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Abstract
This paper presents a holistic method for health
monitoring of systems under uncertainty. The
ambition is to propose a method that can be ap-
plied indifferently to systems usually monitored
by methods specific to the dynamics of these sys-
tems. Here, we want to be able to monitor con-
tinuous dynamic systems, discrete event systems
or hybrid systems using the same formalism and
the same methodology.To do so, the formalism of
Heterogeneous Petri Nets (HtPN) is introduced.
Then, the article focuses on an advanced diagnos-
tic method. This method tracks the system health
state taking into account uncertainties related to
modeling and observations through the construc-
tion of an HtPN-based diagnoser. Two application
cases illustrate the efficiency of the proposed di-
agnostic method: one is purely discrete whilst the
other is hybrid.

1 Introduction
Depending on the chosen level of abstraction, the behav-
ior of complex industrial systems can be represented by
discrete and/or continuous dynamics. Literature on system
health monitoring usually classifies dynamic systems in one
of the following categories: Discrete Event Systems (DES),
Continuous Systems (CS) or Hybrid Systems (HS), present-
ing both discrete and continuous aspects. In this paper, we
propose a new formalism for modeling and monitoring the
health evolution of systems that can be either purely dis-
crete, purely continuous, or hybrid. In this way, we say that
the proposed health monitoring method is holistic, as it can
be applied to any type of system.

Moreover, uncertainties are intrinsically linked to com-
plex systems. Monitoring these systems therefore requires
taking into account uncertainties related to modeling and
continuous and/or discrete observations of the system. The
formalism and the health monitoring method that we pro-
pose must take these uncertainties into account.Hence, the
formalism we propose should allow to represent parallelism,
synchronization or temporal dynamics. Thus, uncertainties
and degradation dynamics can be represented and evaluated.

The proposed formalism is called Heterogeneous Petri
Nets (HtPN).Based on this formalism, we propose an ad-
vanced diagnostic method that can be applied to any type
of systems (DES, CS or HS). Advanced diagnosis aims at
tracking the system current health state. The concept of

health state is related to both the degradation of the sys-
tem and the occurrence of faults. A diagnoser based on
the HtPN formalism is defined to monitor the system health
state under uncertainty (models, discrete observations and
sensors). The health state outputted by the diagnoser in-
cludes discrete, continuous and degradation information of
the system.

The paper is organized as follow. Section 2 gives some
related work. Section 3 presents the HtPN formalism. Sec-
tion 4 proposes the advanced diagnostic methodology in-
sisting on the management of uncertainties. Then, Section 5
illustrates the diagnosis methodology on two different study
cases: a discrete event system and a hybrid system, showing
that in both cases, the proposed diagnosis method succeeds
in monitoring the system health state taking into account un-
certainties. Section 6 concludes the article and gives some
leads to future works.

2 Related Work
This section aims to give a vision of the main formalisms
that can be used for representing the behavior of complex
systems. The objective is to show the limitations of existing
formalisms and to identify useful characteristics for systems
subject to degradation and uncertainty such as parallelism,
synchronization or temporal dynamics.

In hybrid automata, defined in [1], each discrete state
is associated with a continuous dynamics. Only one state
of this model can be active at a time: the notion of par-
allelism does not exist. The transitions are defined by 5-
tuples (q,Guard, σ, Jump, q′) with q the state before the
transition, q′ the state after the transition, Guard the condi-
tion to fulfill in order to fire the transition, σ the event re-
ceived or emitted during the transition firing and Jump the
changes on the continuous variables taking place during the
firing.The concepts such as Guard and Jump are very in-
teresting for our study. Even if hybrid automata composition
is possible, they cannot share a common state. Therefore it
is impossible to encompass uncertainty as we would like to
do.

Hybrid Petri nets, defined in [2], have continuous and dis-
crete places. Tokens situated in continuous places are real
numbers, whereas tokens in discrete places are natural num-
bers. Two types of transitions can be distinguished: contin-
uous transitions and discrete transitions. In the case of con-
tinuous transitions, a crossing quantity is defined and acts
like a weight on the arcs. It is possible for transitions to
have both types of places as inputs. This formalism allows



to represent parallelism as different tokens can evolve si-
multaneously in the model. However, the way continuous
places are defined does not exactly fit our need because they
are not associated with any continuous dynamics. This for-
malism does not make it possible to model the continuous
behavior of the system or its degradation.

