
HAL Id: hal-03282377
https://laas.hal.science/hal-03282377v1

Preprint submitted on 9 Jul 2021 (v1), last revised 21 Apr 2022 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Hybrid Model Learning for System Health Monitoring
Amaury Vignolles, Elodie Chanthery, Pauline Ribot

To cite this version:
Amaury Vignolles, Elodie Chanthery, Pauline Ribot. Hybrid Model Learning for System Health
Monitoring. 2021. �hal-03282377v1�

https://laas.hal.science/hal-03282377v1
https://hal.archives-ouvertes.fr


Hybrid Model Learning for System Health Monitoring

Amaury Vignolles1,2, Elodie Chanthery1,2 and Pauline Ribot1,3

Abstract— Obtaining a relevant model for a complex system
is striven for in the Health Management community, as it
allows to precisely monitor the health state of the system. This
article introduces a method to obtain a hybrid model under
the Heterogeneous Petri Net formalism for a system, using
only data. The method is comprised of two steps, the learning
of the Discrete Event System (DES) structure of the system
using a clustering algorithm, then the learning of the continuous
dynamics contained in the system and its various functioning
modes using two regression algorithms. The method is applied
on an academic example.

I. INTRODUCTION

Health monitoring consists in estimating and predicting the
health state of a system. The concept of health state is linked
to either the degradation of a system or the occurrence of a
fault. A fault is a non-acceptable deviation from a character-
istic property or a parameter of the system. It is unobservable
by nature: its occurrence is undetected by the sensors. System
health monitoring is performed by integrating diagnosis
and prognosis capabilities. Diagnosis aims at detecting a
fault occurrence and precisely locating it in the system.
Prognosis aims at predicting fault occurrences in order to
determine the remaining useful life of the system before
failure. Model-based health monitoring obviously requires a
precise model of the system dynamics describing its behavior
and its degradation. However, having a precise model is
yet an utopia for most systems, and is what the health
management society is striving for. Nowadays, most models
are either imperfect, incomplete or nonexistent and solely
data is available. When looking at the latter, a system for
which a sufficient amount of data is available or obtainable
is considered. This amount of data can lead to a model
to perform health monitoring or the improvement of an
existing one. The studied systems are complex systems and
deal both with continuous and discrete data. Their behavior
can be represented by a multimode representation by using
for example hybrid automaton [Henzinger, 2000]. For health
monitoring purpose, a functioning mode of the system is
the combination of one discrete state with continuous and
degradation dynamics. This multimode representation can
then be transformed into an Heterogeneous Petri Nets (HtPN)
model. The HtPN formalism is an extension of the Petri
Net formalism where the places represent the different func-
tioning modes with associated continuous and degradation

*This work was not supported by any organization
1All authors are with CNRS, LAAS 7 avenue du colonel Roche,

F-31400 Toulouse, France amaury.vignolles@laas.fr
elodie.chanthery@laas.fr pauline.ribot@laas.fr

2Amaury Vignolles and Elodie Chanthery are with INSA Toulouse, F-
31400 Toulouse, France

3Pauline Ribot is with UPS, F-31400 Toulouse, France

dynamics. This formalism was chosen to perform hybrid
system health monitoring under uncertainty because of its
capability to represent the evolution of different hypotheses
on the hybrid system health state thanks to parallelism.
However, the learning process could be applied to other
formalisms for hybrid systems like hybrid automata.

This paper proposes a methodology to learn a hybrid
model for system health monitoring using the formalism of
HtPN. The first step of the methodology consists in obtaining
the Petri Net structure, represented by places and transitions,
using a clustering method. In an HtPN, each functioning
mode is associated to continuous and degradation dynamics.
Hence, for each of the modes, regression algorithms such
as Support Vector Regression (SVR) and Random Forest
Regression (RFR) are applied to learn continuous dynamics
of the system.

