ξ,u), (1)

with state ξ ∈ Rnξ and control inputs u ∈ Rnu , subject
to state and input constraints.

• A motion generator providing a reference trajectory ηr

for the task variables η = c(ξ), which take values in
Rnη . Typical examples of task variables are a subset
of the state variables or the position of some relevant
point of the robot. As for the motion generator, it can be
either an offline planner (such as a motion planner among
obstacles) or an online controller.

• A human assigning reference values νr to some subset
ν ∈ Rnν of the state variables through a control interface.
These signals are henceforth called human inputs and
convey human intentions.

• A set of working conditions defining requirements on
the state for the robot to operate healthily. These can
include both safety rules (e.g., maximum kinetic energy,
maximum dissipation) and task-related rules (e.g., the
accuracy of end-effector positioning). We assume that
working conditions are such that the associated feasible
set is convex.

For this setting, we want to devise a mixed-initiative con-
troller that will attempt to execute human inputs as much as
possible without compromising both working conditions and
constraints inherent to the robot’s physical limitations. As we
will see, in addition to the mixed-initiative controller itself,
the control algorithm also includes a blending mechanism that
predicts the violation of working conditions and gives most of
the control authority to the most capable agent at any time.

III. MIXED-INITIATIVE CONTROL

The mixed-initiative controller considers the human oper-
ator and the motion generator as two different agents. The
blending mechanism assesses the working conditions’ viola-
tion and distributes control authority accordingly. For example,
working conditions may include a requirement of collision-
free motion. If human inputs ignore this, a violation will be
predicted, and the blending mechanism will shift more control
authority to the motion generator. In the following, we describe
in detail the proposed algorithm.

A. Algorithm overview

Mixed control is accomplished through a mixed-initiative
NMPC controller whose cost function – the mixed-initiative
cost – is a convex combination between the actual robot
cost and the human input cost. The latter is a cost term that
penalizes the deviation from the human inputs. The proposed
blending mechanism is a continuous function between 0 and



1, named predicted healthiness index, that drives the convex
combination. It is computed in this way: when the index tends
to 0, the working conditions’ violation is too close and, hence,
the mixed-initiative cost tends to the actual robot cost. When
the index tends to 1, the violation is far enough and, therefore,
the mixed-initiative cost tends to the human input cost.

Based on the state solution of the NMPC controller, at each
time instant, the predicted healthiness index computes how far
the robot is from violating these conditions within a virtual
horizon whose length is defined by the designer. It then selects
a value between 0 and 1 and blends the individual costs. The
idea is that the closer the index to 0, the more troublesome
it will be to keep the system within the working conditions
in the next virtual horizon, even if full control is given to
the motion generator (and human inputs are heavily ignored
from that moment on). Vice-versa, the closer the index to 1,
the easier the motion generator’s job will be if it takes full
control of the system. Figure 1 shows a block diagram of the
proposed algorithm.

B. Mixed-initiative controller
When using NMPC to control a system, a nonlinear non-

convex program is solved using the current state as the initial
value at each sampling instant. However, as the computational
burden associated with the solution can be rather long, the
employment of NMPC has only recently been extended to
applications where shorter sampling times are required [16].
Typically, a continuous-time, infinite-dimensional optimal con-
trol problem (OCP) is tailored according to the problem
at hand, discretized into N intervals using a time step ∆t
over a fixed time horizon tN , and then solved. In doing so,
the tailored OCP is transcribed into a discrete-time, finite-
dimensional nonlinear program (NLP), now defined over a
refined coarse grid [t0, tN ], for which the Karush-Kuhn-Tucker
conditions are set up and solved at each sampling interval
[tk, tk+1]. In our approach, we cast the MI controller as
a constrained NLP with linear least-squares tracking cost,
formulated as follows:

Problem 1 (Mixed-Initiative Controller).

min
ξk,uk

N−1∑
i=0

L(ηi|k,νi|k, ei|k,ui|k) +M(ηN |k,νN |k, eN |k)

(2a)
s.t. ξ0|k − ξ̄0|k = 0, (2b)