In mixed Petri nets, proposed by [3], a place can be con-
tinuous and associated to one or more differential equations.
A place can also represent a discrete phenomenon. The con-
tinuous variables evolution is modeled through the set of
equations activated when a place is marked or when a mark-
ing is true. The ideas of Jump and Guard from hybrid
automaton are also present in this formalism. Parallelism
is possible as long as the marked places do not change the
value of the same variable through equations. The continu-
ous variables are shared with the whole system and evolve
following the active equations. This model is a bit restric-
tive because it does not allow two active places in parallel to
modify the same global variables.

A Petri net based model to represent heterogeneous em-
bedded system (PRES) is introduced in [4]. In this formal-
ism, a token is a pair k = (vk, rk) where vk is the token
value, which can be of any type, and where rk is the token
time. Places are associated with one type of token (integer
for example). A transition is associated with an output func-
tion, which makes the token value evolve, a function delay,
which makes the token time evolve and a guard, which is the
condition to fire the transition. These notions are interesting
but some aspects remain limiting: the combination of dis-
crete and continuous behaviors is hard and the token value
does not evolve in the places but solely using the transitions
and their output functions.

A generic modeling framework for diagnosing heteroge-
neous systems is proposed in [5], but uncertainty related to
modeling and observations is not considered and no specific
diagnostic method is implemented in this work.

A model-based diagnostic method for hybrid systems is
presented in [6]. It performs fault detection and isolation
by using residuals and a fault signature. This method fo-
cuses on faults and not on the system degradation.Moreover,
a single fault assumption is done in this work, explained by
the fact that the system behavior after the fault occurrence
is unknown. In our study, multiple faults can occur on the
system. It means the system behavior after the occurrence
of faults must be known beforehand for all faults. A non-
specified fault cannot be detected with the proposed method.

A formalism named Hybrid Particle Petri Nets (HPPN) is
proposed in [7]. A diagnostic method has been developed
based on this formalism. However, it can only be applied to
hybrid systems. As the HPPN formalism was limited to hy-
brid systems and required the knowledge of a large number
of parameters, we have worked on its simplification and on
the extension of its application to a large class of systems by
taking into account the most interesting concepts of all the
formalisms of our knowledge.

3 Heterogeneous Petri Nets Formalism
An Heterogeneous Petri Net (HtPN) is formally defined as
HtPN =< P, T,A,Guard, Jump,E,X,Γ, C,D,M0 >
where:

• P is the set of places;

• T is the set of transitions;

• A ⊂ (P × T ∪ T × P ) is the set of arcs;
• Guard is the set of conditions associated with the in-

coming arcs;
• Jump is the set of assignments associated with the out-

going arcs;
• E is the set of event labels: E = Eo ∪ Euo, where Eo

is the set of the labels of observable events and Euo is
the set of the labels of unobservable events;

• X ⊂ RnN is the state space of the continuous state vec-
tor, where nN ∈ N+ is the finite number of continuous
state variables;

• Γ ⊂ RnD is the state space of the degradation state
vector, where nD ∈ N+ is the finite number of degra-
dation state variables;

• C is the set of continuous system dynamics;
• D is the set of degradation system dynamics;
• M0 is the initial marking of the network.
An example of an HtPN is given in Figure 1 and is de-

tailed in the next sections.
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Figure 1: Example of an HtPN (a) and dynamics associated
to its places (b)

3.1 Places
In HtPN, a place p ∈ P is associated with a set of equations
Cp ∈ C modeling one of the system continuous dynamics
and the associated noise (uncertainties on the evolution and
on the measurements) as well as a set of equations Dp ∈ D
modeling one of the system degradation dynamics:

p =

{
Cp

Dp

}
(1)



The continuous dynamics Cp represents the evolution of
the continuous state vector x when the system is in the place
p. The degradation dynamics Dp represents the evolution
of the degradation state vector γ when the system is in the
place p. A degradation dynamic represents the knowledge
on fault occurrence or evolution. These continuous and
degradation dynamics can be simple IO functions or more
complex models learned through machine learning, for ex-
ample. In the case no continuous or degradation dynamics
is specified for the place p, the symbol − is used to define
Cp and Dp.

Equations associated to the places of the HtPN in Fig-
ure 1(a) are presented in Table 1(b). Places p1 and p5 have
neither continuous nor degradation dynamics. Places p3 and
p4 only have continuous dynamics. Place p2, on the other
hand, has both continuous and degradation dynamics.

