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INTERVAL KALMAN FILTER ENHANCED BY LOWERING THE COVARIANCE
MATRIX UPPER BOUND

TuAN ANH TRAN ¢, CARINE JAUBERTHIE ¢, LouISE TRAVE-MASSUYES ¢, Quoc HuNG LU ¢

“LAAS-CNRS, Université de Toulouse, CNRS, UPS, Toulouse, France (e-mail: tatran@laas.fr, cjaubert @laas.fr,
louise @laas.fr, ghlu@Ilaas.fr).

This paper proposes a variance upper bound based interval Kalman filter that enhances the interval Kalman filter of the same
principle proposed in (Tran et al., 2017) for uncertain discrete time linear models. The systems under consideration are
subject to bounded parameter uncertainties not only in the state and observation matrices, but also in the covariance matrices
of the Gaussian noises. By using the spectral decomposition of a symmetric matrix and by optimizing the gain matrix of
the proposed filter, we achieve to lower the minimal upper bound on the state estimation error covariance for all admissible
uncertainties. This paper contributes with an improved algorithm that provides a less conservative error covariance upper
bound than the approach proposed in (Tran et al., 2017) . The state estimation is determined using interval analysis in order
to enclose the set of all possible solutions of the classical Kalman filter consistent with the uncertainties.

Keywords: Uncertain linear systems, Kalman filter, Interval analysis, Estimation, Covariance matrix.

1. Introduction

Set-membership (SM) methods have expanded
considerably in recent years and they have reached a
maturity allowing to consider many applications ((Jaulin,
Kieffer, Didrit and Walter, 2001; Ribot et al., 2007; Jaulin,
Braems, Kieffer and Walter, 2001; Tran, 2017; Cayero
et al., 2019)). Past years have seen considerable progress
in the way of formulating problems in this context as
well as the optimized handling of different types of
sets. Interval analysis, introduced by (Moore, 1966),
operates on box-shaped sets and is particularly relevant
for dealing with nonlinear systems. It has been used
for nonlinear estimation and several algorithms have
been proposed (for more details, see (Jaulin, Kieffer,
Didrit and Walter, 2001; Ribot et al., 2007; Kieffer
et al., 1999)). Other estimation approaches dedicated to
linear models include ellipsoid shaped methods ((Lesecq
et al., 2003)), parallelotope and zonotope based methods
(Ingimundarson et al., 2009).

In contrast to stochastic estimation approaches (see
(Chabir et al., 2018) for example), SM estimation
advantageously provides guaranteed results meaning that
the obtained sets are guaranteed to include all the solutions
consistent with the bounded uncertainties. However,
SM estimation does not bring any information about the

probability distribution inside the sets and it is often
criticized for the overestimation of the results.

This paper is motivated by the idea that stochastic
and SM approaches have specific advantages and that they
complement each other more than they compete.

In the stochastic estimation framework, the
experimental conditions about noise and disturbances are
usually properly modeled through appropriate probability
distributions. However, other sources of uncertainty are
not well-suited to stochastic modeling and are better
represented with bounded uncertainties. This is the case
with parameter uncertainties that generally arise from
design tolerances and from ageing. Combining stochastic
and bounded uncertainties opens hence new perspectives
for modeling complex systems more accurately.

Motivated by the above facts, we consider the
filtering problem for discrete time linear models with
bounded uncertainties on parameters and gaussian noise
on measurements. In (Chen er al., 1997), the classical
Kalman filter ((Kalman, 1960)) has been extended to this
type of uncertain systems. The authors propose to bypass
a singularity problem by using the upper bound of the
interval matrix to be inverted. This method hence leads
to a solution that is not guaranteed, i.e. the solution set
may not include all the classical Kalman filter solutions
consistent with the bounded uncertainties represented in