ξi+1|k − F (ξi|k,ui|k) = 0, i = 0, . . . , N − 1, (2c)
ξi|k ∈ X , i = 0, . . . , N − 1, (2d)
ui|k ∈ U , i = 0, . . . , N − 1, (2e)

where

L(·) =
1

2
((1− λk)∆ηTi|kQη∆ηi|k + λk∆νTi|kQν∆νi|k+

(1− λk)∆eTi|kQe∆ei|k + (1− λk)uTi|kRui|k)

M(·) =
1

2
((1− λk)∆ηTk+N |kQηN∆ηk+N |k+

λk∆νTk+N |kQνN∆νk+N |k+

(1− λk)∆eTk+N |kQeN∆ek+N |k).

Fig. 1. A block diagram of the proposed mixed-initiative control algorithm

Here, ξk = (ξ0|k, . . . , ξN |k) and uk = (u0|k, . . . ,uN−1|k)
represent the state and input trajectories of the discrete-time
system whose dynamics are described by F : Rnξ × Rnu →
Rnξ at time tk. The horizon length is denoted by N while
ξ̄0|k denotes the current state estimate. The functions L and M
represent the stage and terminal cost terms, respectively, which
are weighted by the positive-definite matrices Qη, QηN ∈
Rnη×nη , Qν , QνN ∈ Rnν×nν , Qe, QeN ∈ Rnh×nh , and
R ∈ Rnu×nu . The convex polytopic sets X and U implement
the state and input constraints associated with the physical
limitations of the robot.

Moreover, we denote the task variables tracking error as
∆ηi|k = ηi|k − ηri|k, ∆ηk+N |k = ηk+N |k − ηrk+N |k, and
the human inputs’ tracking error as ∆νi|k = νi|k − νri|k,
∆νk+N |k = νk+N |k−νrk+N |k. The cost function also includes
other penalty terms that may be relevant to the specific
application. Their tracking errors are denoted as ∆ei|k =
h(ξi|k)− eri|k, and ∆ek+N |k = h(ξk+N |k)− erk+N |k, where
the output functions h(ξi|k), h(ξk+N |k) ∈ Rnh and their
respective references eri|k, e

r
k+N |k ∈ Rnh are defined by the

relative complement Rnξ \ (Rnη ∪ Rnν ).
The scaling factor λk ∈ (0, 1) is the output of the blending

mechanism and is used to determine how control authority
should be mixed. Looking at the cost function, one can observe
that increasing the value of λk will give more weighting to
the human inputs than the motion generator commands. Note
that we consider an open interval because we are interested in
strictly convex problems. Finally, once the solution for interval
[tk, tk+1] is computed, the first element of the input trajectory
u0|k is applied before shifting the horizon forward in time,
see Figure 1.

C. Working conditions

While the particular requirements that a robot has to obey
may differ from one system to another, a generic approach
is to express these requirements through suitable working
conditions. Here, these conditions are designed to help pilots
fly a quadrotor along a collision-free trajectory in an arena
with obstacles. To this end, we impose a maximum deviation
r ∈ R>0 from the reference trajectory to enforce safety. In
terms of Euclidean norm, this condition reads as follows:

d(η) = ‖η − ηr‖ ≤ r. (3)



Any point η satisfying (3) describes a convex free region B,
which we defined as

B = {η ∈ Rnη : ‖η − ηr‖ ≤ r}. (4)

Note that B is a norm ball fully described by its center point
ηr. This observation implies that the robot is softly constrained
to move inside of a ball, where its actual trajectory is just one
of the possible trajectories that avoid collisions, and at best, it
is the reference trajectory itself.