3.2 Tokens
A place p contains tokens that each have three attributes
< δhk , π

h
k , φ

h
k >, representing respectively discrete, contin-

uous and degradation information for a token h at time k.
These attributes evolve according to discrete events and dy-
namics associated to the place the token h belongs to. The
exponent h will be omitted in the following section for bet-
ter readability.

The discrete information carried by h is called a configu-
ration. The configuration δk of a token is the set of events
that have occurred in the system up to the time k:

δk = {(v, κ)|κ ≤ k} (2)

where (v, κ) represents an event v ∈ E that occur at time κ.
The continuous information carried by h is called the con-

tinuous state of the token. The continuous state πk repre-
sents the continuous state vector xk ∈ X of the token at
time k. The continuous state of the token evolves according
to the continuous dynamics Cp of the place it belongs to.
If no continuous dynamics is specified, the continuous state
remains constant.

The degradation information carried by h is called the
degradation state of the token. The degradation state φk
represents the degradation state vector γk ∈ Γ at time k.
The degradation state of the token evolves according to the
degradation dynamics Dp of the place it belongs to. If no
degradation dynamics is specified, the degradation state re-
mains constant.
Definition 1 (Marking of the HtPN). The marking Mk of
a HtPN at time k is the distribution of tokens in the differ-
ent places. The marking of a place p at time k is denoted
Mk(p).

Initial marking M0 represents the initial conditions of the
system. Each token carries its initial configuration (the set of
events that have occurred until time 0), its initial continuous
state and its initial degradation state.

3.3 Arcs
The arcs are divided into two sets: A•t contains the incom-
ing arcs and At• contains the outgoing arcs of transitions:

A = A•t ∪At•
Incoming arcs
An arc ap,t ∈ A•t going from place p ∈ P to transition
t ∈ T wears a set Ωp,t ∈ Guard:

Ωp,t =
{

(ΩSp,t,Ω
C
p,t,Ω

D
p,t); ρp,t

}
(3)

where (ΩSp,t,Ω
C
p,t,Ω

D
p,t) represents respectively a discrete, a

continuous and a degradation condition, and ρp,t ∈ N+ is a
weight.

The discrete condition ΩSp,t is related to the configuration
of the tokens located in the upstream places of a transition
t. It may test the occurrence of one (or more, in the case of
a logical expression) event v ∈ E: ΩSp,t(δk) = occ(bk, v)
which is true if v ∈ bk.

The continuous condition ΩCp,t is related to the continuous
state of the tokens in the input places of transition t. It may
represent a constraint or a test on the continuous state vector
xk: ΩCp,t(πk) = c(xk), where c(xk) outputs TRUE iff xk =

ΩNp,t(πk).
The degradation condition ΩDp,t is related to the degra-

dation state of the tokens in the input places of t. It may
represent a constraint on the degradation state vector γk:
ΩDp,t(φk) = c(γk), where c(γk) outputs TRUE iff γk =

ΩDp,t(φk).
If one of these conditions is not specified, it is represented

by the symbol − in the condition set. By default, Ωp,t =
{(>,>,⊥); 1}.
Pre is the matrix containing the values of the weights of

the incoming arcs, of dimensions P × T . Pre(p, t) denotes
the value of the weight of the arc ap,t connecting the place
p to the transition t.

For example, in Figure 1(a), the arc ap3,t1 is associated to
the set Ωp3,t1 =

{
(ΩSp3,t1 ,Ω

C
p3,t1 ,Ω

D
p3,t1); ρp3,t1

}
, with:

• ΩSp3,t1 = −, which means that no discrete condition is
defined,

• ΩCp3,t1 => 75, which means that the continuous state
of the token in p3 has to be greater than 75,

• ΩDp3,t1 = −, which means that no degradation condi-
tion is defined,

• ρp3,t1 = 1, which means that only 1 token will be con-
sumed during the transition firing.

Definition 2 (Accepted token). A token h is said to be ac-
cepted by an incoming arc if it satisfies either (i) the discrete
and continuous conditions of the arc or (ii) the degradation
condition of the arc.

We note Ha(ap,t, p) the set of tokens in the place p that
are accepted by the arc ap,t.
Definition 3 (Validated arc). Let ap,t be an arc,
Card(Ha(ap,t, p)) the number of tokens accepted by ap,t
in the input place and ρp,t the weight of the arc. The arc
ap,t is said to be validated if Card(Ha(ap,t, p)) ≥ ρp,t.
Outgoing arcs
An arc at,p ∈ At• going from a transition t ∈ T to a place
p ∈ P carries a set Ωt,p ∈ Jump:

Ωt,p =
{

(ΩSt,p,Ω
C
t,p,Ω

D
t,p); ρt,p

}
(4)

where (ΩSt,p,Ω
N
t,p,Ω

D
t,p) represents respectively a discrete, a

continuous and a degradation assignment and ρt,p ∈ N+ is
a weight.

