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Hybrid Model Learning for System Health
Monitoring

Amaury Vignolles ∗ Elodie Chanthery ∗ Pauline Ribot ∗

∗ CNRS, LAAS, UPS, INSA 7 avenue du colonel Roche, 135 Av. de
Rangueil, 31400 Toulouse, France (e-mail: firstname.name@laas.fr).

Abstract: Health monitoring approaches are usually either model-based or data-based. This
article aims at using available data to learn a hybrid model to profit from both the data-based
and model-based advantages. The hybrid model is represented under the Heterogeneous Petri
Net formalism. The learning method is composed of two steps: the learning of the Discrete
Event System (DES) structure using a clustering algorithm (DyClee) and the learning of the
continuous system dynamics using two regression algorithms (Support Vector Regression or
Random Forest Regression). The method is illustrated with an academic example.
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Clustering, Regression

1. INTRODUCTION

Health monitoring consists in estimating and predicting
the health state of a system. It is linked to either the
degradation of the system or the occurrence of a fault.
A fault is a non-acceptable deviation from a characteristic
property or a system parameter. System health monitor-
ing is performed by integrating diagnosis and prognosis
capabilities. Diagnosis aims at detecting a fault occur-
rence and precisely locating it in the system. Prognosis
aims at predicting fault occurrences in order to determine
the remaining useful life of the system before failure.
It is possible to distinguish two main health monitor-
ing approaches: model-based and data-based approaches.
While model-based approaches are very efficient if the
system model is accurate, they perform less when the
model is not precise enough. On the other hand, data-
based methods are helpful when the model is unavail-
able, but they lack explainability or expert knowledge.
The solution is to take advantage of the two types of
methods. In this paper, we aim at using a model-based
health monitoring approach by learning a model thanks
to data. The studied systems are complex and deal both
with continuous and discrete data. Their behavior can be
represented by a multimode representation by using, for
example, hybrid automaton Henzinger (2000). For health
monitoring purposes, a functioning mode of the system is
the combination of one discrete state with continuous and
degradation dynamics. This multimode representation can
be transformed into a Heterogeneous Petri Nets (HtPN)
model. The HtPN formalism is an interesting extension
of the Petri Net formalism, where the places represent
the different functioning modes with associated continuous
and degradation dynamics. This formalism is well suited
for the hybrid system health monitoring under uncertainty
because of its capability to represent the evolution of
different hypotheses on the health state thanks to par-
allelism. However, the learning process described in this

article could be adapted and applied to other formalisms
for hybrid systems, like hybrid automata.

This paper proposes a methodology to learn a hybrid
model for system health monitoring using the formalism
of HtPN. The methodology’s first step consists of obtain-
ing the Petri Net structure, represented by places and
transitions, using a clustering method. Hence, for each of
the modes, regression algorithms such as Support Vector
Regression (SVR) and Random Forest Regression (RFR)
are applied to learn the continuous dynamics of the system.

The paper is organized as follows. Section 2 gives a state
of the art of existing methods used to learn models of
different types (hybrid, discrete or continuous). Section
3 presents the HtPN formalism used for health monitor-
ing purposes. Section 4 presents the proposed learning
methodology to obtain a hybrid model under the HtPN
formalism. Section 5 illustrates the application of the
methodology and gives results for an academic example,
the water tanks. Finally, Section 6 presents some conclu-
sions and perspectives.

2. RELATED WORK

This section briefly presents learning model solutions for
hybrid systems.