Unlike the constraints in the MI controller, i.e., Eq. (2b)–
(2e), the working conditions may be seen as “soft” constraints
that facilitate the decoupled design of the safety- and/or task-
related rules through the task variables. By defining them this
way, we dovetail zone MPC ideas into our MI controller. Zone
MPC is used when the specific setpoint of an output variable
is of low relevance compared to a zone delimited by upper and
lower bounds, typically read as a soft constraint [1]. This idea
can be easily accommodated by choosing a suitable weighting
matrix to penalize the output deviation in the cost function.
For a linear least-squares tracking cost, an output deviation,
which depends linearly on the states, causes the cost to strictly
increase as one moves away from the reference. This increase
is acceptable as long as the deviation rests inside the zone. As
the deviation crosses or approaches the zone’s boundary, large
penalty weights are set. We revisit this concept by making the
weighting matrices of human and actual robot costs antagonist:
when the task variables’ prediction lies outside B, the human
cost weighting gets closer and closer to zero, while the actual
robot cost weighting tends to a high value, which brings back
the prediction to the interior of B. The self-optimizing output
variables allow safety enforcement to the best possible degree.
However, minor violations may still occur due to the soft
constraint nature of this approach. In principle, one can enforce
η ∈ B as a hard constraint (if deemed necessary) by defining a
task-related working condition. Nevertheless, such a constraint
will inevitably be made soft in a practical implementation.

D. Predicted healthiness index

As previously established, the robot must remain inside B
to enforce safety. Based on that, at each sampling instant tk,
we use the state solution of Problem 1 at time tk−1 to compute
the predicted healthiness (PH) index λk : (0, r) 7→ (0, 1), i.e.,
the blending mechanism. More precisely, we measure how far
the robot is from violating the ball’s boundary within a virtual
horizon whose length is defined by Nb ≤ N . Then, we select
an index λk between 0 and 1 that is used to determine the
weighting in Problem 1. The fact that Nb may differ from
N allows the designer to choose the level of insight that the
blending mechanism should have into the interaction. In what
follows, we formally define the PH index.

Given a virtual horizon with Nb intervals and the predicted
ηi|k−1 from the state solution of Problem 1 at time tk−1, let
us first select the largest residual within B

dres|k = max
i=0,...,Nb

‖ηi|k−1 − ηri|k‖ (5)

and ensure that it does not outstrip the upper limit allowed

dmax|k = min(dres|k , r). (6)
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Fig. 2. Left: pictorial description of the function (7). Dashed red lines indicate
the bounds on dmax|k . Particularly, when dmax|k = r then dsat|k = µ1r.
Analogously, when dmax|k = 0 then dsat|k = µ2r. Right: an illustration of
the function defined in (8) showing a profile relatively quadratic for penalizing
residuals inside B.

Then, to make sure the PH index is a strictly positive function
in the range of interest, let us consider a saturation function
dsat : [0, r] 7→ (0, r) defined by the following Richards curve:

dsat|k (dmax|k ,Λ) =
µ1r

(1 + ζ · exp{−θ2(dmax|k − µ2r)})1/ζ
∈ (0, r), (7)

where Λ = (µ1, µ2, θ2, ζ) is a quadruple that parameterizes
the curve (see Figure 2-left). In particular, µ1 is a constant
related to the the upper asymptote and whose value is close to
1 but strictly less than 1, µ2 is a positive real number related
to the lag phase, θ2 is the growth rate, and ζ is a positive real
number known as the shape parameter1.

Definition 1 (PH index). The PH index is defined as

λk(dsat|k ) =

√
r2 − d2sat|k

r
∈ (0, 1). (8)

An illustration of function (8) is provided in Figure 2-right. Its
profile indicates how the MI controller shapes human control
authority. The outcome strongly depends on the combination
of the r value and Λ tuning. For instance, one shall choose µ1

as close to 1 as possible so that the extrema of λ get as close
as possible to 0 and 1, expanding the range of human control
authority. Factor µ2 shall be selected relatively close to 0 as it
influences the offset within B at which human control authority
starts to decrease. The rate of decrease θ2 is defined by the
slope at the inflection point. The parameter 0 < ζ ≤ 1 controls
the sigmoid curvature. An in-depth analysis has shown that this
parameter has little effect on the blending mechanism.