When the − symbol replaces an assignment it means that
no change is made to the concerned attribute. By default,
Ωt,p = {(−,−,−); 1}.

The discrete assignment ΩSt,p concerns the configurations
of the tokens passing through the arc at,p. Let δk be the
configuration of a token h passing through this arc at time k
wearing the event set bk.



• if ΩSt,p = v, the event v ∈ E is concatenated with the
current configuration of the token passing through the
arc: bk+1 ←− bk ∪ (v, k + 1);

• if ΩSt,p = bnew, where bnew is a set of timed events,
the configuration is completely reset and only contains
bnew: bk+1 ←− bnew;

• else if ΩSt,p = −, the configuration is unchanged:
bk+1 ←− bk.

The continuous assignment ΩCt,p concerns the continuous
state of the tokens passing through the arc at,p. Let πk be
the continuous state of a token h crossing the arc at time k.
Suppose that πk carries the value xk,

• if ΩCt,p = xnew, where xnew represents a new nu-
merical value for the token continuous state πk then:
xk+1 = xnew,

• else if ΩCt,p = −, the continuous state is unchanged:
xk+1 = xk.

The continuous assignment ΩCt,p provides an initial condi-
tion for the continuous state of the token passing through
the arc, then the set of equations Cp ∈ C determines the
evolution of the continuous state of the token in the output
place p.

The degradation assignment ΩDt,p concerns the degrada-
tion state of tokens passing through the arc at,p. Let φk be
the degradation state of a token h crossing the arc at time k
and γk be the value of φk,

• if ΩDt,p = γnew, where γnew is a numerical value:
γk+1 = γnew,

• else if ΩDt,p = −, the degradation state is unchanged:
γk+1 = γk.

The degradation assignment ΩDt,p provides an initial condi-
tion for the degradation state of the token passing through
the arc, then the set of equations Dp ∈ D determines the
evolution of the degradation state of the token in the output
place p.
Post is the matrix containing the values of the weights of

the outgoing arcs, of dimensions P × T . Post(t, p) corre-
sponds to the weight of the arc connecting the transition t to
the place p.

The weight ρt,p defines the number of tokens to be put in
the output place of the arc at,p.

For example, in Figure 1(a), the arc at2,p2 is associated to
the set Ωt2,p2 =

{
(ΩSt2,p2 ,Ω

C
t2,p2 ,Ω

D
t2,p2); ρt2,p2

}
, with:

• ΩSt2,p2 = −, which means that the configuration of the
token will not be updated,

• ΩCt2,p2 = −, which means that the continuous state of
the token will not be updated,

• ΩDt2,p2 = 0, which means the degradation of the token
going through at2,p2 will be set to 0,

• ρt2,p2 = 1, which means that only one token will be
placed in p2 after the transition firing.

3.4 Firing Rules
Definition 4 (Enabled transition). A transition t ∈ T is said
to be enabled at time k if all incoming arcs of t are validated
(cf. Definition 3):

enabled(t) ≡ (∀p s.t ap,t ∈ A•t, Card(Ha(ap,t, p)) ≥ ρp,t)
(5)

where Card(Ha(ap,t, p)) is the number of tokens accepted
by the arc ap,t, and ρp,t is the weight defined in the condition
set Ωp,t for ap,t.

We recall that Ha(ap,t, p) represents the set of ac-
cepted tokens by an arc ap,t in a place p. When
Card(Ha(ap,t, p)) > ρp,t, a choice function has to be de-
fined. The function •ζ : N+×Ha→ Ha selects ρp,t tokens
in the place p to be fired among the set Ha(ap,t, p).

The set of accepted and selected tokens in place p to fire a
transition t is defined by Ψ(p, t). Let p ⊂ P ∧Pre(p, t) 6= 0

Ψ(p, t) =

{ •ζ(ρp,t, Ha(ap,t, p)) if Card(Ha(ap,t, p)) > ρp,t
Ha(ap,t, p) otherwise

(6)
Definition 5 (Set of fired tokens). From Ψ(p, t), we define
Ψ(•t) which is the set of tokens fired by transition t. Let
p1, p2, ..., pi be the set of input places of t:

Ψ(•t) = Ψ(p1, t) ∪Ψ(p2, t) ∪ ... ∪Ψ(pi, t) (7)
A choice function ζ• : N+×Ψ(•t)→ Ψ(•t) is defined. It

determines the tokens that will be kept, duplicated or deleted
among the set of fired tokens, and thus put in the output
place p of the transition.

