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Abstract: The problem of minimizing the sum, or composition, of two objective functions
is a frequent sight in the field of optimization. In this article, we are interested in studying
relations between the discrete-time gradient descent algorithms used for optimization of such
functions and their corresponding gradient flow dynamics, when one of the functions is in
particular time-dependent. It is seen that the subgradient of the underlying convex function
results in differential inclusions with time-varying maximal monotone operator. We describe
an algorithm for discretization of such systems which is suitable for numerical implementation.
Using appropriate tools from convex and functional analysis, we study the convergence with
respect to the size of the sampling interval. As an application, we study how the discretization
algorithm relates to gradient descent algorithms used for constrained optimization.
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1. INTRODUCTION

One of the recent trends in research at the intersection
of optimization and dynamical systems has been to de-
velop connections between optimization algorithms and
dynamical systems to provide qualitative or quantitative
assessment of the performance of certain optimization
algorithms. Conventionally, unconstrained optimization
problems over a continuous domain have been solved by
gradient descent algorithms, and one can directly draw
connections with Euler discretization of the corresponding
gradient flow dynamics (Su et al., 2014). When study-
ing constrained optimization problems, we can apply the
gradient descent algorithm to the composite function de-
scribed by the sum of the objective function and the
indicator function associated to the constraint set. The
performance of the resulting algorithm, more commonly
known as the proximal algorithm, has also been reported
in several studies (Nesterov, 2013; Parikh and Boyd, 2014;
Attouch and Peypouquet, 2019).

We are interested in studying connections between proxi-
mal algorithms for sum-type composite functions and the
corresponding differential inclusions obtained by taking
the gradient (or subdifferential) of the sum of two convex
functions. In particular, we consider the case when one
of the functions could be time-dependent and extended
real-valued (to describe constraints in an optimization
problem). Our goal is to study a discretization algorithm
for such continuous-time dynamical systems and compare
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the continuous-time solution with the discrete approxima-
tions. Our analysis makes use of the fact that the right-
hand side of such differential inclusions involves maximal
monotone operators, so that the central object of our study
is abstractly written as

ẋ ∈ −F (t, x), x(0) ∈ domF (0, ·), (1)

where F : [0,∞) × Rn ⇒ Rn has the property that, for
each t > 0, F (t, ·) is a maximal monotone operator.

A comprehensive reference for time-invariant differential
inclusions with maximal monotone operators can be traced
back to (Brézis, 1973), or see a recent reference (Cam-
libel and Schumacher, 2016) for how such inclusions are
obtained by interconnections. Generalizing such methods
to time-varying maximal monotone operators has been
rather challenging. When F (t, x) is the subdifferential
of a time-dependent, proper, lower semicontinuous, and
convex function gt(·), that is, F (t, x) = ∂gt(x), then
F (t, ·) is a maximal monotone operator. Such systems,
involving time-dependent subdifferentials, have been par-
ticularly studied in (Arseni-Benou et al., 1999; Kandilakis,
1996; Kartsatos and Parrott, 1984; Kuttler, 2000; Otani,
1994; Yamazaki, 2005) under varying degrees of regularity
on the system data. Imposing further structure on the
operator F (t, ·), if we take F (t, x) = ∂ψS(t)(x), where
S : [0,∞) ⇒ Rn is closed and convex-valued mapping
and ψS(t) is the indicator function associated with S(t),
then the resulting dynamics have been more commonly
studied under the topic of sweeping processes. Starting
from the seminal work of (Moreau, 1977), the research
in this area has grown to study several generalizations of
the fundamental model, see for example, the monographs



(Adly, 2018; Monteiro Marques, 1993) for an overview.
Besides the cases where F is expressed as a subdifferential
of a convex function, certain classes of evolution varia-
tional inequalities (Brogliato and Tanwani, 2020; Pang and
Stewart, 2008) can also be embedded in the framework of
(1). Moving away from the problems related to existence
and uniqueness of solutions, we see that the researchers
have started addressing analysis and design related ques-
tions for system class (1); for example, use of optimization
algorithms for computing Lyapunov functions for stability
analysis (Camlibel et al., 2006; Souaiby et al., 2021), and
some control design problems (Tanwani et al., 2018; Cao
et al., 2021).