IV. NUMERICAL TESTBEDS AND DISCUSSION

A. Human-quadrotor benchmark

1) Robot: Let us denote with {I} the inertial frame, and
with {B} the body frame located at the center of mass
(CoM) of a quadrotor. The quadrotor state is composed by
its position p = (x, y, z) ∈ R3 expressed in {I}, orientation
γ = (φ, θ, ψ) ∈ R3, linear velocity vb = (vx, vy, vz) ∈ R3

expressed in {B}, angular rate ω = (ωx, ωy, ωz) ∈ R3

1The shape of the dsat curve depends on ζ. If ζ = 1, one has the logistic
function. If ζ tends to zero, the curve converges to the Gompertz function.



TABLE I
MIKROKOPTER PHYSICAL PARAMETERS

m 1.04 kg l 0.23 m CD 10 Nm/kHz2

CT 595 N/kHz2 d 0.5 mN·m·s Jm 0.08 g·m2

J = diag(0.01, 0.01, 0.07) kg·m2

expressed in {B} and rotational speed of the propellers
Ω = (Ω1,Ω2,Ω3,Ω4) ∈ R4, bounded by X = {Ω ∈ R4 :

¯
Ω ≤ Ω ≤ Ω̄} (vector inequalities are intended component-
wise). The control inputs are the rotor torques, defined by
u = (τ1, τ2, τ3, τ4) ∈ R4 and constrained in magnitude by
U = {u ∈ R4 :

¯
u ≤ u ≤ ū}. The nonlinear dynamics is then

given by the first-order ordinary differential equations:

ξ̇ = f(ξ,u) =


STvb
Eω

1
mFb − SG− ω × vb
J−1(Mb − ω × Jω)

1
Jm

(u− CDΩ�Ω− dΩ)

 (9)

with state ξ = (p,γ,vb,ω,Ω) ∈ R16. The quadrotor’s mass
is denoted by m, vector G = (0, 0, g) ∈ R3 with g being the
gravitational acceleration; d represents the drag coefficient of
the rotor whose scalar inertia is Jm. The element-wise product
is denoted with �. The positive-definite matrix J ∈ R3×3

denotes the vehicle’s inertia matrix. The rotation matrix from
{I} to {B} is represented by S ∈ SO(3). Matrix E : R3 →
R3×3 expresses the relation between the instantaneous rates of
change of γ and the instantaneous components of ω. The total
external forces and moments applied to the CoM of quadrotor
and expressed in {B} are defined, respectively, as

Fb := (0, 0, Fz), Mb := (Mx,My,Mz) (10)

with Fz = CT (Ω2
1 + Ω2

2 + Ω2
3 + Ω2

4), (11a)

Mx = CT · l(Ω2
2 − Ω2

4), (11b)

My = CT · l(Ω2
3 − Ω2

1), (11c)

Mz = CD(Ω2
1 + Ω2

3 − Ω2
2 − Ω2

4), (11d)

where CT is the thrust coefficient, CD is the drag coefficient,
and l is the distance between the quadrotor’s CoM and the
rotor’s center.

As an example, we report in Table I the values of the
dynamic parameters appearing in (9) corresponding to the
MikroKopter2 quadrotor platform. Note that we perform model
scaling as MPC uses normalized input/output variables. Other
than equaling/approximating the variables’ range, scaling pro-
vides further benefits. Among them, a more intuitive tuning of
the weights associated with the human and actual robot costs,
allowing the designer to emphasize the relative priority of each
term rather than the combination of priority and signal scale.
It also offers improved numerical conditioning as optimization
routines are less prone to round-off errors.

2https://www.mikrokopter.de/en/home

2) Reference trajectory: An offline planner provides a
Cartesian helical trajectory ηr that avoids collisions with
existing obstacles. This means that task variables are defined
as η := p ∈ R3. Note that the reference trajectory implicitly
enforces safety.

3) Pilot inputs: Usually, pilots provide the quadrotor with
the desired roll, pitch, z angular rate, and total thrust, i.e.,
g = (φh, θh, ωz, Fz,h) ∈ R4. For simplicity, we assume that
the desired z angular rate is zero throughout the task, and the
total thrust is mapped into the speed of the propellers, i.e.,
νr : g 7→ R6.