The first solution to learn hybrid models is to merge tech-
niques used to learn discrete event models and techniques
used to learn continuous dynamics. This idea has been ap-
plied in Niggemann et al. (2012), where hybrid automata
are learned. The first step is to learn a prefix tree acceptor
based on the sequence of observations: each observable se-
quence leads to a path from the tree’s root to a leaf. Then,
for each node, the continuous behavior is learned. Finally,
the nodes with similar continuous behavior are merged
to reduce the size of the hybrid automata. The main
drawback of this approach is that it requires the events to
be observable to have a correct prefix tree acceptor. Event-
based methods are primarily used to learn the structure



of a Discrete Event System (DES). An example to learn
a Petri Net (PN) can be found in Dotoli et al. (2008).
Using the observations of the events and the available
output vectors, a PN is obtained through an integer lin-
ear programming problem or an identification algorithm,
depending on whether the sets of places and transitions
are known beforehand. In Moreira and Lesage (2019), a
Deterministic Automaton with Outputs and Conditional
Transitions (DAOCT) is computed using observed fault-
free paths. Another method to learn Petri Nets, introduced
in Leclercq et al. (2008), is based on Neural Networks.
However, these learning methods fit only for DES, where
all data are discrete, but not for hybrid systems where
continuous conditions may change health states.
With a clustering method, both continuous dynamics vari-
ations and discrete events can impact the creation of the
DES structure. However, not all methods are usable in our
case. For instance, clustering methods requiring a known
number of outputted clusters, such as K-means, cannot
be used. Even if the size of clusters has to be decided,
a fixed number of clusters would be limiting, where size
could improve the knowledge of the system. To meet this
need, the DyClee algorithm, presented in Roa et al. (2019),
has been proposed for tracking evolving environments with
dynamic clustering. It is a two stage clustering algorithm,
one based on distance and one on density. First, each
sample is assigned to a micro cluster in the distance-based
stage following the L1norm. Then, each micro cluster is
assigned a low, medium or high density. This density is
used to output the final clusters. The final clusters com-
prise connected high density micro clusters for the inside
and either medium or high density micro clusters for the
border. The low density micro clusters may be considered
as outliers. From these clustering results, it has been shown
in Barbosa et al. (2017) that a Timed Automaton could
be retrieved to model the system, using a parallel between
the clusters created and the states of an automaton. Based
on this knowledge and the availability of experts to further
improve the algorithm, the DyClee algorithm was chosen
as a base to learn the DES structure of our hybrid model.

Concerning learning continuous dynamics, the gradient
descent method is probably one of the most used methods
to learn parameters to fit a set of data. The work of
Tamssaouet et al. (2020) is based on an Inoperability
Input-Output model, which measures the distance be-
tween the current state of the system and the failure
state and aims at prognosing a system. Gradient descent
is used to tune the model parameters by comparing the
inoperability estimated by the model and the one mea-
sured. However, the gradient descent method presents one
major problem: to tune the parameters of the function,
the function by itself, or at least its shape, must be known,
which is not always our case. Hence, the gradient descent
method is not suitable for our needs.
Neural networks can be used to predict output to an
unknown or complex function, as in Djedidi and Djeziri
(2020), where a Nonlinear Autoregressive Network with
eXogenous inputs (NARX) model measuring the power
consumption of a phone is learned. However, Neural net-
works have a high need for hyper-parameter tuning, which
is a significant drawback.
Support Vector Regression (SVR), detailed in Awad and
Khanna (2015), is often used to learn continuous dynam-

ics, as, for example, in Drezet and Harrison (1998) or
Zhang and Xi (2004). The SVR algorithm tries to find a
function wixi such that the highest number of data points
are contained in the interval [wixi−ε, wixi+ε], with wi the
model’s coefficient, xi the features of the data, and ε ∈ R
the desired error. The main advantage of SVR is that it
has excellent generalization capability and does not need a
complex tuning phase. Another solution is to use Random
Forest Regression (RFR) as in Liaw et al. (2002). It con-
sists in averaging the prediction of decision trees. The data
are randomly distributed among various decisions trees,
which each gives a prediction. All these predictions are
then averaged and the obtained value is outputted. RFR’s
main advantages are that it is robust against overfitting
and quite able to generalize. Moreover, RFR only has two
hyper-parameters to set and the obtained results are not
that sensitive to them.
In Van Overschee and De Moor (1994) two numerical
algorithms for subspace state space system identification
(N4SID) to identify combined deterministic stochastic lin-
ear systems are introduced. The first algorithm calculates
unbiased results, while the second one trades off the preci-
sion of the results for a lower computational complexity as
it is a simpler biased approximation. This method could
be applied to learn continuous dynamics. However, a less
complex option has been chosen for now.