The paper is organized as follows. Section 2 gives a state
of the art of existing methods used to learn models of differ-
ent types (hybrid, discrete or continuous). Section 3 presents
the HtPN formalism used for health monitoring purposes.
Section 4 presents the proposed learning methodology to
obtain a hybrid model under the HtPN formalism. Section
5 illustrates the application of the methodology and gives
results for an academic example, the water tanks. Finally
Section 6 presents some conclusion and perspectives.

II. RELATED WORK

A. Learning a hybrid model

To learn a hybrid model, different methods can be used.
In [Lauer and Bloch, 2008], switched and non linear hy-
brid systems are learned using the Support Vector Machine
(SVM) and Support Vector Regression (SVR) frameworks.
Both of these techniques are based upon kernels. The SVR
algorithm tries to find a function wixi such that the highest
number of data points are contained in the interval [wixi −
ε, wixi + ε], with wi the coefficient of the model, xi the
features of the data, and ε ∈ R the desired error. A new reg-
ularized technique for the identification of piecewise affine
systems is proposed in [Pillonetto, 2016]. This technique,
named Hybrid Stable Spline algorithm (HSS) uses the stable
spline kernel to model the impulse responses of submod-
els as zero-mean Gaussian processes. [Feng et al., 2010]
focuses on identifying discrete time affine hybrid systems
with measurement noise. The proposed approach is based
on recasting the problem into a polynomial optimization
form and exploiting its inherent sparse structure to obtain
computationally tractable problems. However, the learned
systems in these articles have one major drawback: they
cannot include parallelism. As the final objective of our work



is to monitor the system health state under uncertainty, it
requires to follow different hypotheses: the parallelism is thus
a necessary feature in the learned model.

Another possibility to learn hybrid models is obviously to
merge techniques used to learn discrete event models and
techniques used to learn continuous dynamics.

B. Learning a discrete event model

To learn the structure of a DES, event based methods are
mostly used. An example to learn a Petri Net (PN) can be
found in [Dotoli et al., 2008]. Using the observations of the
events and the available output vectors, a PN modeling the
DES is obtained through an integer linear programming prob-
lem or an identification algorithm depending on whether the
sets of places and transitions are known beforehand. Another
example can be found in [Moreira and Lesage, 2019] where
a Deterministic Automaton with Outputs and Conditional
Transitions (DAOCT) is computed using observed fault-
free paths. However, these learning methods fits only for
DES, where all data are discrete events, but not for hybrid
systems where continuous conditions may induce a health
state change. Thus, we had to look at more complex ways
to learn a DES.

With a clustering method, both continuous dynamics vari-
ations and discrete events can impact the creation of the DES
structure. However, not all methods are usable in our case.
For instance, clustering methods requiring a known number
of outputted clusters, such as K-means, cannot be used. As a
matter of fact, even if the size of clusters has to be decided,
a fixed number of cluster would be limiting, where a size
could lead to improvement of the knowledge on the system.
To meet this need, the DyClee algorithm has been proposed
for tracking evolving environments with dynamic clustering.
DyClee is presented in detail in [Roa et al., 2019]. It is a two
stage clustering algorithm, one based on distance and one on
density. Each sample is assigned to a micro cluster following
the L1−norm in a first stage. Then, in a second stage, each
micro cluster is assigned a density between three choices:
low, medium or high. This density is used to output the final
clusters. The final clusters are comprised of connected high
density micro clusters for the inside and either medium or
high density micro clusters for the border. The low density
micro clusters may be considered as outliers. From these
clustering results, it has be shown in [Barbosa et al., 2017]
that a Timed Automaton could be retrieved to model the
system, using a parallel between the clusters created and the
states of the automaton. Based on this knowledge and the
availability of experts to further improve the algorithm, the
DyClee algorithm was chosen as a base to learn the DES
structure of our hybrid model.

C. Learning continuous dynamics

Concerning the learning of continuous dynamics, the
gradient descent method is probably one of the most used
method to learn parameters to fit a set of data. In the
health monitoring context, [Tamssaouet et al., 2020] aims at
prognosing a system. Their work is based on an Inoperability

Input-Output model which measures the distance between the
current state of the system and the failure state. Gradient
descent is used to tune the parameters of the model by
comparing the inoperability estimated by the model and
the one measured. However, the gradient descent method
presents one major problem. As a matter of fact, in order
to tune the parameters of the function, the function by itself,
or at least its shape, must be known, which is not always
our case. Hence, the gradient descent method is not suitable
for our needs.

