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Abstract—Multicore parallelism involve inter-tasks interfer-
ences leading to execution timing uncertainties. This is important
for safety concerns in industrial applications (automotive for
instance). Existing solutions limit significantly the use of available
computing resources for low-criticality tasks to keep strong tim-
ing guarantees on high-criticality tasks. We propose a run-time
monitoring and control approach for mixed-criticality systems
to prevent temporal faults. Its objective is to guarantee a high-
criticality function end-to-end deadline, even when interfered
by low-criticality tasks parallel execution. Such approach aims
at allowing better computing resource use with an additional
guarantee for a given task chain end-to-end response time. We
also propose an experimental protocol to characterise this task
chain and calibrate the mechanism. Our approach has been
implemented on a Linux-based experimental platform.

Index Terms—multicore, real-time, mixed-criticality, Linux

I . I N T R O D U C T I O N

Resource sharing in modern processors implies that con-
current software tasks are affected by execution interference
(memory and caches, I/O, etc.). This phenomenon can lead to
temporal faults when such interferences lead to huge execution
time increases. Temporal faults concerns are typically avoided
with time and space partitioning. Such temporal partitioning
are dimensioned from Worst-Case Execution Time (WCET)
estimations. However, in multicore environments, the amount
of shared resources exacerbate the issue of timing faults due to
more subtle interferences. Execution times estimations become
either intractable or overly pessimistic in such context [1], lead-
ing WCET-based solutions to sub-use of computing resources.

However, dealing with Mixed-Criticality Systems (MCS) al-
lows using degraded modes of operation as a safety mechanism
to prevent temporal faults. The switch to a transient degraded
mode is a viable option to prevent temporal faults and thus
guaranteeing timing constrains on specific critical software
tasks. In a dual-criticality system (with low (LO) and high (HI)
criticality tasks), we define a LO-criticality mode (or “nominal”
mode, i.e. all tasks running) and a HI-criticality mode with
only HI-criticality tasks executions being guaranteed. Such
degraded mode implies prioritising HI-criticality tasks in order
to avoid interferences due to LO-criticality ones that could
lead to temporal faults. It can be made on different aspects
of the system (memory access, scheduling...) depending on
the interferences source to mitigate. In our design, we do this
with an “all-or-nothing” solution where the HI-criticality mode
pauses LO-criticality tasks until the system comes back to LO-

criticality mode. Our proposal relies on dynamic switching at
run-time between LO and HI modes but in a way to keep the
system as long as possible in LO-criticality mode.

The use of dynamic mode switches leads to the question of
how and when. In this work we develop a mechanism based
on the anticipation of temporal faults in order to avoid them.

Our main objective is to respect such constraints with
the least possible performance compromises on non-critical
software, to get the most benefit from multicore processors. In
this work, we consider critical applications as implemented as
task chains. A task chain is a sequence of tasks performing
a complex action. Considering end-to-end deadline of task
chains is more realistic in embedded application, as in the
automotive domain. A multicore can aggregate mixed criticality
applications like an infotainment system and an Advanced
Driving Assistance System (ADAS). Such environment actually
requires new solutions to avoid as much as possible interfer-
ences that leads to temporal faults on critical functionalities.

We focus on the remaining time until deadline of a functional
critical task chain in the system to build our anticipation switch
decision. We compute its remaining worst-case guaranteed time
at run-time, to anticipate a risk of such estimation to exceed
the critical function deadline as inspired by [2] but at a more
macroscopic scale. In order to be as accurate as possible, and
so avoid unnecessary tasks deactivation, we explicitly handle
end-to-end deadlines. Indeed, those are usually handled task
by task, meaning that the tasks own deadline are considered.
While simpler to deal with, such approach is pessimistic [3].

In MCS, academic solutions exist to tackle both real-time
guarantees and exploiting as much as possible computing
resources. However they are not implemented in industrial
systems as they seem too much complex, specific or intru-
sive [4]. We propose a non-intrusive framework (enabling
Black Box/Legacy code use) and an experimental approach
to reconcile those seemingly opposite goals. Our solution
relies on the exploitation of task chain models with high level
monitoring and anticipation of timing faults.