The second solution to learn hybrid models is to apply
techniques suited to hybrid models directly. In Lauer and
Bloch (2008), switched and non linear hybrid systems are
learned using the Support Vector Machine (SVM) and
Support Vector Regression (SVR) frameworks. Both of
these techniques are based upon kernels. A new regularized
technique for identifying piecewise affine systems is pro-
posed in Pillonetto (2016). This technique, named Hybrid
Stable Spline algorithm (HSS) uses the stable spline kernel
to model the impulse responses of submodels as zero-mean
Gaussian processes. Feng et al. (2010) focus on identify-
ing discrete time affine hybrid systems with measurement
noise. The proposed approach is based on recasting the
problem into a polynomial optimization form and exploit-
ing its inherent sparse structure to obtain computationally
tractable problems. In Vidal (2004), PieceWise Auto Re-
gressive eXogenous (PWARX) models are identified using
an algebraic geometric solution representing the number
of states n as the degree of a polynomial p and encoding
the orders and the model parameters as factors of p.
These learning methods could be used to learn a hybrid
system. However, a transformation of obtained equations
into a DES structure would be required to apply our health
monitoring method based on the HtPN formalism.

Looking at the related work, we propose a new method-
ology mixing DES structure and continuous dynamics
learning techniques to obtain hybrid system models. As
underlined in the DES structure learning part, the DyClee
algorithm best suits our needs as it does not need to know
the number of clusters before learning and fits dynamic
processes. As for continuous dynamics, both SVR and
RFR methods will be implemented and tested because
they both have generalization capability and do not need
a complex tuning phase.



3. HETEROGENEOUS PETRI NETS FORMALISM

This section describes the Heterogeneous Petri Nets
(HtPN) formalism that can be used for health monitoring
purposes. This formalism is extended from the Petri Nets
for their ability to represent parallelism. When applying
diagnosis and prognosis algorithms for system health mon-
itoring, following multiple tokens is necessary.

A HtPN is formally defined as a tuple HtPN =<
P, T,A,Guard, Jump,E,X,Γ, C,D,M0 > where:

• P is the set of places;
• T is the set of transitions;
• A ⊂ (P × T ∪ T × P ) is the set of arcs;
• Guard is the set of conditions associated with the

incoming arcs of transitions;
• Jump is the set of assignments associated with the

outgoing arcs of transitions;
• E is the set of event labels: E = Eo ∪ Euo, where Eo

is the set of observable event labels and Euo is the set
of unobservable event labels;
• X ⊂ RnN is the state space of the continuous state

vector, where nN ∈ N+ is the finite number of
continuous state variables;
• Γ ⊂ RnD is the state space of the degradation state

vector, where nD ∈ N+ is the finite number of
degradation state variables;
• C is the set of continuous system dynamics;
• D is the set of degradation system dynamics;
• M0 is the initial marking of the network.

The main subsets of a HtPN are briefly summarized here-
after. An example of a HtPN is presented in Figure 1(a).
The net represents the behavior of a machine that empties
bottles stored in two different locations, either because
the quantity of liquid in a bottle reached a given value
or because the user asked for the emptying. The machine
degrades with time and can enter a faulty state if it reaches
a given degradation value. The behavior of this machine
depends on both discrete and continuous information. The
place p1 represents the availability of the machine to empty
the bottles. The place p2 is marked when the machine
is busy. Tokens in p3 and p4 represent bottles that are
automatically filled up. A bottle in p3 is emptied when
it reaches a given quantity of liquid. A bottle in p4 is
emptied when the discrete empty command occurs. When
the machine is working, if its degradation exceeds 200
units, the system enters a failure state represented by p5.