Literature suggests that MPC provides a favorable basis for
shaping the human decision-making process (see [17] and
references therein). Supported by these findings, we use a
second NMPC controller to simulate the inputs of a human
pilot. Its finite-time OCP reads as follows:

min
ξk,uk

N−1∑
i=0

Lh(ηi|k,γi|k,vb,i|k,ωi|k,Ωi|k,ui|k) +

Mh(ηN |k,γN |k,vb,N |k,ωN |k,ΩN |k) (12)
s.t. (2b)− (2e),

where

Lh(·) =
1

2
(∆ηTi|kQ1∆ηi|k + γTi|kQ2γi|k + vTb,i|kQ3vb,i|k +

ωTi|kQ4ωi|k + ∆ΩT
i|kQ5∆Ωi|k + uTi|kR1ui|k)

Mh(·) =
1

2
(∆ηTk+N |kQ1N∆ηk+N |k + γTk+N |kQ2Nγk+N |k +

vTb,k+N |kQ3Nvb,k+N |k + ωTk+N |kQ4Nωk+N |k +

∆ΩT
k+N |kQ5N∆Ωk+N |k).

Therein, ∆Ωi|k = Ωi|k −Ωhov represents the propeller speed
errors, with Ωhov =

√
(mg/4CT ). The weighting matrices are

denoted by Qj , QjN � 0 for j = 1, . . . , 5 and R1 � 0. In
particular, constraint (2d) represents the control interface’s real
limitation.

At each sampling interval [tk, tk+1], the solution of (12) is
computed and the predicted state at stage i = 1 is used as
pilot inputs, namely

φh = φ1|k, θh = θ1|k, Ωh = Ω1|k. (13)

Remark 1. In practice, the total thrust coming from the joy-
stick can be easily mapped into the propellers’ desired speed
and passed to the MI controller if one uses Eq. (11a) assuming
hovering condition, i.e., Ω1 = Ω2 = Ω3 = Ω4 = Ωss, yielding

Ωss =

√
Fz,h
4CT

, Ωh = Ωss·14.

Different skill levels are obtained by shaping the weighting
matrices of the NLP (12). Flying a quadrotor is less automated
for novice pilots and, for this reason, requires more of their
attention span than experienced ones. Due to their limited self-
regulatory ability, their inputs tend to be oscillatory. On the
contrary, experienced pilots’ inputs tend to be more precise,
presumably reflecting their ability to use sensory cues to
support their actions. These behaviors were emulated con-
sidering distinct tuning for matrices Qj , QjN . Experienced
pilots are sketched by an improved tracking performance with

https://www.mikrokopter.de/en/home


a heavily weighted sum of squares. Oppositely, novice pilots
underperform using relatively small weights that allow for
larger reference deviations.

Assumption 1. Since, in practice, we need to predict human
inputs to solve Problem 1, we chose to use a zero-order
hold (ZOH) method. This prediction method assumes that
future human inputs will all be the same as current ones, an
assumption that has proved effective in experimentation, [18].

4) Additional penalty terms: As previously hypothesized,
pilots would typically perform continuous maneuvers by
changing their inputs all the time. To preserve smoothness in
the generated trajectory, we consider additional penalty terms
in the MI controller cost function. These terms rely on the
following output functions:

h(ξi|k) = h(ξk+N |k) = (ψ;vb;ω) ∈ R7 (14)

where the semicolon denotes vector concatenation, and their
corresponding references

eri|k = erk+N |k = 07. (15)

The vector of zeros implies two underlying assumptions: first,
we are not dealing with aerobatic maneuvers; second, we
assume it is an educated guess to initialize and, thereby, speed
up the subsequent optimization algorithm.