The novelty of our approach can be summed up as follows:

• use a Monitoring and Control Agent to check at run-time
the execution of the HI-criticality task chains

• anticipate potential worst-case reaction time risks with
respect to end-to-end deadlines



• in case of a potential deadline miss, degraded mode is
triggered by temporarily deactivating LO-criticality tasks

In section II, we first present the Monitoring and Control
Agent as a safety mechanism to prevent temporal faults of
a critical task chain. In section III we propose an experi-
mental protocol to configure and test it. Finally we present
in section IV a first use case to illustrate and quantify the
performance of our mechanism on a benchmark-based system.

I I . M O N I T O R I N G A N D C O N T R O L A G E N T

In this section we describe our Monitoring and Control
Agent (MCA) as a safety mechanism designed to avoid
temporal faults in mixed-criticality systems. Its goal is to
guarantee critical end-to-end task chain response times by
avoiding interferences that could lead to such temporal fault.

The MCA role is first to monitor the state of a HI-criticality
task chain to detect potential deadline miss. If such a potential
fault is anticipated, then the MCA switches the system to
HI-criticality mode, pausing all non essential workload (LO-
criticality tasks), to prevent further interference on the HI-
criticality tasks and allow a safe termination. To be efficient,
the switch must be triggered only when necessary (as a “mode
switch procrastination”, as called in [5]). That is why we
also focus on end-to-end deadline, rather than individual task
deadlines, in order to avoid false-positive switching, meaning
switching to HI-criticality mode although there is slack in the
task chain. Indeed, with an end-to-end perspective, we can use
the slack given by a task finishing early to compensate the
lateness of an other task in the chain.

In the following, we introduce the execution model con-
sidered in our work, then we describe the proposed MCA
architecture to finally present in more details the principle of
the anticipation mechanism.

A. Execution model

The model describes how HI-criticality tasks behave and are
linked in a chain to produce a HI-criticality functionality. Note
that this model is one among many usable with our approach.
We choose this one for ease of presentation.

The system is composed of a set of tasks, partitioned into
two sub-sets: HI , containing all HI-criticality tasks and LO
containing all LO-criticality tasks. We make no particular
assumption on LO except that we are able to stop and continue
these task at run-time (typically with SIGSTOP and SIGCONT
signals on a Unix-like system).

Each task τi ∈ HI is activated and executed with a period
Ti. The job τi,j corresponds to a the jth execution of τi. Its
activation time is noted ai,j , it starts at si,j , and ends at ei,j .
A job consumes all the data available to it when it starts, does
some processing, and produces data when it ends.

Dependencies of tasks in HI are expressed with a task
chain τ1 → τ2 . . .→ τn, where τ1 is the entry task and τn is
the exit one. Note that the model can be extended to support
tasks linked through a Directed Acyclic Graph (DAG) without
difficulty. The behaviour of the dependency relation τi → τi+1

is: to produce its output, a job τi+1,k consumes all pending

data produced by τi since the last execution of τi+1, i.e. the
start of τi+1,j−1. More formally the job τi,j has an effect on
τi+1,k iff it is the first job of τi+1 starting after the end of
τi,j , i.e. it is such as si+1,k ≥ ei,j and si+1,k−1 < ei,j . In
that case, we call τi+1,k the successor of the job τi,j . We
note succ() the function to find the successor of a job. The
iterate function succn−1() allows to find the job of the exit
task depending on a job of the entry task. For instance, a
3-tasks chain τ1 → τ2 → τ3 is depicted on Figure 1 where
succ2(τ1,1) = succ(succ(τ1,1)) = succ(τ2,2) = τ3,2.
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Fig. 1. Task chain run-time example with τ1 → τ2 → τ3

The notion of successor allows the definition of the response
time of the chain: it is the elapsed time between the activation
of an entry task job τ1,j and the end of the exit task job τn,k =
succn−1(τ1,j). Noting Rj the response time of this activation,
we have Rj = en,k − s1,j . On Figure 1 the resulting response
times R1, R2, R3 of the first three entry task activation of the
chain are represented. Note that with this definition, because
tasks can have different periods, several jobs of τi can have
an effect on a job of τi+1, as shown in Figure 1

Intuitively, an end-to-end deadline means that the time
it takes for an input of the chain to have an effect on its
output, i.e. its response time, must be bounded. Thus, given a
deadline D, to be temporally safe our task chain must satisfy:
maxj∈N{Rj} ≤ D.