the system. In (Xiong et al., 2013), an improved interval
Kalman filter (iIKF) has been proposed that solves the
interval matrix inversion problem with the set inversion
algorithm SIVIA (Set Inversion Via Interval Analysis) and
constraint satisfaction problems (CSP) (Jaulin, Kieffer,
Didrit and Walter, 2001). Nevertheless, this algorithm
demands high computational time if there exist large
uncertainties affecting the considered system (Tran et al.,
2016). The Minimum Upper Bound of Variance Interval
Kalman Filter (UBIKF) has been presented in (Tran
et al., 2017) with two main goals: minimizing the upper
bound for the estimation error covariance and enclosing
the set of possible solutions of the filtering problem for
interval linear systems. Since the gain matrix handled by
UBIKF is point, this approach encloses all the estimates
consistent with the parameter uncertainties in a much less
conservative manner than the iIKF.

Our contribution consists in proposing an Improved
Minimum Upper Bound of Variance Interval Kalman
Filter (iUBIKF) using the spectral decomposition of a
symmetric matrix that provides less conservative error
covariance upper bound than the UBIKF. The iUBIKF
also provides interval estimates that are guaranteed to
enclose all the optimal estimates consistent with the
parameter uncertainties. In this respect, the iUBIKF
differs from the joint zonotopic and gaussian Kalman
Filter proposed in (Combastel, 2015) for discrete linear
time varying (LTV) systems simultaneously subject to
bounded disturbances and gaussian noises. This latter
indeed uses a criterion combining the minimization of the
estimate variance and the minimization of the size of the
zonotope bounding the support of the estimate bounded
imprecision.

This paper is organized as follows. The problem
formulation is described in Section[2] Sections 3] and [4]
review the main notions of interval analysis and matrix
inequalities that are necessary for the development of the
new algorithm. Then the new interval Kalman filter is
derived in Section 5] followed by the application of the
two filters, the UBIKF and the iUBIKEF, to an academic
numerical example and to a case study of a two wheels
vehicle in Section[6] In this section a comparative analysis
is performed. Sectionﬁnally concludes the paper.

2. Problem formulation

We consider linear discrete-time dynamic systems
represented by a state and an observation equation subject
to noises similar to the standard Kalman model (Kalman,
1960):

{ Xp41 = ApXy + Brug + Wi,

Yk = CikXi + vi, k €N, ®

where x;, € R", y,. € R™ and uxy € R"“ denote
state, measurements and input vectors, respectively. The

matrices Ay, By, C) are time-varying parameters. {wy }
and {vy} are independent centered gaussian white noise
sequences, with positive definite covariance matrices ()
and Rk:

E{wk,wi} = Qubki, E{vk,vi} = EBi0ki,
E{wi,vi} = E{wi,x0} = E{vk, X0} =0,
V(k,1) € N2,

where dj; is the Kronecker symbol.

Based on the motivations reported in the
introduction, we propose to combine two modeling
paradigms measurement and system noises are
modeled in a stochastic framework but parameters are
assumed uncertain and this uncertainty is bounded.
This is achieved by considering that the matrices
Ay, By, Ck, Qi and Ry, of (D are interval matrices, as
defined in the following section, containing all possible
values of each parameter. Since it is impossible to solve
directly the Kalman filtering problem due to parameter
uncertainties, our goal is to obtain an upper bound P
such that:

E (%5 — x) (%5 — xx)T] 2 P, )

for the set of all models with parameters bounded by the
interval matrices. The envelope enclosing the set of state
estimates corresponding to the gain K is then computed.

In the next section, the basic concepts of interval
analysis are introduced.

3. Interval analysis

Interval analysis operates on intervals instead of real
numbers (Moore, 1959; Jaulin, Kieffer, Didrit and Walter,
2001). Obtaining guaranteed results from floating point
algorithms was the first motivation. It was then extended
to verified numerics (Moore, 1966).

A guaranteed result first means that the result set
encloses the exact solution.

Second, it also means that the algorithm is able
to decide the existence of a solution in limited time or
number of iterations.