Firing of a transition
During a transition firing, the tokens fired by the transition
t are moved in the output place of t. The attributes of these
tokens are either updated or are unchanged.

The firing of a transition t at time k is formally defined
as follows: ∀ p ∈ P s.t. Pre(p, t) 6= 0 and ∀ p′ ∈ P s.t.
Post(t, p′) 6= 0,

Mk+1(p) = Mk(p)− ρp,t
Mk+1(p′) = Mk(p′) + ρt,p′

(8)

where ρp,t is the weight carried by the arc connecting the
place p to the transition t, ρt,p′ is the weight carried by the
arc connecting t to the place p′, and Mk(p) is the number of
tokens in the place p at time k.

The marking of the HtPN Mk(p) represents all the tokens
in the place p at time k.

Mk+1(p) = Mk(p) \Ψ(p, t)

Mk+1(p′) = Mk(p′) ∪ ζ•(ρt,p′ ,Ψ(•t))
(9)

4 Advanced Diagnosis Method
4.1 HtPN-Based Diagnoser
Advanced diagnosis aims at tracking the system current
health state.
Definition 6 (Health state). The health state of a system is
the state in which the system is actually functioning, repre-
sented through a token and the information it carries: its
configuration, its continuous state and its degradation state.

To track the system health state, we propose to build a
diagnoser from a HtPN model. It is important to note that,
in the current state of our work, whilst the diagnoser is built
from an HtPN model, the use of some notions differs be-
tween the HtPN-based diagnoser and the HtPN model. For
instance, the parallelism is used in an HtPN to represent
different components evolving simultaneously. In the di-
agnoser, the parallelism is used to represent different diag-
nosis hypotheses about the system health state. The diag-
noser process takes as inputs the sets of discrete and con-
tinuous observations on the system. It is based on a two-
steps process. The first one is the prediction which aims at



determining the future marking. The second one is the cor-
rection, which updates the predicted marking according to
new observations. The output of the diagnoser process is
an estimation, at any time k, of the system health state that
takes the form of the marking of the HtPN-based diagnoser
∆k = M̂k.

Definition 7 (Diagnosis hypothesis). Each token in the
HtPN diagnoser represents a diagnosis hypothesis, i.e. an
hypothesis on the health state of the system. It contains
available knowledge about the continuous and degradation
states of the system at time k and events that have occurred
on the system up to time k.

4.2 Uncertainty Management
Several types of uncertainty are taken into account by using
the HtPN formalism.

Knowledge-based uncertainty must be taken into account
because the model does not reflect perfectly reality, for the
discrete and continuous parts of the model. Due to the in-
herent imprecision of sensors, we also consider uncertainty
about observations. Two types of uncertainty are then con-
sidered: the discrete uncertainty dealing with the discrete
model and observations; and the continuous uncertainty
dealing with the imprecision on the continuous model and
continuous values.

Regarding the discrete aspects, the discrete model of the
system may include discrete uncertainty as impossible or
incomplete event sequences. Concerning the discrete obser-
vations, an event may occur without being observed: this is
a missing observation. Dually, an event may be observed
whereas it has not really occurred: this is a false observa-
tion.

Discrete uncertainty is managed at two levels in the
HtPN-based diagnoser:

• Every discrete condition ΩSp,t is replaced by a TRUE
(>) condition during the diagnoser generation.

• During the prediction step of the diagnoser process,
the diagnoser uses what is called pseudo-firing of tran-
sitions like in [8] or [9] to consider the occurrences
of each event consistent with the discrete dynamic.
Pseudo-firing creates new diagnosis hypotheses.

Transition pseudo-firing duplicates tokens: tokens in the
input places of the transition are not moved but duplicated
and their duplicates are moved in the output places of the
transition.

Definition 8 (Transition pseudo-firing). Let t ∈ T be an
enabled transition, the pseudo-firing of the transition t ∈ T
at time k is formally defined by: ∀ p ∈ P s.t. Pre(p, t) 6= 0
and ∀ p′ ∈ P s.t. Post(t, p′) 6= 0

Mk+1(p) = Mk(p),

Mk+1(p′) = Mk(p′) + ρt,p′
(10)

The continuous uncertainty is managed thanks to contin-
uous assignments and weights on the outgoing arcs. Thanks
to weights, tokens are duplicated and follow continuous
dynamics (which can be noisy) associated with the output
place they belong to. Following the idea of the SSA algo-
rithm described in [10], the weights of the outgoing arcs of
the HtPN are multiplied by nNmin which usually represents
the minimum number of tokens to monitor a possible heath
state of the system.