B. Anticipation mechanism principle

Our anticipation mechanism is based on the run-time mon-
itoring of the task chain progress. To that end, we introduce
the notions of Task Chain State and Task Chain Execution
Trace (TCET). A TCET contains an entry task job and all the
iterative successors of that job. At a time t a TCET can be
active, if its entry task job has been activated and if its exit task
job has not yet ended, or inactive otherwise. At time t, the Task
Chain State is defined as S(t) = 〈t0, τi〉 with t0 the oldest
activation among active TCET, and τi the next task from this
TCET to be executed. This way the task chain state indicates
the remaining tasks to be executed on the chain and its current
response time. Having an estimation of the remaining Worst
Case Response Time (rWCRT (τi)) at that moment for this
TCET, the anticipation mechanism can figure out if we are
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Fig. 2. active Task Chain Execution Trace with computed anticipation example

running into a potential deadline miss. For instance, at t = 18
on Figure 2, the task chain state would be S(t) = 〈5, τ2〉.
With this S(t) at a given time t, we have the current chain
response time RT (t) = t−t0 and the remaining response time
rWCRT (τi) estimation (i.e. τ2 → τ3 remaining) to check if
the execution can finish in time.

Obviously, the estimation of rWCRT (τi) is an important
element of the approach. It can be done either experimentally
or analytically. We choose an experimental approach for
our experiments as the analytical approach is intractable for
complex application on a modern multi-core processor or
would imply an overly pessimistic estimation. Details of the
experimental protocol used for this estimation is given in
section III. This estimation is made during system integration,
without the LO-criticality tasks, thus rWCRT (τi) estimates
the worst case time remaining before the end of the task chain
if executed in HI-criticality mode.

To decide if it is safe to continue in LO-criticality mode,
the anticipation mechanism periodically checks the task chain
state. Each observation at a time t is considered temporally
safe if the following inequality (adapted from [6]) holds:

RT (t) + rWCRT (τi) +Wmax + tSW ≤ D (1)

where Wmax is the worst time between each observations
and tSW the latency to switch to the HI-criticality mode. Let us
assume that (1) holds, we show that it is safe to wait for the next
observation to decide if there is a need to switch. Let tnext the
time of the next observation. By definition, tnext ≤ t+Wmax

then necessarily RT (tnext) ≤ RT (t) +Wmax, thus
RT (tnext) + rWCRT (τi) + tSW ≤ RT (t) + rWCRT (τi) +
Wmax + tSW . Also, rWCRT () can only decrease as time
passes, so rWCRT (tnext) ≤ rWCRT (τi) and RT (tnext) +
rWCRT (tnext) + tSW ≤ RT (t) + rWCRT (τi) +Wmax +
tSW . Since (1) holds, we have RT (tnext)+rWCRT (tnext)+
tSW ≤ D.

Hence, it will be safe to switch to LO-criticality mode at
the next observation. The setting of the Wmax parameter is
discussed in the next section.

C. Monitor & Control Agent Architecture

Most of our architectural choices have been made to
facilitate portability and deployment of our solution. To that
end, the MCA intervenes on the task at the highest possible
abstraction level and does not require alteration of tasks code
or binary.

To help with the estimation of rWCRT , we assume that
the HI-criticality task chain execute on a single core. To avoid
interference between the MCA and the task chain we prevent
the MCA to use the same core. Lo-criticality tasks can execute
on any core as depicted on Figure 3.
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Fig. 3. Monitoring & Control Agent basic concept

The Monitoring and Control Agent is made of two com-
ponents: a Task Wrapper Component and a Core Control
Component as shown in Figure 4.
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Fig. 4. Monitoring & Control Agent Architecture

1) Task Wrapper Component (TWC): It is responsible for
encapsulating the system tasks between two software wrappers,
“Before” and “After”. Those wrappers have two roles:
• provide timestamps (start and end of HI tasks) to the Core

Control Component.
• prevent LO tasks execution in HI-criticality mode.
The timestamps are queued to be processed by the Core

Control Component to update the TCET. The “Before” wrapper
is also used to prevent LO task execution in degraded mode.
There is no need for an “After” wrapper for LO tasks.