3.1. Main concepts. A real interval [p] = [p,p] is a
closed and connected subset of R, where p and p represent
the lower and upper bounds of [p], respectively. The ra-
dius of an interval [p| is defined by rad([p]) = (p — p)/2,
and its midpoint by mid([p]) = (p + p)/2. f w([p]) = 0,
then [p| is degenerated and reduced to a real number. The
set of all real intervals of R is denoted IIR. Real arithmetic
operations have been extended to intervals (Moore, 1966):

o€ {+,—, %/}, [m]o[ps] = {zoy |z € [p], y € [p2]}-

The following property is useful to describe a quantity in
terms of its nominal value and a bounded uncertainty:



Property 1. [(Moore et al., 2009)] Given a real value
z belonging to an interval [z], there exists a real value
a € [~1,1] such that z = mid([z]) + arad([z]) .

An interval vector (or box) |a] is a vector with
interval components. It may equivalently be seen as a
cartesian product of scalar intervals:

[a] = [@1] X [@z2] X ... x [an].

An interval matrix is a matrix with interval components.
The set of n—dimensional real interval vectors is denoted
by IR" and the set of n x m real interval matrices is
denoted by [IR™*"™. The midpoint mid(.) (resp. the radius
rad(.)) of an interval vector (resp. an interval matrix)
is a vector (resp. a matrix) composed of the midpoints
(resp. the radius) of its interval components. Classical
operations for interval vectors (resp. interval matrices) are
direct extensions of the same operations for real vectors
(resp. real matrices) (Moore, 1966). In order to simplify
the notations, the midpoint and the radius of a matrix [M|
are respectively denoted by M,,, and M,.

Using Property [1| for matrices, the following
proposition is obtained:

Proposition 1. (Tran, 2017) Given an m X n real ma-
trix M belonging to an interval matrix (M|, there ex-
ist mn real values o € [~1,1) with i € {1,...,m},
j €{1,...,n} such that:

M= M,, + i ia‘jhlr(i=j)H 3)

i=1 j=1

where J\/Ir("’ ) is an m x n matrix whose entry (i,j) is the
radius of entry (i,j) of [M| and the other elements are
zero.

In the case of symmetric matrices, the following
representation should be considered:

Proposition 2. (Tran, 2017) Given an n X n real sym-
metric matrix M belonging to a symmetric interval matrix
[M), there exist n(n+1)/2 real values o*? € [—1, 1] such
that:

M = M,, + diag (M,) diag (o) '
XS @ MGG @)

where diag (M,) is a diagonal matrix containing the ra-
dius of diagonal elements of [M), M{“"0) is 4 sym-
metric matrix whose (i,j) and (j,1) entries are the ra-
dius of entries (i,7) and (j,i) of (M| and the other el-
ements are zero. The matrix diag (o) is diagonal and
o € [=1,1),forall1 <i< j<n

!"This expression is a developed form of the Hadamard product.

3.2. Inclusion function. Given a box [a] in IR" and
a function f from IR" to IR™, an inclusion function of
f aims at getting a box containing the image of [a] by f.
The range of f over [a] is given by:

f([e]) = {f(z) | = € [o]}.

Then, the interval function [f] from IR" to IR™ is an in-
clusion function for f if:

V[a] € IR", f([a]) C [f]([a]).

An inclusion function of f can be obtained by replacing
each occurrence of a real variable by its corresponding
interval and by replacing each standard function by its
interval evaluation. Such a function is called the natu-
ral inclusion function. A function f generally has several
inclusion functions, which depend on the syntax of f.

4. Upper bounds of matrices

This section introduces two matrix inequalities used in the
proposed interval Kalman filter in order to bound the state
estimation error covariance.