5) NLPs parameterization: Among several approaches
available to discretize continuous-time OCPs, this work will
use direct multiple shooting [19] due to its convergence and
initialization properties. Assuming an equidistant grid and
piecewise constant control parameterization, the following
initial value problem defines the state trajectory ξi|k(π) at each
shooting interval:

ξ̇i|k(π) = f(ξi|k(π),ui|k), ξi|k(ti) = ξi|k, π ∈ [ti, ti+1].
(16)

Function (16) is evaluated numerically, i.e., ξi|k(ti+1) ≈
F (ξi|k,ui|k), using a single-step explicit Runge Kutta of 4th
order per ∆t. Additionally, we approximate the Hessian of the
Lagrangian using the Generalized Gauss-Newton method so
that structure-exploiting convex solvers can make the most of
the block structure of the resulting quadratic program (QP).

B. Implementation details

1) NMPC via RTI scheme: In real-time NMPC appli-
cations, Problem 1 needs to be solved at each sampling
instant under the available computation time. To that end,
we use a numerical strategy based on sequential quadratic
programming (SQP) that relies on the solution of a limited
number of QP subproblems, the so-called RTI scheme [20].
More precisely, only one linearization and QP solve are
carried out per sampling instant, leading to an approximate
feedback control policy. An essential element in the RTI
scheme is to keep the initial state ξ0|k as a constrained decision
variable, often referred to as initial value embedding. This trait
allows to divide computations into preparation and feedback
phase, where the former is typically more expensive. In this
work we use the RTI method’s implementation through the
high-performance software package acados [21]. Through

its Python template-based interface, we generate the library
that implements Problem 1, which is then wrapped by our
framework written in Python 3.7.

2) Structure-exploiting QP solver and condensing ap-
proach: The QP subproblems arising in the SQP algo-
rithm in acados are addressed using the high-performance
HPIPM [22] solver, which implements a primal-dual interior-
point method. It is built on top of the linear algebra pack-
age BLASFEO [23], finely tuned for multiple CPU archi-
tectures. This Riccati-based solver implements an efficient
method for the solution of linear-quadratic control problems,
a special instance of equality constrained QP. Furthermore,
BLASFEO is hardware-optimized for the moderately sized
matrices present in our mixed-initiative NMPC. We use its
X64_INTEL_HASWELL implementation, which exploits a set
of vectorized instructions for the target CPU. Solution times
are further reduced by reformulating the QPs resulting from
our NMPC using the efficient partial condensing algorithm
implemented in HPIPM. In particular, the algorithm finds the
optimal level of sparsity for the solver, trading off horizon
length for input vector size.

C. Performance analysis

The parameters used for all the testbeds in the blending
mechanism and the mixed-initiative NMPC are in Table II. In
particular, we adopt a short virtual horizon Nb to compensate
for the fact that with a ZOH method, pilot inputs would have
a natural tendency to violate the norm ball’s boundary in the
long run. The chosen value is a compromise between the
base level of “trust” in the human inputs and the switching
frequency of control authority. Another assumption is that λ =
0.5 during the first iterations, i.e., control authority is equally
distributed. As previously mentioned, the testbeds incorporate
a second autonomous algorithm that emulates a novice and an
experienced pilot. This will enable a comparative analysis of
our approach.

Figure 3 displays the trajectories generated by the MI
control algorithm for both pilots. The results show that the
controller maintained the quadrotor inside B, successfully
avoiding all obstacles in all cases (see also Fig. 5-left). In Fig-
ure 4, we observe that the mixed-initiative NMPC commands
closely follow the pilot inputs when the safety constraint is
unlikely to be violated. This outcome is more evident for the
experienced pilot, where the lines overlap almost completely,
implying that the inputs issued kept the quadrotor closer to
the reference trajectory. From Figure 5-right, it is obvious that
the blending mechanism begins to drop off rapidly the level of

TABLE II
PARAMETERS USED BY THE BLENDING MECHANISM AND THE

MIXED-INITIATIVE NMPC

¯
Ω 04 Ω̄ 0.09 ·14 kHz µ1 0.99

¯
u −0.1285 ·14 Nm ū 0.1285 ·14 Nm µ2 0.3
tN 0.75 s N 50 θ2 55
r 0.175 m Nb 10 ζ 1·10−13