2) Core Control Component (CCC): The Core Control
Component executes with a period Tccc. It updates each active
Task Chain Execution Trace (TCET), taking into account
timestamps received since its last execution and compute the
task chain state S(t), enabling the evaluation of RT (t) and
rWCRT (τi). Then CCC checks if inequality (1) is still true.
If not, the CCC switches to degraded mode to guarantee the
task chain deadline. The mode switch is realised through two
actions: sending a Pause signal to every LO-criticality tasks,
and signaling “Before” wrapper to prevent any new execution.
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The CCC parameters tsw and Wmax are important to define.
If those parameters are underestimated, then it is not safe to
use inequality (1). We estimate them for our experimental
platform in subsection IV-B. Wmax is the maximum duration
between two CCC checkpoints. It is directly dependent to the
CCC period Tccc. If Hi-criticality tasks are periodic, which is
typical, it is simple to set this value, around the smallest task
period. This way we have the guarantee of not overflowing the
timestamps queue used by the CCC. A greater value is possible,
but we must take care to process the TCET updates faster than
the arrival of timestamps. For other tasks activation models,
we must identify the highest task timestamps arrival rate to
avoid any queue overflow. It is also important to set Tccc –and
thus, Wmax– as it will directly influence the sensitivity of our
anticipation mechanism. With a higher CCC update frequency
–and consequently a lower Wmax– we switch to degraded mode
later. Also, it will naturally use more computing resources. A
higher value triggers sooner and may increase the number of
unneeded switches to degraded mode (i.e. false positives).

3) Evaluation: We will evaluate the MCA on three criteria :
efficiency, performance and quality.

Efficiency gives the ratio between the number of successful
executions and the total number of executions (including those
leading to a deadline miss). For a hard real-time task chain,
efficiency needs to be 100%. For a soft real-time one, a lower
value may be acceptable.

Performance is about the CPU time allowed for the LO-
criticality tasks. It is given by Tnom/Ttot = 1−Tdeg/Ttot, with
Ttot the run-time duration, Tnom the time spent in nominal
mode and Tdeg time in degraded mode. The more time spent
in nominal mode, the better.

Quality, by the number of switches to degraded mode Nsw

compared to the number of deadline misses Nmiss if the
mechanism was not active. Nsw/Nmiss must be > 1 for the
mechanism to be 100% effective but as close to 1 as possible
to be qualitative, i.e. avoid the false positive cases. A score
under 1 means the CCC was not perfectly calibrated for full
temporal fault coverage and consequently, the mechanism does
not anticipate all the temporal faults.

I I I . F R A M E W O R K A N D E X P E R I M E N TA L P R O T O C O L

A. Objectives

This section describes the framework we developed to test
such Monitoring & Control Mechanism presented in section II
and the experimental protocol we follow to configure and
test the mechanism. Each stage of the protocol has its own
objective. Some of them can be passed depending on the
system information already defined upstream.

The combination of such software framework & experimen-
tal protocol aims at several objectives:
• Quantitative analysis of a) end-to-end timing guarantees,

b) available computing resources for LO tasks, c) com-
puting resource overhead

• Sensitivity analysis to variation of the framework param-
eters and different task sets (different type of tasks, ratio
of HI/LO tasks, average CPU load)

TABLE I
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B. Experimental protocol

We present in this section the experimental protocol pro-
posed to characterise the system tasks (the “workload”) and
calibrate the Monitoring and Control agent. The experimental
protocol is divided in 7 steps separated in 3 phases : 1) Design
phase, 2) Calibration phase, and 3) Run-time validation phase
as summarized in Table I.