Proposition 3. [(Tran et al., 2017)] Given two non null
matrices M, N with the same size and an arbitrary real
number 3 > 0, the following inequality holds:

MNT + NMT < 8- IMMT + BNNT. (5

Proposition 4. [(Combastel, 2016)] Let M be a symmet-
ric matrix and M = VDV be its spectral decomposi-
tion, where V' is an orthogonal matrix and D is a diago-
nal matrix. Let M* = V|D|VT, where |.| is the element-
by-element absolute value operator. Then, M = 0 and
VYa € [-1,1], aM < M™.

The following proposition can be used to determine
an upper bound of the expression M PM”, where M ¢
[M], [M] € IR™ ™ and P € R™ is a symmetric positive
definite matrix.

Proposition 5. Given an m x n real matrix M belonging
to an interval matrix (M| and a symmetric positive defi-
nite matrix P of order n, there exists a symmetric positive
definite matrix S of order m such that MPM™ < S.

The matrix S can be determined by using Propositions[ﬂ
and/4]

Proof. (B) y using Proposition|1|for M € [M] and then



developing M PM™, we obtain:

m n

MPM™ = M PM%+ 33 (o) MED P (M,gi-a'))"'

i=1 j=1

+303 a8 (MG + (M)
i=1 j=1
222

i=1j=1 k=1

Y

i (M) 4 (MET
> ada (M + M),
kiviZs

(©6)

S

DN | =

+

. T
where M) = M, P (M("’)) ,

MED = MED P (M ”) and o' € [~1,1].
Proposmonls then used to determine upper bounds of
the two symmetric parts of Equation (6), i.c. S5 for
MG+ (MGP)T and S(F5) for M(F )’; (M)
The expression of the upper bound S of M PM7T can be

written as follows:

S =M, PML + "Z i MEDp ( My.n)"’

i=1 j=1
m n i (k l]
SI)ICLUEES Y Z Sty
i=1 j=1 .1;1;\1 1=1
k#iVI#£]
)]
S is symmetric positive definite. ]

Similarly, a positive definite upper bound of an interval
symmetric matrix can be computed.

Proposition 6. Given a symmetric matrix M belonging
to an interval symmetric matrix [M| € IR", there exists
a symmetric positive definite matrix M+ of order n such
that M < M™. The matrix M™* can be determined by
using Propositions|2)and 4|
Proof. (A) symmetric matrix M €
decomposed using Proposition 2|
Proposition [4] is then applied for each term of the

double sum in equation (4) to determine an upper bound
M of M:

[M] can be

n—-1 n
M* = My, +diag (M) + 3 3 (M©G69)™,
i=1 j=i+1
. ®)
where (M0 "])) is the upper bound of
aid M{E9)-09) given by Proposition [

5. From the Kalman filter to the Interval
Kalman filter

5.1. Kalman filter. Given system (1), the conventional
Kalman filter (KF) provides the minimum variance

estimate X, of X and the associated covariance matrix
Kalman equations (Kalman, 1960) are determined
using mathematical curve-fitting functions of data points
from a least-squares approximation (Welch and Bishop,
2001) or probabilistic methods such as the Likelihood
function to maximize the conditional probability of the
state estimate from measurement incomes (Masreliez and
Martin, 1977). We consider the following notations:

1) Xj11x € R™ is the a priori state estimate vector
at time k -+ 1 given state estimate at time k,

2) X € R™ is the a posteriori state estimate vector
at time k given observations at time k,

3) Piyax € R™ ™ is the a priori error covariance
matrix,

4) Py € R"*™ is the a posteriori error covariance
matrix.

P, defines the precision of the state estimate :
Py = E (R — %) Ry —x)7) , L=kork+ 1. (9)

We assume that Py = Py € IR™™" and xp =
xp € IR"™.

The Kalman filtering algorithm contains two steps
for each iteration: a prediction step and a correction step
(Kalman, 1960).