In this paper, we consider the problem of studying so-
lutions of (1) using a time-discretization algorithm. Our
approach builds on using the time-stepping algorithm pio-
neered in (Moreau, 1977), which was also used for studying
existence of solutions for system (1) in (Kunze and Mon-
teiro Marques, 1997). This algorithm constructs a sequence
of solutions, where each element of the sequence is an
interpolation of points obtained by applying the proximal
operator. When the differential inclusion (1) is obtained
from a constrained optimization problem, we can natu-
rally make connections with the solution of the differential
inclusion and a generalized proximal algorithm used for
solving the optimization problem. The basic toolset used
in this paper comes from the field of convex analysis, and
we refer the interested to (Bauschke and Combettes, 2017),
and (Hiriart-Urruty and Lemaréchal, 2001) for the basic
definitions and results.

2. BACKGROUND AND MOTIVATION

Consider a continuously differentiable convex function f :
Rn → R, and the following unconstrained optimization
problem:

min
z∈Rn

f(z). (2)

Commonly employed gradient descent algorithm for solv-
ing this optimization problem is

zk+1 = zk − h∇f(zk) (3)

where h is the step size, and z0 is an initial condition, that
need to be chosen for implementing this algorithm. One
can easily draw comparisons between the gradient descent
algorithm (3), and the gradient flow dynamics, where the
later is described by

ẋ = −∇f(x). (4)

Indeed, if we partition an interval [0, T ] as {0 =
t0, t1, . . . , tN = T}, so that ti+1−ti = h, for each i > 0, the
corresponding Euler discretization of (4) matches (3), that
is, x(ti+1) = x(ti)− h∇f(x(ti)). By choosing x(0) = z0, it
can be established (with ∇f Lipschitz) that

|x(ti; z0)− zi| = O(h), as h→ 0, (5)

where x(ti; z0) denotes the solution of (4) at time ti ∈
[0, T ] with initial condition x(t0) = z0.

In case of constrained optimization over a closed convex
set C,

min
z∈C

f(z), (6)

we reformulate the problem as,

min
z∈Rn

f(z) + ψC(z) (7)

where ψC denotes the indicator function of the set C
defined as

ψC(z) =

{
0, if z ∈ C,
+∞ if z 6∈ C.

It is a common practice to consider the proximal gradient
descent algorithm, which is described as,

zk+1 = proxψC
(zk − h∇f(zk)), (8)

where proxψC
is the proximal operator of ψC , and is defined

as,
proxψC

(v) = argminx∈C ‖x− v‖2.
The gradient flow dynamics associated with (7) are de-
scribed as,

ẋ ∈ −∇f(x)− ∂ψC(x) (9)

where ∂ψC : Rn → Rn denotes the subdifferential 1 of ψC ,
and is defined as,

v ∈ ∂ψC(x) ⇔ 〈v, z − x〉 6 0, ∀ z ∈ C.
It is a natural question to ask how the iterates in (8) relate
to the solution of the differential inclusion (9). Here again,
one can draw similar connections between the two as in
the case of unconstrained optimization using the results
on maximal monotone differential inclusions, that is, the
estimate (5) holds. We will provide the details of this
observation in the next section as a particular case of our
main result.

In this paper, we are interested in optimization problems
with time-varying constraint sets. That is, given a set-
valued mapping C : [0, T ] ⇒ Rn, such that for each
t ∈ [0, T ], the set C(t) is closed and convex, we are
interested in solving

min
z∈C(t)

f(z) (10)

where f : Rn → R is a continuously differentiable convex
function such that ∇f(·) is Lipschitz continuous. The
minimizer of the optimization problem (10) is in general
time-dependent, that is, z?t ∈ C(t). There is no proximal
gradient descent algorithm for this type of problems, but
we are interested in connections between the algorithm
solving (10) and the corresponding gradient flow dynamics:

ẋ ∈ −∇f(x)− ∂ψC(t)(x). (11)

The right-hand side of (11), for each t, is a maximal
monotone operator. We are interested in knowing whether,
under certain cases,

lim
t→∞

|x(t;x0)− z?t | = 0.