Neural networks are a commonly used machine learning
algorithm that can be used for a wide range of purpose.
They can be used to predict an output to an unknown or
complex function as they are in [Djedidi and Djeziri, 2020],
where a Nonlinear Autoregressive Network with eXogenous
inputs (NARX) model measuring the power consumption of
a phone is learned. Neural networks can be used to learn
continuous dynamics but they have a high need of hyper-
parameter tuning, which is a major drawback.

As explained in the first subsection, SVR can
also be used to learn continuous dynamics. For
example, it is used for system identification in
[Drezet and Harrison, 1998] or [Zhang and Xi, 2004].
As stated in [Awad and Khanna, 2015], where more
detailed information are available on SVR, this method
has excellent generalization capability and does not need a
complex tuning phase.

Another solution is to use Random Forest Regression
(RFR) [Liaw et al., 2002]. It consists in averaging the pre-
diction of decision trees. The data are randomly distributed
among various decisions trees, which each give a prediction.
All these predictions are then averaged and the obtained
value is outputted. The RFR main advantages are that it is
robust against overfitting as well as quite able to generalize.
RFR only has two hyper-parameters to set and the obtained
results are not that sensitive to them.

Looking at the related work, we propose a new methodol-
ogy mixing DES structure and continuous dynamics learning
techniques to obtain hybrid system models. As underlined in
the DES structure learning part, the DyClee algorithm seems
to be the best suited for our needs as it does not need to
know the number of clusters before learning and fits dynamic
processes. As for continuous dynamics, both SVR and RFR
methods will be implemented and tested because they both
have generalization capability and do not need a complex
tuning phase.

III. HETEROGENEOUS PETRI NETS FORMALISM

This section describes the Heterogeneous Petri Nets
(HtPN) formalism that can be used for health monitoring
purposes. This formalism is extended from the Petri Nets
for their ability to represent parallelism. As a matter of
fact, when applying diagnosis and prognosis algorithms for
system health monitoring, the ability to follow multiple
tokens is necessary.

An Heterogeneous Petri Net (HtPN) is formally defined
as HtPN =< P, T,A,Guard, Jump,E,X,Γ, C,D,M0 >



where:
• P is the set of places;
• T is the set of transitions;
• A ⊂ (P × T ∪ T × P ) is the set of arcs;
• Guard is the set of conditions associated with the

incoming arcs of transitions;
• Jump is the set of assignments associated with the

outgoing arcs of transitions;
• E is the set of event labels: E = Eo ∪ Euo, where Eo

is the set of observable event labels and Euo is the set
of unobservable event labels;

• X ⊂ RnN is the state space of the continuous state vec-
tor, where nN ∈ N+ is the finite number of continuous
state variables;

• Γ ⊂ RnD is the state space of the degradation state vec-
tor, where nD ∈ N+ is the finite number of degradation
state variables;

• C is the set of continuous system dynamics;
• D is the set of degradation system dynamics;
• M0 is the initial marking of the network.
The main subsets of an HtPN are briefly summarized

hereafter. An example of an HtPN is presented in Figure 1(a).
The represented machine has to empty bottles in two stor-
ages represented by tokens in p3 and p4. It only has one
mechanism to empty the products, which is represented by
p1 when available and p2 when busy. The bottles in p3 and
p4 are automatically filled up. The one in p3 is emptied when
it reaches a given quantity of liquid. The one in p4 is emptied
when the user asks for it with the empty command. When the
machine is working, if its degradation is greater than 200,
the system enters a failure state represented by p5.

A. Places and tokens

A place p ∈ P in a HtPN is associated with a set of
equations Cp ∈ C modeling the system continuous dynamics
and the associated noise (uncertainties on the evolution and
on the measurements) as well as a set of equations Dp ∈ D
modeling the system degradation dynamics:

p =

{
Cp

Dp

}
(1)

The continuous dynamics Cp represents the evolution of the
continuous state vector x when the system is in the place p.
The system degradation dynamics Dp represents the evolu-
tion of the degradation state vector γ when the system is in
the place p.