3.1 Places and tokens

A place p ∈ P in a HtPN is associated with a set
of equations Cp ∈ C modeling the system continuous
dynamics and the associated noise (uncertainties on the
evolution and the measurements) as well as a set of
equations Dp ∈ D modeling the system degradation
dynamics:

p =

{
Cp

Dp

}
(1)

The continuous dynamics Cp represents the evolution of
the continuous state vector x when the system is in place
p. The system degradation dynamics Dp represents the
evolution of the degradation state vector γ when the
system is in the place p.

p1

p2

p3

p4

p5

t1

(−, > 75,−); 1

t2

(= empty,−,−); 1

(−,−,= 0); 1
t3

(−,= 0,−); 1

t4

(−,−, > 200); 1

(a)

Places Continuous dynamics Degradation dynamics
p1 - -
p2 xk+1 = xk − 1 γk+1 = γk + 3
p3 xk+1 = xk + 3 -
p4 xk+1 = xk + 2 -
p5 - -

(b)

Fig. 1. Example of a HtPN (a) and dynamics associated
with its places (b)

Equations associated with the places of the HtPN in Fig-
ure 1(a) are presented in Figure 1(b). The symbol −means
that no dynamic is associated with the place. For example,
places p1 and p5 have neither continuous nor degradation
dynamics. Places p3 and p4 only have continuous dynam-
ics, representing a bottle’s volume evolution. Place p2,
on the other hand, has both continuous and degradation
dynamics: they represent the evolution of the volume in a
bottle and the evolution of the degradation of the machine.

A place p contains tokens with three attributes:
< δhk , π

h
k , φ

h
k >, representing respectively discrete, contin-

uous and degradation information for a token h at time k.
These attributes evolve according to discrete events and
dynamics associated with the place the token h belongs
to.

Initial marking M0 of the HtPN is the distribution of
tokens in the different places representing the nitial system
conditions. Each token carries its initial discrete informa-
tion (the set of events that have already occurred), its
initial continuous information and its initial degradation
information. For example, each token in p3 and p4 repre-
sents a bottle at the initialization of the process.

3.2 Arcs

The arcs of a HtPN are divided into two sets: A = A•t ∪
At•, where A•t contains all the incoming arcs and At•
contains all the outgoing arcs of transitions.

An incoming arc ap,t ∈ A•t going from place p ∈ P to
transition t ∈ T is associated to a set Ωp,t ∈ Guard:

Ωp,t =
{

(ΩS
p,t,Ω

N
p,t,Ω

D
p,t); ρp,t

}
(2)



where (ΩS
p,t,Ω

N
p,t,Ω

D
p,t) represents respectively a discrete,

a continuous and a degradation condition, and ρp,t ∈
N+ is the weight of the arc. For example, in Fig-
ure 1(a), the arc a(p3,t1) is associated to the set Ωp3,t1 ={

(ΩS
p3,t1 ,Ω

N
p3,t1 ,Ω

D
p3,t1); ρp3,t1

}
, with:

• ΩS
p3,t1 = −, which means that no discrete condition

is defined,
• ΩN

p3,t1 => 75, which means that the continuous state
of the token in p3 has to be greater than 75,
• ΩD

p3,t1 = −, which means that no degradation condi-
tion is defined,
• ρp3,t1 = 1, which means that only one token will be

consumed during the transition firing.

A transition can be fired if the set of conditions Ωp,t is
satisfied for each of its input arcs. If the conditions for
arcs ap3,t1 and ap1,t1 are satisfied the transition t1 can be
fired by consuming one token in p3 and one token in p1.

An outgoing arc at,p ∈ At• going from a transition t ∈ T
to a place p ∈ P is associated to a set Ωt,p ∈ Jump:

Ωt,p =
{

(ΩS
t,p,Ω

N
t,p,Ω

D
t,p); ρt,p

}
(3)

where (ΩS
t,p,Ω

N
t,p,Ω

D
t,p) represents respectively a discrete, a

continuous and a degradation assignment and ρt,p ∈ N+ is
the weight of the outgoing arc.