If we consider the algorithm as an operator K, we can
write:

(Xx |k, Prik) = K(Ag, Bk, Ck, X0, Po, up1._ x-1], ¥[1...k—1])-

In the following, the point time-varying matrices
Ay, Bg, Ck, Qi and Ry, are constrained to belong to the
interval matrices (4], [B], [C], [Q], and [R], respectively.
In other words, their parameters can vary within some
specified bounds.

5.2. Interval Kalman filter. Bounded uncertainties
can occur not only through the interval matrices
(4], [B], [C], [D], [Q] and [R], but also through
Xo|0s Pojo, Uk, ¥« due to deterministic measurement errors
and instrument imprecision. Since it is impossible to solve
directly the Kalman filtering problem due to parameter
uncertainties, our goal is to obtain an upper bound P/,
on the state estimation error covariance:

E[ (Xkph — xk)(xuk — x;\) ] =< PI:TA (10)

In this section, an interval Kalman filter, called improved
Minimum Upper Bound of Variance Interval Kalman Fil-
ter (iUBIKF), is proposed. This algorithm is developed
from the interval Kalman filter introduced in (Tran er al.,
2017) in order to reduce the overestimation on the state
estimation error covariance. The iUBIKF can be designed
in two steps: prediction and correction.



5.2.1. Prediction step. In the prediction step, the
interval state estimate from the previous time step and
the transition model are used to predict the state at the
current time step. This step is performed similarly to
the original Kalman algorithm (Kalman, 1960) using the
natural interval extension, as follows:

[Rrjk—1] = [A] [Rr—1x—1] + [Blus. (1)

For any Ay € [A] and Qi € [Q), the a priori covariance
matrix Py, is computed as:

Pyjp—1 = AkP,f_”k_lAz' + Qk, (12)

where P,:'_ll x_1 is the upper bound of the a posteriori
covariance matrix at time k& — 1. In order to determine
an upper bound P, | of Pyi_y, ie. Py, =X
Pk+| k_1 Propo?'%tion and @ are respectively applied for
AkP,:’_llk_lAi and Qy, Ax € [A] and Qx € [Q]:

P =P+ Q5. (13)

where Ax P, Af < P and Qx < Q.

5.2.2. Correction step. The state estimate at time
step k is computed by the natural interval extension of
(Kalman, 1960):

[%eie) = [Zrpe-1] + Kk (v = [Ck] [Xxpe—1])» (14)

given X; € [%xx]” and Cx € [Ci]. In order to reduce
the effect of the dependency problem ((Jaulin, Kieffer,

Didrit and Walter, 2001)), Equation (14) is rearranged as
follows:

[%kk] = (I = Ki [Ck]) [Rkjp—1] + Kiye.  (15)

The box [)‘ck| k] encloses all possible values of X
The gain matrix K is determined as follows.

The expression of the error covariance matrix after the
correction step, for any Cy, € [C], Ry, € [R), is:

Py = (I - KxCx) P, (I - KiCy)" + K Ry K

(16)
An upper bound of Pi|k can be obtained by using
Proposition[1/for the matrix Cy, then developing Equation

l[El
Pklk = (I K m) klk 1(1 - Kka)T

Ny Ny

+ ZZ MG3) 4 (M EYT
i=1 j=1
ny n,

+ 3 (@) KOt Py, (069 KT

i=1 j=1

ny ng

2222 Z Ki (N('Jz)) + (N(”z)))T) Ky

i=1j=1m=1
m;é:/\l;ég

+ K R KT,
(17)

where M) = @i (chﬁi,j)PJk—l (KxCm — I)T)

and N((:njl)] = “uamlcﬁl’J)Pﬁk_l (Cﬁm’l)) '

The term M (::7) can be rewritten as follows:

B : T
M = (a9, 08 [P ) ((KxCm — 1) /P,

Propositionis then applied to M 9) 4 (M) with
3 = 1. This provides:

M @) +( M(i,j))'l‘
T
< KO P, (c.‘.”’) KT 4 (I = KxC) Py, (I = KiCp)”

(18)