Equations associated to the places of the HtPN in Fig-
ure 1(a) are presented in Table 1(b). The symbol − means
that no dynamic is associated to the place. For example,
places p1 and p5 have neither continuous nor degradation
dynamics. Places p3 and p4 only have continuous dynam-
ics. Place p2, on the other hand, has both continuous and
degradation dynamics.

A place p contains tokens that have three attributes:
< δhk , π

h
k , φ

h
k >, representing respectively discrete, contin-

uous and degradation information for a token h at time

p1

p2

p3

p4

p5

t1

(−, > 75,−); 1

t2

(= empty,−,−); 1

(−,−,= 0); 1
t3

(−,= 0,−); 1

t4

(−,−, > 200); 1

(a)

Places Continuous dynamics Degradation dynamics
p1 - -
p2 xk+1 = xk − 1 γk+1 = γk + 3
p3 xk+1 = xk + 3 -
p4 xk+1 = xk + 2 -
p5 - -

(b)

Fig. 1: Example of an HtPN (a) and dynamics associated to
its places (b)

k. These attributes evolve according to discrete events and
dynamics associated to the place the token h belongs to.

Initial marking M0 of the HtPN is the distribution of
tokens in the different places representing the system initial
conditions. Each token carries its initial discrete information
(the set of events that have already occurred), its initial con-
tinuous information and its initial degradation information.

B. Arcs

The arcs of an HtPN are divided into two sets: A =
A•t ∪ At•, where A•t contains all the incoming arcs and
At• contains all the outgoing arcs of transitions.

An incoming arc ap,t ∈ A•t going from place p ∈ P to
transition t ∈ T is associated to a set Ωp,t ∈ Guard:

Ωp,t =
{

(ΩS
p,t,Ω

N
p,t,Ω

D
p,t); ρp,t

}
(2)

where (ΩS
p,t,Ω

N
p,t,Ω

D
p,t) represents respectively a discrete,

a continuous and a degradation condition, and ρp,t ∈
N+ is the weight of the arc. For example, in Fig-
ure 1(a), the arc a(p3, t1) is associated to the set Ωp3,t1 ={

(ΩS
p3,t1 ,Ω

N
p3,t1 ,Ω

D
p3,t1); ρp3,t1

}
, with:

• ΩS
p3,t1 = −, which means that no discrete condition is

defined,
• ΩN

p3,t1 => 75, which means that the continuous state
of the token in p3 has to be greater than 75,

• ΩD
p3,t1 = −, which means that no degradation condition

is defined,



• ρp3,t1 = 1, which means that only 1 token will be
consumed during the transition firing.

A transition can be fired if the set of conditions Ωp,t is
satisfied for each of its input arcs. If the conditions for arcs
ap3,t1 and ap1,t1 are satisfied the transition t1 can be fired
by consuming one token in p3 and one token in p1.

An outgoing arc at,p ∈ At• going from a transition t ∈ T
to a place p ∈ P is associated to a set Ωt,p ∈ Jump:

Ωt,p =
{

(ΩS
t,p,Ω

N
t,p,Ω

D
t,p); ρt,p

}
(3)

where (ΩS
t,p,Ω

N
t,p,Ω

D
t,p) represents respectively a discrete, a

continuous and a degradation assignment and ρt,p ∈ N+ is
the weight of the outgoing arc.

During the transition firing, consumed tokens are moved
in the output places of the fired transition t. The attributes of
these tokens remain constant or are updated. This is defined
by the set of assignments Ωt,p ∈ Jump associated with the
outgoing arc. For example, in Figure 1(a), the arc at2,p2

is as-
sociated to the set Ωt2,p2 =

{
(ΩS

t2,p2
,ΩN

t2,p2
,ΩD

t2,p2
); ρt2,p2

}
,

with:
• ΩS

t2,p2
= −, which means that the discrete information

of the token will not be updated,
• ΩN

t2,p2
= −, which means that the continuous state of

the token will not be updated,
• ΩD

t2,p2
= 0, which means the degradation state of the

token going through a(t2, p2) will be set to 0,
• ρt2,p2 = 1, which means that only 1 token will be placed

in p2 after the transition firing.
For a more detailed description of the formalism, please

refer to [Vignolles et al., 2021] where the HtPN are intro-
duced.