During the transition firing, consumed tokens are moved
in the output places of the fired transition t. The at-
tributes of these tokens remain constant or are updated.
This is defined by the set of assignments Ωt,p ∈ Jump
associated with the outgoing arc. For example, in Fig-
ure 1(a), the arc at2,p2

is associated to the set Ωt2,p2
={

(ΩS
t2,p2

,ΩN
t2,p2

,ΩD
t2,p2

); ρt2,p2

}
, with:

• ΩS
t2,p2

= −, which means that the discrete informa-
tion of the token will not be updated,
• ΩN

t2,p2
= −, which means that the continuous state of

the token will not be updated,
• ΩD

t2,p2
= 0, which means the degradation state of the

token going through a(t2,p2) will be set to 0,
• ρt2,p2 = 1, which means that only 1 token will be

placed in p2 after the transition firing.

For a more detailed description of the formalism, refer
to Vignolles et al. (2021) where the HtPN formalism is
introduced.

4. METHODOLOGY FOR LEARNING A HTPN

The process of HtPN learning is presented in Figure 2. It
requires data and is performed offline because data nor-
malization, the first step of the process, requires knowing
the maximum and the minimum values of each data fea-
ture. As the process is offline, the number of samples used
is finite. However, if the minimum and maximum values
are known beforehand, the process can be done online.
Data represent the observable variables of the system,
usually acquired through sensors and actuators. In the case
of non-faulty sensors, data truly represent the system’s
behavior. In a second step, these normalized data will be
given to the Dynamic Clustering algorithm, DyClee. The
results of DyClee are then interpreted and used to generate
the structure of the HtPN. Combining these three steps

Fig. 2. Global idea for HtPN learning

determines the number of places and transitions for the
structure. A fourth step aims to learn the system’s con-
tinuous dynamics for each identified place of the obtained
structure by applying regression algorithms using the data.
This step outputs the continuous dynamics C associated
with each place of the HtPN structure.

4.1 Input data

The input data used to learn the HtPN structure are the
observable variables of the system. Some of these variables
are sampled real values, like the water level in a tank, a
pressure or a temperature. Some others are events, like the
controls of a valve (open or close) or pressing an on/off
button. An observable event is an event whose occurrence
is detected from sensors. Input data are contained in an
i × j matrix (as can be seen in Figure 6(a)). The line i
corresponds to a sample of the data. Column j corresponds
to an observable variable of the data. In the case of discrete
events, different events might be present on the same
column, the open and close controls on the same valve,
for example. The set of samples is denoted S.

4.2 Learning the HtPN structure

Normalization Raw data require normalization before
the clustering process for each feature to be equally impor-
tant in the process. If a column of the data matrix ranges
from 0 to 2 and another from 0 to 105, the first column
might be neglected by the program as the values of the
second column are more important. Data normalization
modifies the input data file by:

• Creating a new column for each of the discrete events
and converting the absence or presence of the event
in a numerical value, respectively 0.0 and 1.0. This
will ensure that each of the events has its column;
• Normalizing the values with the following equation:

data[i, j] =
data[i, j]−min[j]

max[j]−min[j]
(4)

with max[j] and min[j] respectively the maximum
and the minimum values of the jth column and



data[i, j] the value of the data of the jth column and
ith line.

An example can be seen in Figure 6(b).

DyClee Once normalized, the data are given to DyClee
along with a second file containing the user parameters
for DyClee process, such as the desired size of the micro
clusters. The size of the micro clusters needs to be chosen
by an expert. DyClee outputs a set Cl of clusters, to which
are assigned the data samples.

Interpretation of DyClee results Clustering results ob-
tained with DyClee are automatically processed to output
a HtPN structure. The pseudo code behind the interpre-
tation of DyClee results is presented in Algorithm 1. For
each cluster Cli ∈ Cl, a place pi is created.
Then, the transitions linking these places are learned.