Upper bounds S (m id)
computed by Proposmon@

Therefore, the following expression is obtained for an
upper bound P:T . Of Pt

! of the terms N(t Jl) + (N((;‘Jl))) are

Py = (no +1) (I = KikCrm) Py, (I = KiCrm)"
+23 S K CEIP, (C&"J") K
i=1 j=1

+5 ZZZ 5> KiSKE + KiREKE

l—l] 1 m=1 =1
m#INl#£]

= P}jl-lc’
(19)

where ng is the number of interval elements of the matrix
[C], ie. ng = ny x n,. The matrix R > Ry is
determined by Proposition|6]

Having the expression of P,L| & as a function of Kj,
we look for K that minimizes the trace of PEI‘ 1~ The first

and second derivatives of tr (P:lk) with respect to K},
are:



dtr (P{;lk)

— 4 T
e 2ng + )P+ CT

k|k—1
+2(no + 1) KxCm Py _,Cr,

Ny Ng T
+43° S KCEIPY (Cr(-i.j))

i=1 j=1

v Nz Nz (m, l)
DR WP WL

i=1 j=1m=1 l=1

+4- 2KkR,r,

d?tr (P
JL“) = 2(ng + 1)Cy, L|A ICI

dKf
Ny ns
44 C(*J)p - C(i]))
ZE i
Ny ne Ny

153) 35 3 S

i=1j=1m=1 [=1
+ 2R}

The second derivative is always positive definite that
guarantees the existence of a minimum value for

br (P:’Ik) and K, is obtained from the first derivative:
= (no + 1)P},_,CLS, (20)

where:

Sk = (no + 1)Cu P, _,Cr+
Ny ng

49 Z Z Cﬁ"j)PJk_l (Cr(i,j)) T

i=1 j=1 (21)

Ny Ny Ny Ny

+3 0 2 DS+ RY

i=1 j=1m=1 [=1

The expression of the covariance matrix bound P+
is obtained from Equation (19) using K. as given m

Equation (20):
k|k = (no+1) (I = KxCpn) P, A|k 1 (22)

The algorithm steps are summarized below:

Algorithm 1. iUBIKF Algorithm

Require: [Xo/0], Py, [A] (B, [C], Q] [R], ¥k, ux, A,
Qk, R, k=1,2,.
EIIS!IN: [iklk]‘PI;Tk
1. fork —1,2,... do
2:  Prediction step:

(Rejk—-1] = [A] [Rr-1j-1] + [B] s,
Pyjk—1 = AkP:_”k_lA{ + Qk,
P,:Ik_l > Py (prop.5 and 6)

3:  Correction step

Ry = Ry (prop.5 and 6),
Ky = (no + 1) P, _,CLS ",
Sk = (ng + 1)mid ([C]) P} el ke 1mid([C])T

Ny nax

+2) 3 ctIpy (c;-s,j))'r
i=1 j=1

Ny na Ny ns

PP IPIL i

i=1 j=1m=1 =1
+ R}
PMk (no + 1) (I — Kxmid([C])) P, L|L 1-
[Xik) = (I = Ky [Ck]) [Ripp—1] + Kyt

4: end for

6. Case studies

This section applies the proposed filter iUBIKF to two
systems. The first one is an academic example that is
used to compare the estimation results with the previous
filter UBIKF and to show how the upper bound of the
covariance matrix is less conservative. The second is
a case study of a two wheels vehicle used to compare
the iUBIKEF results with those of the interval observer of
(Raka and Combastel, 2013).

6.1. Academic example. Let us consider an uncertain
system described by the following equations:
Xpp1 = ApXp + Wi,
k41 kXk k 23)
= Cixk + vi, k € N.
{wy} and {v,} are independent centered gaussian white
noise sequences with covariance matrices ;. and Ry..