4.3 Diagnoser Generation
Let HtPNΦ = 〈PΦ, TΦ, AΦ, GuardΦ, JumpΦ, EΦ, XΦ,
ΓΦ, CΦ, DΦ,M0Φ〉 be the system model. The diagnoser is
a tuple HtPN∆ = 〈P∆, T∆, A∆, Guard∆, Jump∆, E∆,
X∆,Γ∆, C∆, D∆,M0∆〉, which is generated from the sys-
tem model in four steps.

Step 1 consists in copying the HtPN system model, except
for Guard and Jump sets. Discrete, continuous and degra-
dation state spaces, as well as continuous and degradation
dynamics are the same as those of the model:

P∆ = PΦ, T∆ = TΦ, A∆ = AΦ, E∆ = EΦ, X∆ = XΦ,

Γ∆ = ΓΦ, C∆ = CΦ, D∆ = DΦ,M0∆ = M0Φ. (11)

Step 2 consists in setting values to the discrete assignation
in Jump∆ for outgoing arcs of the transitions for whose a
discrete condition is defined in GuardΦ:

ΩSt,p ← ΩSp,t. (12)

This convey the idea that the event associated to a discrete
condition should have been observed when the transition is
fired. Adding the event to the discrete assignation adds the
event to the token configuration, which allow for the com-
parison with the observed discrete events later on.

Step 3 consists in multiplying the weights of all the out-
going arcs by nCmin to manage continuous uncertainty as
explained before: for all p ∈ P∆ and for all t ∈ T∆ such
that at,p ∈ A∆,

ρt,p ← ρt,p.n
C
min (13)

Step 4 consists in assigning values to the conditions in
Guard∆, corresponding to the conditions associated with
the incoming arcs of the transitions: for all p ∈ P∆ and for
all t ∈ T∆ such that ap,t ∈ A∆,

ΩSp,t ← >; ΩDp,t ← ⊥ (14)

All the discrete conditions are then set to TRUE, in agree-
ment with the uncertainty management concerning the oc-
currences of events. It means that all configurations of to-
kens in the HtPN-based diagnoser satisfy the discrete con-
ditions. The diagnoser considers at any time the occur-
rence of each event that can occur from the estimated health
mode. All the degradation conditions are set to FALSE in
order to disconnect the diagnoser marking evolution from
the degradation state. At the moment, the diagnoser fol-
lows the degradation but does not use it to estimate fault
occurrences. The degradation will be used in future work to
perform prognosis. Continuous conditions are the same as
those of HtPNΦ.

The continuous and degradation assignments are not
changed during the process.

4.4 Diagnoser Process
The initial marking M0 of the HtPN-based diagnoser repre-
sents the initial health state of the system and is the initial
distribution of tokens in the HtPN. Each token h in the initial
distribution has three attributes: a configuration with value
bh0 , a continuous state πh0 and a degradation state γh0 . NH0

denotes the initial number of tokens in the HtPN.
From the initial marking and the initial set of discrete

and continuous inputs, the diagnoser marking Mk evolves
at time k according to the observations Ok = OSk ∪ OCk ,
where OS and OC respectively represent the set of discrete
observations and the set of continuous observations. The



estimated marking at time k denoted M̂k represents all the
possible diagnosis hypotheses on the system health state at
time k.

The marking evolution in the HtPN-based diagnoser is
based on two steps, prediction and correction, which com-
bine the transition pseudo-firing, particle filters and an al-
gorithm called the Stochastic Scaling Algorithm (SSA), al-
ready presented in [10]. In particle filtering, the number of
particles defines the precision of the filter. Here the particles
are represented by tokens: each token is one particle. The
goal of the SSA is to avoid the combinatory explosion and
to limit the number of tokens at each step of the algorithm.

The prediction step of the online diagnoser process aims
at determining the future marking of the diagnoser M̂k+1|k.
It is based on the firing of the enabled transitions and on the
update of the token values. All the enabled transitions are
fired according to the rules described in Section 3.4. This
implies the assumption that a single event can occur at time
k. The event set bk of a configuration δk evolves through
the discrete assignment described in Section 3.3. The value
of the continuous state of the token evolves according to the
dynamics of the place the token belongs to after the tran-
sition firing if the continuous dynamics exists, (as well as
the value of its degradation state if the degradation equa-
tion exists). It is possible for equations to contain noise.
Noise in equations is considered to take into account uncer-
tainty about model continuous dynamics: the duplicated to-
kens have different state values because of the random noise
function in continuous dynamics.