Algorithm 1 Obtaining the HtPN structure

Input: Cl, S
Output: HtPN structure : P, T,A

1: P = {}, T = {}, A = {}
2: for all Cli ∈ Cl do
3: P ← P ∪ Create(pi)
4: end for
5: actp ← ClS[0]

6: cnt = 0
7: created transitions = {}
8: for all s ∈ S do
9: if Cls! = actp then

10: cnt+ = 1
11: else
12: cnt = 0
13: end if
14: if cnt == 3 then
15: if actp Cl

s /∈ created transitions then
16: [T,A] ← [T,A] ∪ C t(actp Cl s , actp ,Cl s)
17: created transitions.add(actp Cl

s)
18: actp ← Cls

19: end if
20: end if
21: end for

Let S[0] be the first sample of the sample set S. The cluster
in which it is affected is noted ClS[0] and is saved in the
variable actp. A counter cnt which initial value is 0 and
an empty set of created transitions are defined. Then, for
each sample s in S, the cluster Cls to which it was affected
by DyClee is compared with the cluster saved in actp. As
long as Cls == actp, the value of cnt remains 0. When
a sample is assigned to another cluster (i.e. Cls! = actp),
cnt is incremented. When this counter reaches 3, clusters
in actp and Cls are considered linked, and a transition
is created, named actp Cl

s. The place associated with the
cluster actp is linked as the input of this transition, and the
place associated with the cluster Cls as the output. The
created transition is saved in the set created transitions
to avoid creating multiple times the same transition if
the samples oscillate between two clusters. The counter
cnt was implemented to avoid creating false transitions
because of outliers. We suppose that an outlier contains
less than a given number of consecutive samples. As a

starting point, this number is set to 3. The counter will
prevent the creation of a transition linking the outlier with
the rest of the structure, as it will not reach the transition
creation threshold. As the learning of the DES structure
is unsupervised, its quality cannot be evaluated.

Going back to the formal definition of a HtPN, after
learning the HtPN structure with DyClee, the following
sets describing the HtPN structure are completed:

• P , the set of places;
• T , the set of transitions;
• A ⊂ (P × T ∪ T × P ), the set of arcs.

4.3 Learning continuous dynamics

Two regression algorithms are applied to learn the sys-
tem’s continuous dynamics even from noisy measurements:
the Support Vector Regression (SVR) and the Random
Forest Regression (RFR). Both algorithms are imple-
mented using the toolbox Scikitlearn for Python. The
advantage of using different algorithms is that the user
can fully tune the learning. The user can then decide if the
faster or the better fitted algorithm is chosen. To represent
the fitting a coefficient of determination R2 is used:

R2 = 1− (ytrue − ypred)2

(ytrue − ytruemean
)2

(5)

where ytrue is the true value of the data, ytruemean
is the

mean value of ytrue and ypred is the value predicted by the
learned model. The closer the coefficient R2 is to 1, the
better the algorithm fits the data. It provides a measure
of how well the learned model can replicate the observed
outcomes. For this article, the better fitted algorithm has
been chosen. This means that when building the final
HtPN, each continuous dynamic will be represented by
the learned model that better fits the data.

The continuous dynamics learning is done place by place
giving the set C of continuous dynamics of the system as
referenced in the formal definition of the HtPN. The set
of equations Cp associated with a place p is a fitted SVR
or RFR model:

Cp : yk = RM(xk), (6)

where RM represents the obtained regressive model and
RM(xk) is the prediction given by this model for a
particular continuous state vector x at time k.

Although not yet implemented, a similar process is ex-
pected when learning the set D of degradation functions.
However, the challenge in learning the degradation func-
tion is the time window considered, as degradation dy-
namics are usually much slower than continuous dynamics
describing the system functioning.

5. APPLICATION AND RESULTS

5.1 System description

The benchmark used to illustrate the learning of a hybrid
model is a three-tank system illustrated in Figure 3. The
data are obtained from one single simulation of the system.
The a priori knowledge of the model is used for easy



process verification. This illustration is a case study to
ensure that the learning process behaves as expected.