1) Design phase: This phase is needed if the workload
involved does not come with a detailed specification, including
their behavior and execution times. This is the case of our
experiments as we select tasks from an already existing bench-
mark and we have no information about tasks execution times
or even their compatibility with our real-time environment.
Thus this phase is to characterise the available task set and
define the workload specifications. It will be split into the
HI-criticality task chain and LO-criticality tasks with their
characteristics (min/avg/max execution time, periodicity...).
This phase is defined by steps 1©, 2©, 3© in Table I.

a) Task profile with no interferences: First objective
is to get a global idea of tasks execution time profiles.
One experiment is made per task, the task being executed
individually with the framework. The task is called periodically
with a given input, and task response times are logged.

b) Task profile with forced stress: We add to the precedent
step an artificial system load to cause high stress on cache,
memory, I/O and computing use while the tasks are executed
one by one. The output is a table with a profile for each
task made of the min/average/max execution times and system
metrics (system calls, context switches, scheduling interrupts,
eventual period misses...). Such profile allows to categorise the
tasks following their sensitivity to interferences compared to
previous step 1©. This allows to define which tasks can be used
for the HI-criticality task chain or as stressing LO-criticality
tasks but also discard any task that would not fit our needs.
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c) Task Chain with realistic interferences: Previous step
classified the task set between HI and LO-criticality tasks.
We define on this step the specific task chain and LO tasks
that will be studied next and verify the pertinence of such
choice. We check the workload schedulability in the soft
real-time sense (i.e. schedulable if deadlines tardiness are
bounded by a reasonably small constant). We also measure the
task chain response time profile under “realistic” conditions
without the Control mechanism enabled. Expected result is a
schedulable system with reference task chain response times
with interferences.

2) Calibration phase: This phase is mandatory to configure
the Control mechanism to the software and hardware specifici-
ties and lower false-positive rate. It is made of steps 4©, 5©, 6©
in orange boxes of Table I. Configuration includes task chain
worst-case response time and intermediary response times
in isolation. Performance optimisation consists in tweaking
the switch time tsw and anticipation execution frequency
Wmax constants, in the objective of lowering false-positive
anticipation rates.

a) Task Chain with interferences: The task chain is then
tested under a worst-case scenario. It is executed with the
artificial system load, to stress as much as possible the task
chain similarly to step 2©. We get a baseline of the worst-case
chain response time. This value is important because if the end-
to-end deadline is always greater than the worst-case response
time observed then the mechanism would be of no use (i.e.
deadline never broken from temporal faults). This step gives
a quantification of the task chain sensitivity to interferences
and thus indicates the pertinence of using a Monitoring and
Control Agent to manage them.

b) Task Chain profile with no interferences: The objective
is to calibrate Control mechanism parameters : rWCRT (τi),
Core Control Component period (TCCC ) and switch time (tsw)
to degraded mode. The task chain is executed alone with the
MCA but with the Control mode switch disabled. We log every
chain intermediary and end-to-end response times. The result
gives the data of all the remaining response times obtained
during the test. We set the rWCRT (τi) parameters as an upper
limits of the remaining response times registered.

c) Task Chain with Control mechanism enabled: Finally,
the Control mechanism is enabled, with the parameters set
on previous step. As this step does not include the LO tasks
that bring interferences to the task chain, the Core Control
Component should not trigger any switch to degraded mode.
This step is important for the final analysis as it already
points out the base false positive rate obtained with chosen
parameters. A qualitative MCA should have the least degraded
mode switch possible. Otherwise it could mean that either the
CCC parameters are not ideally set (typically Wmax), or the
expected timing delays caused from interferences are too close
to the usual timing variation of the task chain execution even
in isolation. In other words, the Control Component is not able
to differentiate response time variations due to temporal faults
from ones due to nominal execution time variations. Another

possibility is the end-to-end deadline requirement is too close
to the nominal end-to-end response time in isolation.

3) Run-time validation phase:
a) Task Chain with Control mechanism and realistic

interferences: The validation phase implies a last step ( 7©
in green box of Table I), which is with the whole final system
being executed : HI task chain and LO tasks with the MCA
enabled. The objective is to collect the concluding information
on the Monitoring and Control Agent behavior to measure the
3 quantification criteria (efficiency, performance and quality) of
the solution explained in subsubsection II-C3. We also use the
data from steps 3© and 6© as a reference for the conclusions.

C. Implementation Framework

1) Hardware: The platform used for the experimentation
is a barebone computer equipped with a processor Intel Core
i5-8250U. This processor embeds 4 cores. It has 3 caches
level, L1, L2 and L3 (shared), with respectively 32 KiB/core,
256 KiB/core and 8 Mib (shared). We fixed its frequency to
1400MHz and disabled hyper-threading for our tests.