IV. METHODOLOGY FOR LEARNING AN HTPN

Fig. 2: Global idea for HtPN learning

The process of HtPN learning is presented in Figure
2. It requires data and is performed offline because the
data normalization, the first step of the process, requires

to know the maximum and the minimum values of each
feature of the data. As the process is offline, the number
of samples used is finite. However, if the minimum and
maximum values are known beforehand, the process can
be done online. Data represent the observable variables of
the system, usually acquired through sensors and actuators.
In the case of non-faulty sensors, data truely represent the
behavior of the system. These normalized data will then be
given to the Dynamic Clustering algorithm, DyClee, in a
second step. The results of Dyclee are then interpreted and
used to generate the structure of the HtPN. The combination
of these three steps determines the number of places and
transitions for the structure. A fourth step aims at learning the
continuous dynamics of the system for each identified place
of the obtained structure by applying regression algorithms
using the data. This step outputs the continuous dynamics C
associated to each place of the HtPN structure.

A. Input data

The input data used to learn the HtPN structure are the
observable variables of the system. Some of these variables
are sampled real values, like the water level in a tank, a
pressure or a temperature. Some others are events, like the
controls of a valve (open or close) or pressing a on/off button.
An observable event is an event whose occurrence is detected
from sensors. Input data are contained in a i× j matrix. The
line i corresponds to a sample of the data. The column j
corresponds to an observable variable of the data. In the
case of discrete events, different events might be present on
the same column, for example the open and close controls
on the same valve. The set of samples is denoted S.

B. Learning the HtPN structure

1) Normalization: Raw data require normalization before
the clustering process, in order for each feature to be equally
important in the process. As a matter of fact, if a column of
the data matrix ranges from 0 to 2 and another from 0 to 105,
the first column might end up being neglected by the program
as the values of the second column are more important. Data
normalization modifies the input data file by:

• Creating a new column for each of the discrete events
and converting the absence or presence of the event in
a numerical value, respectively 0.0 and 1.0. This will
ensure that each of the events has its own column;

• Normalizing the values with the following equation:

data[i, j] =
data[i, j]−min[j]

max[j]−min[j]
(4)

with max[j] and min[j] respectively the maximum and
the minimum values of the jth column and data[i, j]
the value of the data of the jth column and ith line.

2) DyClee: Once normalized, the data are given to Dy-
Clee along with a second file containing the user parameters
for DyClee process such as the desired size of the micro
clusters. The size of the micro clusters needs to be chosen
by an expert. DyClee outputs a set Cl of clusters, to which
are assigned the data samples.



3) Interpretation of DyClee results: Clustering results
obtained with DyClee are automatically processed to output
an HtPN structure. The pseudo code behind the interpretation
of DyClee results is presented in Algorithm 1. For each
cluster Cli ∈ Cl, a place pi is created.
Then, the transitions linking these places are learned.

Algorithm 1 Obtaining the HtPN structure

Input: Cl, S
Output: HtPN structure : P, T,A

1: P = {}, T = {}, A = {}
2: for all Cli ∈ Cl do
3: P ← P ∪ Create(pi)
4: end for
5: actp ← ClS[0]

6: cpt = 0
7: created transitions = {}
8: for all s ∈ S do
9: if Cls! = actp then