Fig. 3. Three-tank system description

The tanks are configured in a series circuit. Flow Q1(t)
delivered by the pump in tank T1 is supposed to be
constant. Tank T2 empties with flow Q20(t). The available
measurements at time t are the water levels hi in each
tank Ti. Valves v13 and v32 allow the water to flow between
tanks. Only valve v13 is controlled through discrete control
inputs openv13 and closev13 . A leak may occur in tank
T1 and is represented by an unobservable fault event f1.
The goal of the system is to maintain the water level in
tank T2 greater than a minimum value h2min

. The leak in
tank T1 is considered too large and leads to system failure
when f1 occurs because the system cannot achieve the
goal anymore. In this example, the continuous state vector
represents the water level in each of the three tanks. The
degradation state vector represents the probability of each
fault occurrence.

The three-tank multimode representation is composed of
six different modes as illustrated in Figure 4. The initial
place is in nomimal mode Nom1, in which both valves
are open. When the command closev13 occurs, the system
enters mode Nom2, where v13 is closed. The system can
go back to Nom1 when openv13 occurs. From Nom1 (resp.
Nom2), the system can switch to a degraded mode Deg2
(resp. Deg3) if fault f1 occurs. Finally, from Deg2 and
Deg3, the system may enter failure modes Fail4 and
Fail3 if the water level in tank T2 becomes smaller than
the minimum value h2min . This is represented with the
occurrence of a fault event f0. The modes in the red
square in Figure 4 are the a priori learnable modes of our
system, be it directly through the occurrence of events (for
closev13 and openv13 ) or a modification in dynamics (for
the occurrence of f1).

5.2 Learning the HtPN structure

The simulated scenario is shown in Figure 5. 310min after
the initialization, v13 is closed every hour for 20min to
perform a water treatment in T1 . Fault f1 is injected at
201840s and f0 occurs at 206040s. Neither f1 nor f0 are
observable. Looking at this behavior, after the structural
learning, five places can be expected.

A part of the data obtained with the simulated system is
shown in Figure 6(a). The first column is the timestamp
of the sample. The second, third and fourth columns are
the water level in the first, second and third tanks. The
last column indicates the occurrences of events. When
an event occurs in the data, it will be memorized until

Fig. 4. Multimode representation of the three-tank system

Fig. 5. The simulated scenario

the occurrence of another event. For example, the event
openv13 occurred at t = 0, and is memorized until the
event closev13 at t = 309.

(a)

(b)

Fig. 6. Example of data before (a) and after (b) normal-
ization

For illustration, the data given in Figure 6(a) are shown
post normalization in Figure 6(b). The first column re-
mains unchanged as it corresponds to the timestamps of
data. Columns 2, 3 and 4 were normalized between 0 and 1.
The last column is split into two columns: one for the event
openv13 and one for closev13. Each of these columns takes
the value 1.0 when the corresponding event has occurred
and 0.0 otherwise.

The normalized data are used by DyClee, configured with
a chosen size of the micro clusters equals to 0.2. This value
was obtained empirically.

The results obtained by DyClee are shown in Figure 7: 4
clusters are obtained. The results from DyClee are then
interpreted to learn the HtPN structure. For each of the
four clusters identified by DyClee, a place pi is created,
with i ∈ [1..4]. Five transitions are created by using
Algorithm 1: p1 → p2, p2 → p1, p1 → p4, p4 → p3 and
p3 → p4. Figure 8 illustrates the learned HtPN structure
with places and transitions.

The clusters identified by DyClee can be compared to the
true modes of the simulated system illustrated in Figure 5.



Fig. 7. Clusters identified by Dyclee

Fig. 8. Obtained HtPN structure

First, looking at both figures, mode Nom1 can be linked
to place p1 and mode Nom2 can be linked to place p2.
The injection of fault f1 can be noticed in Figure 7 as
the change to places p3 and p4. Although unobservable,
fault f1 impacts the behavior of the water level in tank
T1. However, fault f0 goes unnoticed as fault f0 represents
the system’s failure and is based on the water level in tank
T2 crossing a given threshold. Fault f0 does not impact
any dynamics of the system, thus it cannot be detected by
DyClee.