2) Operating System: We used Linux (Linux Mint xfce
18.04, kernel 4.18.1) to mix general purpose and real-time
applications with different scheduling policies ([7], [8]). Its
versatility grants easier compatibility with benchmarking suites.
Moreover, by adding Xenomai (v. 3.1) real-time co-kernel [9],
it is possible to get closer to real-time applications with
latencies lowered from milliseconds down to microseconds.
It also grants an API for real-time application development,
used for the MCA framework.

Such OS configuration allows us to specify a per-task core
allocation and priority level. Linux scheduler as explained
in [10] selects tasks first by priority level, (from 1 to 99 for real-
time tasks domain). Then for a given priority level, multiple
scheduling policies are possible: Global Earliest Deadline First,
FIFO, Round-Robin, and other best-effort policies. To test a
system using classic Round-Robin for instance, every task are
launched at same priority level with Round-Robin policy. We
use Rate-Monotonic scheduling policy for our tests this way.

3) Use Case Software: MiBench [11] plays the role of
the task set to constitute our experimental workload. This
benchmark suite gives source code for 30+ standalone binaries
classified in six domains : automotive, security, network,
telecommunication, office and consumer. Those tasks do
different jobs similar to ones in these domains, with different
levels of complexity that is of high interest for us.

To run an artificial system load as a “worst-case” cache,
memory, CPU use and I/O stress, we use Linux Stress-ng tool
presented in [12].

Thus we made an experimental platform with choices driven
to both compensate the lack of a concrete industrial use-case
and allow versatility in the experiments parameters in order to
get as close as possible to an industrial automotive platform
based on a multicore processor. This is summarised in Figure 5,
the experimental platform has three input domains of which
two are configurable. First input domain gathers the basic
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Fig. 5. Experimental Platform structure

hypothesis. The two others are the tasks inputs (task set, tasks
parameters and MCA configuration) and the execution support
(hardware and software presented above) for which different
choices can be made. Based on this platform, we define an
experimental protocol to get from the system specifications to
the final implementation, with a calibrated MCA.

I V. E X P E R I M E N TA L VA L I D AT I O N

A. Design phase

Using Mibench as a workload had advantages but also
drawbacks. It allows to get specific tasks with a defined and
already studied behavior but we are dependent on the way
they are initially programmed. They might not completely
fit our needs to simulate embedded applications or have
incompatibilities with the chosen real-time environment. First
step in using this benchmark is to check those criteria to select
precisely the tasks from MiBench we use.

1) Task profile with no interferences: We need to establish
the execution time profile of each task of the bench. As
a result some tasks will be removed from the tests, either
due to execution time magnitude differences or inconsistent
behaviors between experiments. Accordingly, we measure on
each experiment the min, max and median execution times, but
also some system counters as the Xenomai mode switches and
the amount of Linux system calls. Without interferences, the
execution time characteristics should have low variations. We
see in Table II a sample of the tasks characteristics collected,
for 3 different profiles.

TABLE II
TA S K S P R O F I L E S I N Xenomai E N V I R O N M E N T

Task execution times (ms) System Counters

Median Max Mode Switch Sys. Call

Patricia 0.026 0.099 10051 10338
FFT 7.36 7.39 58 2343
rijndaelE 140,11 141.81 158 446

With such data, we identified the majority execution time
range in MiBench task set around 10ms (from 2-3ms to 20-
30 ms) and the basic system calls and mode switch amounts
due to initialisation phase (respectively 58 mode switches and
≈hundreds of system calls).

Consequently, we discard tasks out of the execution time
magnitude like adpcmCaudio L with an average execution
time of 432 ms. By the end of step 1©, we retained 34 tasks.

2) Task profile with forced stress: We add stress on cache
level and communication bus from previous step experiments.
The objective is to discriminate our tasks in two groups de-
pending on their reaction under stress. If it increases execution
time too significantly (more than x10 from average time in
isolation) it means the tested task is not suited for the tested
environment and suffers not only from interferences but also
from LO-criticality tasks preemption. A significant increase in
mode switches also indicates such behavior. The tasks that do
not pass correctly this test will be either ignored or used LO-
criticality stress tasks. Tasks without an exploding execution
time or huge increase of mode switches will be used to generate
the HI-criticality task chain. Execution time profiles of task
used for this purpose are in Table III. We finally retained 22
tasks at the end of step 2©.