Thus, x(t;x0), obtained as a solution of the differential
inclusion (11), approximates the minimizer of (10) for
sufficiently large values of t > 0. In what follows, we study
discretization of (11) which indeed allows us to compute
an approximation of z∗t in some appropriate sense.

3. MAIN RESULTS

Based on the discussions in the previous section, our
starting point is the following data:

(H1) A convex, continuously differentiable function f :
Rn → R such that ∇f is Lipschitz continuous.

1 We recall that v ∈ Rn is a subgradient of a convex function
g : Rn → R at x ∈ dom g, if for all z ∈ dom g, we have 〈v, z −
x〉 6 g(z) − g(x). The subdifferential of g at x ∈ dom g, denoted by
∂g(x), is the closed convex set of all subgradients of g at x.



(H2) A function g : [0, T ] × Rn → R ∪ {+∞} such that
g(t, ·) is proper, convex and lower semicontinuous
for each t ∈ [0, T ].

For simplicity, we denote the function g(t, ·) by gt(·).
Associated with functions f(·) and gt(·), we consider the
following differential inclusion which is obtained by taking
the generalized gradient of their sum:

ẋ ∈ −∇f(x)− ∂gt(x), x(0) ∈ dom ∂g0(·), (12)

where ∇f(·) denotes the conventional gradient of the
function f(·), and ∂gt(·) denotes the subdifferential of the
convex function gt(·). It readily follows that the right-hand
side of (12) is a maximal monotone operator, for each
t > 0, whose domain is dom ∂gt(·). We first provide a
time-discretization algorithm for (12).

3.1 Discretization of (12)

To describe the discretization of (12), let us take ∆ =
{t0, t1, . . . , tK∆

: 0 = t0 < t1 < · · · < tk < tk+1 <
· · · < tK∆

= T} to be a partition of the interval [0, T ].
We call K∆ the size of the partition of ∆, and we denote
the granularity of ∆ by h∆, that is,

0 < h∆ := max
k∈{1,2,...,K∆}

tk − tk−1.

Assuming for the sake of simplicity that the nodes {ti}K∆
i=0

are equidistant, we therefore have h∆ = tk − tk−1 for each
k ∈ {1, 2, . . . ,K∆}. For simplicity, we write K = K∆, and
h = h∆, when ∆ is clear from the context.

Next, for a fixed partition of the interval [0, T ] denoted by
∆, consider the discretization of (12), that is,

xk+1 − xk
h

∈ −∇f(xk)− ∂gtk+1
(xk+1) (13)

for k ∈ {0, 1, . . . ,K − 1}. Alternatively, we have

xk+1 =
(
I + h ∂gtk+1

(·)
)−1

(xk − h∇f(xk)) (14)

where x0 ∈ dom ∂g0(·) is the initial condition of (12).

3.2 Approximation Result

We now formally state the result which shows that the
discrete-time sequence in (14) indeed approximates the
solution of (12) under following assumptions:

(H3) The set-valued mapping dom g : [0, T ] ⇒ Rn is
closed and convex-valued, and satisfies

sup
z∈dom g(s,·)

dist
(
z,dom g(t, ·)

)
6 ϕ(t)− ϕ(s),

for all s, t with 0 6 s 6 t 6 T , and some
nondecreasing absolutely continuous function ϕ :
[0, T ]→ Rn.

(H4) There exists a continuous σ : [0, T ]→ R+ such that

|proj(0, ∂g(t, x))| 6 σ(t)(1 + |x|)
for all t ∈ [0, T ] and x ∈ dom ∂gt(·).

(H5) The mapping t 7→ graph ∂g(t, ·) is outer semicontin-
uous.