The whole multimode representation could not be learned
from observations in the available data. As said earlier, the
learned part corresponds to the red square in Figure 4.

Considering these comments, the learning of the HtPN
structure performed by Dyclee gives satisfying results. It
can model the system’s behavior quite precisely, as we
managed to recover all the multimode representation that
was retrievable with the available data.

5.3 Learning continuous dynamics

All the continuous dynamics associated with the contin-
uous variables are learned during the complete learning
process. The learning process is illustrated only on three
specific sets of samples for the water level in tank T1 by
applying RFR and SVR algorithms for understandability
purposes. The first dataset contains samples from 0 to 309,
which corresponds to the place p1 from the operation start
until the event closev13. The second set contains samples
from 310 to 329 associated with place p2. The last dataset
contains samples from 330 to 370 for which the system

returns in place p1. The results of the dynamics learning
process for the three datasets are shown respectively in
Figures 9, 10 and 11. The real data are represented with
red dots, the fitted SVR with the blue line and the fitted
RFR with the yellow line. For each mode (i.e. a place),
the fitted algorithms are scored using the coefficient of
determination R2 and the computational time and are
compared in Table 1.

Fig. 9. Results for samples [0:309]

Fig. 10. Results for samples [310:329]

Fig. 11. Results for samples [330:370]



Table 1. Comparison of the R2 score and fitting
time

R2 fitting time

samples SVR RFR SVR RFR

0 to 309 0.99356 0.99997 0.7ms 6.7ms

310 to 329 0.98908 0.99604 0.4ms 4.4ms

330 to 370 0.68164 0.99003 0.3ms 4.4ms

For this particular application, the SVR is usually faster
by a factor 10 but has a very slightly inferior R2 to the one
of RFR, except for the samples 330 to 370 for which its R2

shows that the fitted model cannot convey the dynamics
of the system.

It can also be noticed that the continuous dynamic for
h1 learned from samples 0 to 309 is very different from
the continuous dynamics learned from samples 330 to
370, even if it is considered as the same place p1. This
can be explained by the fact that samples 0 to 309 can
be associated with an initialization phase in the system
behavior. Considering this, an additional place could be
added in the set P of the HtPN model and associated with
the samples identified as the initialization phase in the
system behavior. In this case, a place p0 and a transition
from p0 to p1 are created.

A similar process could have been applied to learn the set
D of degradation functions based on the time of failure
of the system. However, as it is not the focus of this first
approach, it was left for future work.

6. CONCLUSION

This article presents a method to learn a hybrid model for
system monitoring from data. The HtPN formalism has
been chosen to perform hybrid system health monitoring
under uncertainty because of its capability to represent
the evolution of different hypotheses on the hybrid system
health state thanks to parallelism. However, the learning
process could be applied to other formalisms for hybrid
systems. The first step of the learning method focuses on
the global HtPN structure comprised of a set of places
P , a set of transitions T and a set of arcs A using
the DyClee clustering method. The second step aims at
learning continuous dynamics associated with each place
of the obtained structure. Continuous dynamics C are
learned through RFR and SVR regression algorithms. The
proposed learning method was applied on a three tank
example. Based on simulation data, a hybrid model was
learned and compared to the a priori known model. The
results obtained are satisfying as the learned model fits
what was expected given the available data.

Future work will focus on the learning of the missing parts
of the model and the possibility to learn and improve a
known model. Although missing, the sets E,X and M0 can
be easily retrieved from the inputted raw data and are thus
considered easy to obtain. The retrieval of the sets Guard,
Jump, Γ, and D, however, will be the core of our future
works as it appears to require thorough work. Moreover,
the learnability of the process has to be defined and
thoroughly investigated. Finally, the relationship between
quantity and quality of data and the relevance of the model
should be studied.
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