The correction step of the diagnoser process updates
the predicted marking M̂k+1|k to the estimated marking
M̂k+1|k+1 according to new observations Ok+1.

It is based on the computation of scores of all hypotheses
contained in the predicted marking and on the resampling of
the tokens.

Scores of hypotheses are calculated with two quantities
PrS and PrC representing the gaussian probability distri-
butions over the discrete and the continuous states, respec-
tively. PrS gives the configuration weight and is computed
as the inverse of exponential of the distance between the
configuration event set and O−k+1 = {Oκ|κ ≤ k + 1}, the
set of discrete observations until k + 1. PrC gives the nor-
malized state weight and is calculated according to the dis-
tance between the token continuous state value and contin-
uous observations OCk+1.

Then, the score of one hypothesis hk =< δk, πk, γk > at
time k is computed using a weighted function of the sum of
its configuration and its continuous state weights:

Score(hk) = α× PrS(δk) + (1− α)× PrC(πk), (15)

where α ∈ [0, 1] is the coefficient indicating the global con-
fidence of the discrete part relatively to the continuous part.
The score of a hypothesis is always between 0 and 1.

The set of particles/tokens is then resampled according
to their scores. Like in classical particle filtering, some hy-
potheses are deleted, others are duplicated if they have an
high score. The parameter nNmax is the maximum number
of particles available to monitor all hypotheses. The total
number of particles after the resampling is always less than
or equal to nNmax. In particle filtering, the number of parti-
cles defines the precision of the filter but is also a computa-
tional performance factor, then nNmax can be set up to fulfill
performance constraints.

The diagnosis ∆k is deduced from the marking of the
HtPN-based diagnoser HPPN∆ at time k:

∆k = M̂k (16)

It represents all diagnosis hypotheses as a distribution of
beliefs over the current health state and how this health state
has been reached. In other words, the marking M̂k indicates
the belief over the fault occurrences and the continuous and
degradation states. The HtPN-based diagnoser results in-
clude the results of a classical diagnoser in terms of fault
occurrences. In a classical diagnoser, however, every diag-
nosis hypotheses has the same belief degree. A HtPN-based
diagnoser handles more uncertainty and evaluates the ambi-
guity according to the tokens places and values.

5 Applications
To illustrate how the proposed diagnostic method can deal
with different kinds of system we propose to apply it on two
systems of different types: a discrete event system and a
hybrid system. A new software, named HeMU (Heteroge-
neous systems Monitoring under Uncertainty) has been de-
veloped in Python. Computations are done on Linux, with
an Intel(R) Core(TM) i5-9400H CPU 2.50GHz. Both sys-
tems were modeled in the proposed HtPN framework. Re-
sults of simulations and diagnosis are explained in this sec-
tion.

5.1 Discrete Event System Application
The studied discrete event system (DES) is illustrated in
Figure 2. This DES is represented by an automaton A =
〈Q,Σ, δ, x0〉, where:

• Q = {Nom1, Nom2, Deg1, Deg2} is the set of dis-
crete states;

• Σ = {o1, o2, o3, f} is the set of events;

• δ represents the transition function ;

• q0 = Nom1 is the initial state.

Figure 2: Example of a Discrete Event System

Some observable and fault events are defined for diag-
nosis purpose. The set of observable/measured events is
Σo = {o1, o2, o3} ⊂ Σ and the unobservable fault event
to be diagnosed is f ∈ Σuo ⊂ Σ.

Model and simulation
The HtPN representation for this automaton was created
with the HeMU software. For this application, no continu-
ous dynamics nor degradation have been filled in the model.
Only the places and discrete conditions were specified.

The results of the HtPN model simulation is presented
in Figure 3. From initial state Nom1, the following event
sequence occurs: o1.f.(o2.o3)∗. It means that fault f was
injected after the observation o1, and after its occurrence,
observations o2 and o3 are repeated until the end of the sim-
ulation.



Figure 3: Health mode simulation for the DES

Figure 4: Diagnosis for the DES

Diagnosis
Results obtained by applying the proposed HtPN-based di-
agnosis method are illustrated by Figure 4.