Within this setup, we can now state the following result:

Theorem 1. Consider the gradient flow dynamics (12) such
that the mappings f, g satisfy hypotheses (H1), (H2),
(H3), (H4) and (H5). For each initial condition x0 ∈

dom ∂g0(·), system (12) admits a unique absolutely con-
tinuous solution x : [0, T ]→ Rn, and

lim
h∆→0

|x(tk;x0)− xk| = 0, ∀ k = 0, 1, · · · ,K∆,

where ∆ is a partition of [0, T ] with granularity h∆ and

nodes t0, t1, . . . , tK∆
, and {xk}K∆

k=1 is obtained from (14).

3.3 Application to Constrained Optimization

Coming back to the application discussed in Section 2, we
can now talk about the performance of algorithms that
can be used for solving (10) using the result of Theorem 1.
To do so, we let

gt = ψC(t)

so that the differential inclusion (12) takes the form:

ẋ ∈ −∇f(x)−NC(t)(x), x(0) ∈ C(0), (15)

where NC(t)(x) denotes the outward normal cone to C(t)
at x. To define the discretization of (15) over the interval
[0,∞), we introduce the discretization nodes t0, t1, · · · , so
that h := tk+1 − tk, for each k ∈ N. Hence, the iterates in
(14) take the following form:

xk+1 = proxC(tk+1)(xk − h∇f(xk)) (16)

where we used the fact that
(
I + h ∂ψC(tk+1)

)−1
=

proxC(tk+1). To relate the solution of (10) with (15) and

(16), we introduce the following assumptions:

(A1) The optimal solution of (10), denoted by z∗t , is a
solution of (15).

(A2) For each x0 ∈ C(0), the corresponding solution
x(t;x0) has the property that

lim
t→∞

|x(t;x0)− z∗t | = 0.

If C(·) is a constant set-valued map, then (A1) and (A2)
hold if f satisfies (H1). Let us now look at an example
with C(·) time-varying where (A1) and (A2) hold as well.

Example 1. Let f(x) := x2 and C(t) := [t, t + 1], t > 0.
The optimal solution to (10) is

z∗t = t.

It is readily seen that

NC(t)(x) =


0, if x ∈]t, t+ 1[,

R−, if x = t,

R+, if x = t+ 1,

and the solution of the differential inclusion

ẋ ∈ −2x−NC(t)(x),

with x(0) = x0 ∈ [0, 1], is exactly given by

x(t;x0) =

{
e−2tx0, if e−2tx0 > t
t, otherwise.

As a result, (A1) and (A2) are satisfied.

In general, it remains to be seen under what additional
assumptions on the dynamics, it can be guaranteed that
(A1) and (A2) hold. Here, we observe that these assump-
tions combined with Theorem 1 yield the following result:

Corollary 2. Consider the optimization problem (10) un-
der assumptions (A1) and (A2). Suppose that f satis-



fies (H1), and the set-valued mapping C(·) is closed and
convex-valued such that

dHaus(C(s), C(t)) 6 ϕ(t)− ϕ(s), (17)

for a nondecreasing locally absolutely continuous function
ϕ : R+ → R+, and all t > s > 0. For each h > 0 sufficiently
small, consider the unbounded sequence thk+1 := thk + h,

k ∈ N, th0 = 0. It then holds that

lim
h→0,k→∞

∣∣∣z∗th
k
− xk

∣∣∣ = 0,

where z∗
th
k

:= argminz∈C(th
k

) f(z), and xk is obtained by

recursion from (16).

The statement can be proved by checking that the condi-
tions stated on the function f and the set-valued mapping
C(·) lead to hypotheses (H1)–(H5) in the statement of
Theorem 1. Moreover, under (A1) and (A2), any solution
of (15) converges to the optimal solution of (10), denoted
by z∗t . Thus, the discrete approximants (16) indeed ap-
proach the minimizer as time gets large and sampling time
gets small.

3.4 Discussions around Corollary 2

Let us provide some comments on the additional assump-
tions (A1) and (A2) used in Corollary 2.