TABLE III
TA S K S P R O F I L E S I N Xenomai E N V I R O N M E N T

Task execution times isolated execution times stressed

Median (ms) Max (ms) Median (ms) Max (ms)

djpeg 1.97 2.28 19.91 211.53
rjindaelD 8.80 9.77 35.02 526.33
FFT 1.85 1.86 2.03 14.8
FFT−1 3.56 3.57 4.05 19.74
bitcount 8.36 9.52 9.98 45.18

3) Task Chain with realistic interferences: At this point,
we defined our task set, composed of the LO-criticality tasks
used as “real” stress and the task chain made of 5 tasks :

FFT → Bitcount→ Basicmath→ FFT−1 → sha.
We need to verify the validity of our choice in term of
schedulability and effectiveness of the LO-criticality tasks as
interferences. Executing the whole task set together allow to
verify both for this step 3©.

The right part (red) of Figure 6 shows the task chain response
time distribution profile with the full workload executed (i.e.
LO-criticality tasks included). We see the perturbation due to
the LO tasks on the critical task chain execution. Our workload
is schedulable (no execution drops and deadline misses have
reasonable overheads) and the task chain meets high response
times compared to its average “nominal” response time for
≈ 10% of the executions (above 200ms response time). We
arbitrarily define the task chain deadline D = 160ms.

B. Calibration phase

This phase is dedicated to configure the Core Control
Component parameters (rWCRTi(τi), tsw and Wmax) and
run the reference experiments of the task chain behavior on a
worst-case stress context (step 4©).

1) Task Chain with interferences: In this part we use Stress-
ng to simulate a worst case stress condition. The task chain
potential worst case response time in this context raises at
300ms. Such increase by 100% of the max chain response
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Fig. 6. Task chain end-to-end rWCRT distributions

time under this scenario indicates the pertinence of using a
MCA. Regarding such result, our workload stresses the task
chain in a significant magnitude.

2) Task Chain profile with no interferences: For step 5©,
we execute the task chain in isolation (i.e. degraded mode).
Execution time profile is on the left part (blue) of Figure 6.
We calibrate the Monitor & Control mechanism parameters.
We need the different rWCRT s for each value of τi as
defined in subsection II-B. For such linear 5-task chain we
logically have i ∈ {1, 5}. At run-time, the remaining response
times are logged in degraded mode, i.e. the task chain in
isolation, and we keep an upper value of the worst measured
remaining response time for each τi as its rWCRT (τi) in
Table IV. Finally, regarding previous results from step 3©, we
set Wmax = 1ms, and tsw = 500µs for our platform.

TABLE IV
TA S K C H A I N rWCRT (τi) VA L U E S I N D E G R A D E D M O D E

rWCRT τ0 τ1 τ2 τ3 τ4

time (ms) 129 93 68 49.5 25

3) Task Chain with Control mechanism enabled: With the
previous calibration, we can execute the task chain alone with
the Control mechanism enabled. In this isolation case, we
should see almost no switch to degraded mode (and on a
perfect case, no switches at all) as they must be false-positive.
This experiment allows to validate the parameters set on the
previous step. On our tests, we measured 0.3% of false positive
triggers to degraded mode. The task chain in degraded mode
response time distribution profile is illustrated in Figure 7.

C. Run-time validation phase

As a final experiment, we test the complete workload (HI
and LO tasks) with the Monitoring & Control Agent enabled
and configured from previous step. First we observe the MCA
CPU use, that is inferior to 1%. For a 120s long experiment, it
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Fig. 7. Task Chain response time profile from steps 3©, 6©, 7©

ran for 1.3s overall (including setup time). We were not able
to find any difference regarding CPU percentage use with and
without our mechanism, either with a big task sets (small tasks
only, CPU usage around 80% displayed) and with smaller task
sets (e.g. only the task chain described above). Such footprint
is low enough to include easily such mechanism.