Qη = QηN = blkdiag(100 ·I2, 200), Qν = QνN = 800 ·I6,
Qe = QeN = blkdiag(10, 3 ·I5, 10), R = 70 ·I4



Fig. 3. Generated trajectories among obstacles (purple) using our mixed-initiative NMPC: novice pilot (blue); experienced pilot (red); reference trajectory is
dashed; the ? marks the final goal.
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Fig. 4. Pilot inputs generated by an autonomous algorithm and mixed-initiative NMPC commands as a result of the blending mechanism.
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Fig. 5. Left: distance between generated trajectories and reference; r is
dashed. Right: predicted healthiness index profiles indicating the level of
human control authority.

control authority for the novice. At the same time, it maintains
a relatively high level for the experienced pilot. Overall, note
that the control algorithm assists the novice through what is
often a very challenging part of their learning journey, the
damping in pitching-rolling motions. The algorithm can keep
up considerably with the signals’ pattern (preserving the pilot’s
primary intentions), but attenuates their magnitude to cope
with the safety constraint. Also, as the physical constraints
herein regarded are linear, they can be enforced very efficiently
by the optimization algorithm (see Figure 6).

Including maximum deviations provides versatility in the
quadrotor motion generation. First, it gives a certain level of
spatial freedom so that the quadrotor can leverage the motion
by exploiting its dynamics. Second, it similarly adds new
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Fig. 6. Generated propeller speeds; the upper bound Ω̄ is dashed.

degrees of freedom to the controller. From a theoretical point
of view, the control objective of the mixed-initiative NMPC
can be seen as a target set (in the space of the task variables)
instead of a target point, since inside B there are no preferences
between one point and another.

The findings here indicate that the proposed algorithm
provides pilots with more control authority without sacrificing
safety or even exceeding the robot’s physical limits. Therefore,
it has the potential to pave the way to the definition of a stan-
dard assistive scheme that can lead to a future improvement
in pilot decision-making performance.

D. Computational burden

Solution times reported are from an Intel Core i5-4288U @
2.6 GHz running macOS Catalina. For a horizon of N = 50,
the resulting QP has 1016 optimization variables. The testbeds
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Fig. 7. Violin plot representations of solution times associated with the mixed-
initiative controller in simulations with a novice (left) and an experienced pilot
(right). Central bars represent the mean values for each virtual horizon Nb.

showed that HPIPM is significantly faster in solving the
partially condensed QP than the corresponding dense QP. In
this context, computational efficiency is granted through partial
condensing as it allows us to exploit hardware throughput
better. The average times per SQP-iteration in acados were
4.27 ms for the novice and 3.87 ms for the experienced pilot.
Interestingly, one can modify Nb and potentially improve the
blending mechanism performance without affecting solution
times significantly. Figure 7 shows that changes in Nb affect
marginally the solution times. Note that cases in which so-
lution time is larger than ∆t or the solver fails are handled
using the previous feasible solution at stage i = 1.

V. CONCLUSIONS
This paper presented a novel mixed-initiative control algo-

rithm based on NMPC to enforce safety in human-quadrotor
interactions. The algorithm adopts a predict-then-blend ap-
proach to mix human inputs and motion generator commands
during operation. It assesses whether safety rules are met to
perform the control authority blending through the quadrotor’s
predicted positions. Then it uses an efficient RTI-based scheme
that iteratively refines the combined costs so that all NMPC
constraints are fulfilled within the available computation time.
Simulations showed that the approach allows safety enforce-
ment with specific benefits for useful assistance to pilots,
especially novices, and low computational effort. Thanks to
high-performance software implementations, we could further
speed up solution times and achieve computational efficiency.

Future work will focus on the inclusion of an actual human
in the loop by integrating a joystick and a graphical user
interface to the testbed environment. The subsequent phase
will encompass the integration of a real quadrotor. For this
setting, we want to develop a set of metrics that will help us
assess pilots’ learning curves and provide us with real-world
evidence of improved proficiency. Besides, it is desirable to
investigate the stability of the MI controller.
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