(1) The assumption (A1) always holds if C in (10) is
closed, convex, and time-invariant. This is because the
minimizer z∗ of (10) satisfies

0 ∈ ∇f(z∗) + ∂ψC(z
∗).

Such a point z∗ is exactly an equilibrium point of (15).
From Theorem 1, the solutions of (15) are unique and
hence (A1) holds.

(2) To see that (A1) may not hold in general with C time-
varying, we present an example where the optimal
solution of (10) is not a solution of the inclusion (15).

Example 2. Let f(x) := x2 and let C(t) be defined as

C(t) :=

{
[t, t+ 1], if 0 6 t 6 1,

[e−4(t−1), 1 + e−4(t−1)], if t > 1.
(18)

In this case, the optimal solution of (10) is given by

z∗t =

{
t, if 0 6 t 6 1,

e−4(t−1), if t > 1.
(19)

It is easily checked that z∗t is not a solution of (15), as
the unique solution of (15) with x(0) = 0 is

x(t; 0) =

{
t, if 0 6 t 6 1,

e−2(t−1), if t > 1.
(20)

(3) To provide an interpretation of (A2), note that if z∗t
is a solution (15), then (A2) requires all solutions
of (15), starting with different initial conditions, to
converge to z∗t . Such a property of the dynamical
systems is studied under the notion of incremental
stability. Design of feedback controls, which guarantee
convergence with respect to a desired trajectory in the
presence of constraints, have been studied in (Tanwani
et al., 2018). Once again, we observe that, if C is
time-invariant, incremental stability boils down to the
stability of an equilibrium point z∗, and such standard
stability notions for constrained dynamical systems

have been studied in (Goeleven and Brogliato, 2004;
Camlibel et al., 2006; Souaiby et al., 2021).

3.5 Quadratic program and complementarity systems

Let us use the result of Corollary 2 for the case when the
optimization problem in (10) is described by a quadratic
f , and the set C is time-invariant and described by linear
inequalities. More precisely, we consider

Rn 3 x 7→ f(x) := x>Ax+ b>x (21)

where A ∈ Rn×n is a symmetric positive definite matrix,
and b ∈ Rn is a known vector, and the constraint set

C := {x ∈ Rn |Cx+ d > 0} (22)

for some matrix C ∈ Rp×n and a vector d ∈ Rp. Using
some basic relations from convex analysis, it can be shown
that, system (15) is described by,

ẋ = −Ax− b+ C>η (23a)

0 6 η ⊥ Cx+ d > 0. (23b)

In other words, (15) takes the form of a linear comple-
mentarity system, where the expression in (23b) means
that, η > 0, Cx + d > 0, and η>(Cx + d) = 0. One can
easily verify that the minimizer of the function f(·) in (21)
over the set C given in (22), as described by the Karush-
Kuhn-Tucker conditions, is exactly the equilibrium point
of the system (23). Since the system (23) has a unique
solution (Camlibel and Schumacher, 2016), (A1) holds in
this case. Conditions for stability of system (23) can be
derived using the results given in (Goeleven and Brogliato,
2004; Souaiby et al., 2021), which basically follows due to
positive definiteness of the matrix A. It can also be verified
that the conditions (H1)–(H5) hold in this case. One can
therefore apply the result of Corollary 2, and compute the
minimizer of f(·) subject to the constraint C by discretizing
(23), which is described by the following recursion:

xk+1 = −Axk − b+ C>ηk+1

0 6 ηk+1 ⊥ Cxk+1 + d > 0.

We refer the reader to (Acary et al., 2010) for more
discussions on numerical aspects concerning simulation of
complementarity systems.

4. PROOF SKETCH OF THEOREM 1

In this section, we provide a sketch of the proof of
Theorem 1. Here, we only provide the main steps involved
in the proof and refer the reader to (Camlibel et al., 2021)
for all the details.