In term of efficiency, our MCA prevented every task chain
execution over a 170ms response time. Only 6 occurrences
(0.1%) missed the deadline set at 160ms. The MCA brought
down the average response time of the chain from 168ms (no
Control enabled) to 129ms. Such value is way closer to the
average task response time profile in isolation (125ms). The
few missed deadlines can be explained by the implementation
framework we used, with a workload (MiBench tasks) not fully
compliant with real-time programming constructs recommenda-
tions that causes uncontrolled Linux system calls for instance.
In conjunction with the exacting deadline we arbitrarily set at
160ms while the general workload is demanding (generating
84% deadline misses without the MCA in step 3©), this
explains this non-perfect result. We could use more pessimistic
rWCRT (τi) values to achieve no deadline misses, at the
expense of a worse result on the quality criteria. By the end it
is a question of compromise, depending on the specific needs.

The quality of our calibration seems promising as there
were less switches to degraded mode with the Control enabled
than the number of deadline misses with no Control at all. This
implies that preventing a deadline miss had a more general
impact reducing the overall number of timing faults.

In term of performance, the system maintained LO-
criticality mode for 82s / 120s total, i.e. a performance factor
of 0.69 for a loss of 31% of the time in degraded mode.

All those metrics are promising for the use of a Monitoring
and Control Agent in order to change a chain response time at
an optimum value to avoid the great majority of the deadline
misses and on the same time still take few compromises on
the LO-criticality tasks execution.
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V. R E L AT E D W O R K

Current industrial applications usually separate critical and
noncritical software to avoid the complexity inherent to mixed-
criticality systems. But with the need for more computing re-
sources and the systems complexity raising, MCS is necessary.
Consequently, industrial tend to skirt temporal faults inherent
to MCS by completely isolating (in time and space) HI and LO-
criticality executions. This is done for instance with PikeOS
hypervisor [13] that allows MCS certification for rail industry.
Other solutions relies on WCET estimations that are function of
the criticality level with larger values for higher criticality tasks.
But in a multicore context, those WCET are overly pessimistic.
Domains like avionic [14] and automotive [15] uses such
method with static scheduling to prevent any consequences
from interferences. The overall consequences of those solutions
are an under-use of computing resources.

Other solutions exist to manage real-time constrains on
multicore mixed-criticality system in more flexible ways.
We can distinguish approaches based on task allocation and
scheduling policies [16],[17], [18],[2], resource management
policies [19],[20],[21],[22]. Some solutions also convene mul-
tiple vectors of action at the same time, typically [23],[24].

Overall, those solutions tackle mainly one side of the
problem to either guarantee real-time constrains or optimise
cores utilization. Otherwise, solutions are focused on a more
specific sub-part of the problem, typically with different or
more precise hypothesis on the scheduling policy or the task
model for instance. Our solution is the first one trying to
take advantage of slack time to allow some execution times
overheads to stay in Lo-criticality mode with a guaranty on
HI-criticality tasks. Xu & al.[5] had such approach in a uni-
processor basis only.

V I . C O N C L U S I O N

As a conclusion, we opened the way to leverage task-
chain based monitoring as a new solution to guarantee real-
time constraint while taking more benefits from the multicore
computing resources. We presented a mechanism to monitor
HI-criticality tasks and control LO-criticality tasks execution
in a MCS to find a compromise between high computing
resource use and real-time constraint guarantees. Our high-
level approach allows non-intrusive integration for industrial
application, based on experimental calibration.

Our Monitoring and Control Agent was applied to a case
study. It followed an experimental protocol describing the
requirements from Design to Implementation phase for its
calibration. We quantified our solution capabilities based on
the 3 factors of a) Efficiency to guarantee real-time constraints,
b) Performance of giving CPU time for the LO-criticality tasks,
c) Quality of the anticipation mechanism to limit the false-pos-
itive degraded mode switch rate. Our MCA allowed a drastic
reduction of deadline misses despite the unfavorable soft real-
time environment but still allowing significant execution of
LO-criticality tasks with a low rate of false-positive switches
to degraded mode.

Our objective today is to extend this work to multiple HI-
criticality task chains simultaneously. Our current implementa-
tion already manages it, the challenge relies on the anticipation
computing to take into account a more complex degraded
mode with more concurrent tasks still active. Addressing this
problem could lead to extend the solution to more than a dual-
criticality system, with a task chain per criticality level and its
associated degraded mode. Our on-going work is investigating
an intermediate degraded mode that does not relies on task
pausing, but based on hardware cache partitioning for instance.
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