We suppose that Ay, Cy, Qi and Ry are respectively
bounded by the interval matrices [A], [C], (Q] and [R]



defined as:
[2.55,2.65]  [~1.43 —1.37] [0.26,0.28)
4] = [6.57,6.83] [-3.47,-3.33] [2.55,2.65] |,
[~0.77,-0.73] (0.29,0.31] (0.09,0.11]
[-8.24,-7.76] [-4.12,-3.88]  [1.94,2.06]
€)= |[-2.06,-1.94] [-2.06,-1.94] [-6.18,—5.82]
[-0.41,-0.39] [15.52,16.48]  [6.79,7.21]
8,12 [-6,-4] [3.2,4.8]
@ =1[-6,-4 [8,12] [1.6,24] ],
[3.2,4.8] [1.6,2.4] [8.12]
8,12 [-6,-4] [3.2,4.8]
[R] = | [-6,-4] [8,12] [1.6,2.4]
[3.2,4.8] [1.6,2.4] [8.12]

First, we compare the results provided by the original
UBIKF presented in (Tran er al., 2017) and by our
improved filter (iUBIKF). The efficiency of the filtering
algorithms is evaluated thanks to a set of criteria. One
of them is the upper bound of the root mean square error
RMSFE defined as:

RATSE = sup (1] (S ok = Brue])” (e — o) /2).

(24)
In Equation @, L represents the number of iterations,
[%x] is the interval estimate. Additionally, we propose
to compute the percentage of time steps O where the
confidence interval (I, ] defined as:

(L,) = [Zepe] + [—3\/diag (P,jlk) , 3\/dz'ag (Pﬁk)J ,
(25)
contains the real state, where diag(M) is the vector of
diagonal elements of matrix M. This index allows one to
determine the confidence degree of the state envelopes.

The simulations are run on the time stage [0,1000]
with the toolbox Intlab of Matlab (Rump, 1999). The
comparison of the two filtering algorithms based on the
indexes RM SE, O and the execution time is shown in
Table (1] The 30 confidence intervals (I, | (cf. Equation
(25)) given by the two filters (Figures|1}[2]and 3) enclose
the real states at any time step (O = 100%). However,
the confidence intervals of the iUBIKF are tighter since
the iUBIKF provides a better upper bound of the state
estimation error covariance.

The three figures Fig. [1] Fig. and Fig.
provide the three components of the real state and the 3o
confidence intervals (I, | (noted CI in the figures internal
caption) given by the UBIKF and the iUBIKF.

Let us now compare the estimation error covariance
upper bounds given by the two filters with reference to the
conventional Kalman Filter. To do so, the original Kalman
filter (Kalman, 1960) is applied to a set of 1000 models
{Ak, Ck, Qk, Ri.}, where the matrices Ay, Ck, Qi and
Ry are uniformly sampled from the interval matrices

40

—— Real state
—— CI UBIKF
~—— CIiUBIKF

20 f

—40

960

970 975 980
Time step k

Fig. 1. Real z, state component and the 3¢ confidence intervals
(1., ] obtained by the UBIKF and the iUBIKF

960 970 975 980

Time step k

Fig. 2. Real z; state component and the 3o confidence intervals
(1., ] obtained by the UBIKF and the iUBIKF

20 T

970 975 980
Time step k

Fig. 3. Real z3 state component and the 3o confidence intervals
[1., ] obtained by the UBIKF and the iUBIKF



Table 1. UBIKF and iUBIKF comparative evaluation

UBIKF | iUBIKF
o | BMSE | 3.64 3.55
L TO%) 100 100
o, | RMSE | 3.60 3.49
27 0%) 100 100
RMSE | 288 2.83
3 70(%) | 100 100
Time (s) 15 30

[Ak], [Ck], [Qx] and [Ry], respectively. The maximum
diagonal elements of the covariance matrices generated
for this set of models by the Kalman filter are compared
to the diagonal elements of the covariance upper bound
given by the UBIKF and the iUBIKF in the three figures

Fig. |4} Fig.[5| and Fig. [6]