4.1 Step 1: Getting the bounds

Let ϕ satisfy (H3) and let α be such that

α = |x0|+ ϕ(T )− ϕ(0). (24)

Take σ as in (H4) and let β, and γ be such that

β = α+ ϕ(T )− ϕ(0) + (1 + α)

∫ T

0

σ(s) ds (25)

γ = β + ϕ(T )− ϕ(0) (26)

Define φ : [0, T ]→ R+ by

φ(t) := t+ 2ϕ(t) + (1 + γ)

∫ t

0

σ(s) ds ∀ t ∈ [0, T ]. (27)



With the help of these definitions, we provide uniform
bounds on xk values in the following lemma. These bounds
are required for invoking the convergence theorems.

Lemma 3. For any partition ∆, we have

|xk| 6 β (28)

|xk − xk−1| 6 φ(tk)− φ(tk−1) (29)

for each k ∈ {1, 2, . . . ,K∆}.

4.2 Construction of a sequence of approximate solutions

Based on the xk values, we construct a sequence of abso-
lutely continuous (in time) functions which approximate
the actual solution of the system. To this end, note that
the function φ defined above is strictly increasing and ab-
solutely continuous. Now, define the piecewise continuous
function x∆ as

x∆(t) :=
φ(tk+1)− φ(t)

φ(tk+1)− φ(tk)
xk +

φ(t)− φ(tk)

φ(tk+1)− φ(tk)
xk+1 (30)

where t ∈ [tk, tk+1] and k ∈ {0, 1, . . . ,K−1}. By definition,
x∆ is a continuous function and

x∆(tk) = xk (31)

for all k ∈ {0, 1, . . . ,K}. We will show that

x(t) := lim
|∆|→0

x∆(t)

is the unique solution to the inclusion (12). An important
intermediate step in studying the convergence of the
sequence x∆ is to obtain the following uniform bound.

Lemma 4. Let τ and τ be such that 0 6 τ < τ 6 T . For
any partition ∆, it holds that

|x∆(τ)− x∆(τ)| 6 φ(τ)− φ(τ). (32)

4.3 Limit of the sequence

The bounds established in Lemma 3 and Lemma 4 allow us
to study the limiting behaviour of the sequence (x∆`

)`∈N.

Lemma 5. Consider a sequence of partitions (∆`)`∈N with
|∆`| → 0 as ` tends to infinity. The sequence (x∆`

)`∈N is
equicontinuous.

Let (∆`)`∈N be a sequence of partitions with |∆`| → 0
as ` tends to infinity. Since the sequence (x∆`

)`∈N is
also uniformly bounded in view of Lemma 3, Arzelá-
Ascoli theorem implies that it converges uniformly to a
continuous function x on a subsequence. We claim that x
is absolutely continuous. To see this, let τ , τ ∈ [0, T ] with
τ 6 τ and note that

|x(τ)− x(τ)| 6 |x(τ)− x∆`
(τ)|+ |x∆`

(τ)− x∆`
(τ)|

+ |x∆`
(τ)− x(τ)|

6 |x(τ)− x∆`
(τ)|+ φ(τ)− φ(τ)

+ |x∆`
(τ)− x(τ)|

6 φ(τ)− φ(τ) (33)

where the first inequality follows from the triangle inequal-
ity, the second from (32), and the third by taking the
limit on the convergent subsequence N . Thus, absolute
continuity of x follows from absolute continuity of the
function φ.

Now, we want to show that x is a solution of (12), that is

x(t) ∈ dom ∂gt(·) and ẋ(t) ∈ −∇f(x(t))− ∂gt(x(t))
(34)

for almost all t ∈ [0, T ].

Let the set Γ ⊆ [0, T ] be defined by Γ = {t ∈ (0, T ) :
φ and x are differentiable at t and t 6∈ ∪`∈N∆`}. Since φ
and x are both absolutely continuous and ∪`∈N∆` is
countable, it is enough to show (34) for almost all t ∈ Γ.

For a partition ∆, define

y∆(t) =
xk+1 − xk

φ(tk+1)− φ(tk)
(35)

for t ∈ (tk, tk+1) and y∆(tk) = 0 for tk ∈ ∆.