It gives all the diagnosis hypotheses on the possible sys-
tem states. Blue lines indicate the hypotheses with the high-
est belief. State Nom2 is identified after the observation
o1. As it cannot be known whether the fault has yet oc-
curred, a small belief is present on state Deg1 (as shown by
the small black line). Then two diagnosis hypotheses with
almost the same belief (big black line with appearance of
blue for Nom1 and a majority of blue with appearance of
black for Deg2) are computed after observing the event o2:
Nom1 and Deg2. There is an ambiguity on the system’s
state because f is not diagnosable. f is diagnosed without
ambiguity after observing o3, the diagnoser is in the state
Deg1.

5.2 Hybrid System Application
The studied hybrid system is composed of three tanks con-
nected in series by two valves. The system behavior and the
multimode description are described in detail in [11]. To
sum up, a pump delivers a constant water flow q1 in the first
tank and a second tank empties with an output flow q20. The
system has to maintain a water level l2 in the second tank
greater than l2min. A multimode description of the health
evolution of the water tank system is presented in Figure 5.

Ten behavioral modes (i.e. discrete states) are identified.
To each mode are associated continuous dynamics C1, C2,
C3, C4 and degradation dynamics D1, D2, D3, D4, D5.
The continuous variables are the water levels in the tanks
and the degradation variables give the probability of antic-
ipated faults in the system. Equations for continuous and
degradation dynamics can be found on the web1.

Valves are controlled by discrete and observable input
signals: openv13 , closev13 , openv32 and closev32 . Six faults,
considered as non observable discrete events, may occur on
the system: f1, f2 and f3 represent leaks in each tank, f4

and f5 represent v13 and v32 stuck in closed position, and
f0 corresponds to a water level l2 below l2min leading to
the system failure. In order to simplify the illustration, only
the events associated to the valve v13 and the faults f1, f4

and f0 are considered in this representation.

1https://homepages.laas.fr/echanthe/hymu/water_tanks

Model and simulation
The HtPN model was created from this multimode represen-
tation. To the ten behavioral modes correspond 10 places
containing equations for continuous and degradation dy-
namics. Model transitions are associated either to discrete
event occurrences or tests on continuous or degradation vari-
ables. Simulation of the HtPN model of the water tank sys-
tem is presented in Figure 6.

In the initial mode Nom1, the valves v13 and v32 are
open, the continuous state representing the water levels in
the tanks is x0 = [l10, l20, l30] = [0.60, 0.55, 0.58] and
the degradation state is d0 = [p10,p20,p30,p40,p50] =
[0, 0, 0, 0, 0]. The water flow q1 delivered by the pump is
constant. After 310 minutes of operation, v13 is closed ev-
ery hour during 20 min in order to perform a water treatment
in Tank1. Fault f1 is injected at 201840s and f0 occurs at
206040s.

Diagnosis
Diagnosis result for the water tank is given by Figure 7. It
gives all hypotheses on the possible system health mode.
Blue lines indicates the diagnosis hypotheses with the high-
est belief. Although not represented here, the degradation
value of each hypothesis is available. These diagnosis re-
sults are consistent with the actual health state of the simu-
lated system.

If the maximum number of tokens in the HtPN-based di-
agnoser at any time is set to 200, the execution time of the
proposed diagnosis method is 4 minutes 22 seconds. If the
maximum number of tokens is 400, the execution time is 7
minutes 47 seconds.

Although this section focuses on only two examples of
discrete and hybrid systems, a purely continuous system
could also have been simulated. It would have been suffi-
cient to define a single place containing continuous dynam-
ics. But for diagnosis purpose, at least one discrete event
corresponding to the fault to be diagnosed would have had
to be defined.

6 Conclusion and Future Work
This article presents a holistic advanced diagnosis approach
for systems under uncertainty. This approach is based on
a formalism based on Petri Nets named HtPN. HtPN can
be use for specifying various systems (DES, CS, HS) and
diagnosing them for health monitoring purposes. This for-
malism makes possible to take into account the uncertain-
ties on the modeling and on the observations of the system.
In terms of health monitoring, a diagnostic method based
on HtPN has been proposed. It allows not only to manage
uncertainties on the observations, but also the monitoring
of the current state of the system as well as its degradation
state. Applications on a pure Discrete Event System and
on a Hybrid System prove that the modeling framework and
the monitoring method are relevant and efficient for differ-
ent types of systems taking into account uncertainties.

Future work will focus on the development of a prognos-
tic method based on HtPN and on computational complexity
management.
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