3 T
= UBIKF
= JUBIKF
2 L = Conventional KF
1 - -
0 - .
0 200 400 600 800 1,000

Fig. 4. P, for the UBIKF, the iUBIKF and maz(P}}) for the
conventional Kalman filter

0 200 400 600 800 1,000

Fig.5. P for the UBIKF, the iUBIKF and and maz(P{})
for the conventional Kalman filter

As shown in Figures|4|[5|and|6] the iUBIKF provides
a less conservative upper bound of the covariance matrix
than the UBIKF, which is quite close to the maximal value
obtain by the conventional Kalman Filter run on the set of
sampled models.

0 !
0 200 400 600 800 1,000

Fig. 6. P} for the UBIKF, the iUBIKF and and maz(F})
for the conventional Kalman filter

6.2. Case study from the automotive domain. The
second example comes from the automotive domain. It
is based on the continuous-time non-linear model of the
dynamics of a two wheels vehicle that has been linearized
and discretized to be suitable for the UBIKF/iUBIKF.
The resulting state space model has two states: z; is
the angular speed of the slideslip angle and z; is the
acceleration of the vehicle yaw. We compare the iUBIKF
estimations to those of the interval observer proposed in
(Raka and Combastel, 2013).

The interval matrices [A], [C], [Q] and [R] bounding
Ay, Ci, Qp, and Ry, respectively, are the following:

(4] = ( [0.6439, 1.1814]

[~0.0131,0.1023]
[~0.2393, —0.1006]

[0.8516,0.9646)

[~2.3594, —1.1150)
[0.0849,1.9151)
[—3.7331, —3.7123)
[~0.0702,0.0702]

[0.0211, 1.9326)
[—0.6333, 0.6333)
[~2.1423, ~1.5307)
0.8322,1.1678)]

€)=

[Q] = [0.0000,0.0501] * I, ,n, = 2

[R] = [0.0000,0.0501] I, ,n, = 4.
The performance comparison of the three filtering

algorithms UBIKF, iUBIKF and the interval observer of
(Raka and Combastel, 2013) are given in Table

Table 2. UBIKF, iUBIKF, and interval observer comparative

evaluation
UBIKF | iUBIKF | Int. Obs
z, | RMSE | 0.17585 | 0.051212 | 1.1276
z2 | RMSE 0.291 0.080989 | 1.1274
Time (s) 2.3916 7.6362 0.40902




Fig. shows the graphs of the state estimation by the
UBIKEF, the iUBIKF, i.e. [#] and (2], and the interval
observer,, i.e. [z1] and [z2].
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Fig. 7. Estimation results for the UBIKF, the iUBKF and the in-
terval observer for the two wheels vehicle model - angu-
lar speed of the slideslip angle =, (top) and acceleration
of the vehicle yaw z2 (bottom)

As indicated by the RMSFE in Tablcand by the
graphs in Fig. the interval observer bounds are far
wider than the estimation bounds of the iUBIKF and the
UBIKEF, those of the iUBIKF been the tighest. On the
other hand, the computation time is higher and may limit
some applications.

7. Conclusion

An improved Minimum Upper Bound of Variance Interval
Kalman Filter (iUBIKF) which provides a lower error
covariance upper bound has been proposed.  This
filter allows to bound the set of all possible state
estimations given by the Kalman filter for any admissible
parameter uncertainties. Through a set of simulations,
the advantages of the iUBIKF with respect to previous
versions and to other proposals of the literature are
exhibited.

The proposed iUBIKF is intended for systems of
moderate dimension as it has not been optimised for larger
systems. For example, square root filtering algorithms are
known as viable alternatives to the conventional Kalman
filter that inherently involves unstable numerics. Updating
the iUBIKF in this direction can be seen as a nice
perspective for future work.

This work shows that the integration of statistical
and bounded uncertainties in a same model can be
successfully achieved, which opens wide perspectives
from a practical point of view.
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