From (30), we see that

ẋ∆`
(t) = φ̇(t)

xk+1 − xk
φ(tk+1)− φ(tk)

= φ̇(t)y∆`
(t) (36)

for all t ∈ Γ.

In view of (30) and Lemma 4, we see that |y∆`
|L∞ 6 1 for

all `. Therefore, the sequence (y∆`
)`∈N is contained in the

closed ball with radius
√
φ(T )− φ(0) of the Hilbert space

L2(dφ, [0, T ],Rn). As such, there exists a subsequence
N ′ of N such that (y∆`

)`∈N ′ converges to y weakly in
L2(dφ, [0, T ],Rn). It then follows that

ẋ(t) = φ̇(t)y(t) (37)

for almost all t ∈ Γ.

Now, let t∗ ∈ Γ. Then, for every ` ∈ N , there must exist
k` ∈ {1, 2, . . . ,K(∆`)} with the property that tk` < t∗ <
tk`+1. Note that lim`↑∞ tk` = lim`↑∞ tk`+1 = t∗ since |∆`|
converges to zero as ` tends to infinity. By construction,
we have(
xtk`+1

,−
xtk`+1

− xtk`

tk`+1 − tk`
−∇f(xtk`

)

)
∈ graph ∂g(tk`+1, ·).

Equivalently, we have(
x∆`

(tk`+1),−φ(tk`+1)− φ(tk`)

tk`+1 − tk`
y∆`

(t)− x∆`
(tk`)

)
∈ graph ∂g(tk`+1, ·). (38)

Let S`(t
∗) := − tk`+1−tk`

φ(tk`+1)−φ(tk`
)

(
∂g(tk`+1, x∆`

(tk`+1)) +

∇f(x∆`
(tk`))

)
. From (38), we have that y∆`

(t∗) ∈ S`(t∗).
It can be shown that

y(t∗) ∈ cl

(
conv

(
lim sup
`→∞

S`(t
∗)

))
.

Due to the outer-semicontinuity assumption, we have
lim sup`→∞ ∂g(tk`+1, x∆`

(tk`+1)) ⊆ ∂g(t∗, x(t∗)). The set
∂g(t∗, x(t∗)) is closed and convex because of the maximal
monotonicity property, and hence

y(t∗) ∈ −1

φ̇(t∗)

(
∂g(t∗, x(t∗)) +∇f(x(t∗))

)
.

Since φ̇(t∗) > 1, we get

ẋ(t∗)
(37)
= φ̇(t∗)y(t∗) ∈ −∇f(x(t∗))− ∂g(t∗, x(t∗))

for each t∗ ∈ Γ.

5. CONCLUSIONS

We considered the problem of relating discretization algo-
rithms for differential inclusions with maximal monotone
operators and first order gradient descent algorithms. The
emphasis is on the case where the objective function is
described as a sum of two functions, one of which is



possibly time-varying and extended real-valued. We show
that, under certain assumptions, one can approximate the
value of the minimizer by the solution of the differential
inclusion.

Several questions raised in this manuscript need further
investigation. While most of the hypotheses required for
Theorem 1 seem rather natural, there is a possibility to
work out the proof without the need of (H4). Our paper
(Camlibel et al., 2021) provides an alternate condition
based on the Yosida approximation, and it needs to be
seen if this alternate route allows us to study a broader
class of optimization problems.

More investigation is required for better understanding
(A1) and (A2), the two assumptions that were required
for applying Theorem 1 in the context of constrained opti-
mization. As stated earlier, (A1) does not necessarily hold
for differential inclusions when C(·) is time-varying, and it
is of interest to identify the class of set-valued mappings
where the stationary solution of the gradient flow dy-
namics is the minimizer of the corresponding optimization
problem. Similarly, (A2) refers to incremental stability for
the system class (15) with respect to a nominal trajectory.
Stability of (15) with respect to a stationary equilibrium
has received considerable attention in the literature, but
studying convergence of trajectories to another system
trajectory needs more attention.
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