10: cpt+ = 1
11: else
12: cpt = 0
13: end if
14: if cpt == 3 then
15: if actp Cls /∈ created transitions then
16: [T,A] ← [T,A] ∪ C t(actp Cl s , actp ,Cl

s)
17: created transitions.add(actp Cl

s)
18: actp ← Cls

19: end if
20: end if
21: end for

Let S[0] be the first sample of the sample set S. The
cluster in which it is affected is noted ClS[0] and is saved
in the variable actp. A counter cpt which initial value is 0
and an empty set of created transitions are defined. Then, for
each sample s in S, the cluster Cls to which it was affected
by DyClee is compared with the cluster saved in actp. As
long as Cls == actp, the value of cpt remains 0. When
a sample is assigned to another cluster (i.e. Cls! = actp),
cpt is incremented. When this counter reaches 3, clusters
in actp and Cls are considered linked, and a transition
is created, named actp Cl

s. The place associated to the
cluster actp is linked as the input of this transition, and
the place associated to the cluster Cls as the output. The
created transition is saved in the set created transitions
to avoid creating multiple times a same transition if the
samples oscillate between two clusters. The counter cpt was
implemented to avoid creating false transitions because of
outliers. As a matter of fact, if an outlier is present (it is
supposed that it contains less than 3 consecutive samples),
the counter will prevent the creation of a transition linking
the outlier with the rest of the structure, as it will not reach
the transition creation threshold.

Going back to the formal definition of an HtPN, after
learning the HtPN structure with DyClee, the following sets

describing the HtPN structure are completed:
• P , the set of places;
• T , the set of transitions;
• A ⊂ (P × T ∪ T × P ), the set of arcs.

C. Learning continuous dynamics

To learn the system continuous dynamics, two regression
algorithms are applied: the Support Vector Regression (SVR)
and the Random Forest Regression (RFR). Both algorithms
are implemented using the toolbox Scikitlearn for Python.
The advantage of using different algorithms is that the user
is fully able to tune the learning. The user can then decide if
the faster or the better fitted algorithm is chosen. To represent
the fitting a coefficient of determination R2 is used:

R2 = 1− (ytrue − ypred)2

(ytrue − ytruemean)2
(5)

where ytrue is the true value of the data and ypred is the value
predicted by the learned model. The closer the coefficient
R2 is to 1, the better the algorithm fits the data. It provides
a measure of how well the learned model can replicate the
observed outcomes. For this article, the latter choice has been
made. This means that when building the final HtPN, each
continuous dynamic will be represented by the learned model
that better fits the data.

The continuous dynamics learning is done place by place
giving the set C of continuous dynamics of the system as
referenced in the formal definition of the HtPN.

The set of equations Cp associated to a place p is a fitted
SVR or RFR model:

Cp : yk = RM(xk), (6)

where RM represents the obtained regressive model and
RM(xk) is the prediction given by this model for a particular
continuous state vector x at time k.

Although not yet implemented, a similar process is ex-
pected when learning the set D of degradation functions.
However, the challenge in learning the degradation function
is the time window considered, as degradation dynamics are
usually much slower than continuous dynamics describing
the system functioning.

V. APPLICATION AND RESULTS RESULTS

A. System description

The benchmark used to illustrate the learning of a hybrid
model is a three-tank system described in Figure 3. The data
are obtained from one single simulation of the system. The
a priori knowledge of the model is used for an easy process
verification. As a matter of fact, this illustration is a case
study in order to ensure that the learning process behaves as
expected.

The tanks are configured in a series circuit. Flow Q1(t)
delivered by the pump in tank T1 is supposed to be constant.
Tank T2 empties with flow Q20(t). The available measure-
ments at time t are the water levels hi in each tank Ti.
Valves v13 and v32 allow the water to flow between tanks.
Only valve v13 is controlled through discrete control inputs



Fig. 3: Three-tank system description

openv13 and closev13 . A leak may occur in tank T1 and
is represented by an unobservable fault event f1. The goal
of the system is to maintain the water level in tank T2
greater than a minimum value h2min

. The leak in tank T1 is
considered too large and therefore leads to the system failure
when f1 occurs because the system is not able to achieve the
goal anymore.

The three-tank multimode representation is composed of
six different modes as illustrated in Figure 4. The initial place
is Nom1, in which both valves are open. When the command
closev13 occurs, the system enters mode Nom2 in which v13
is closed. The system can go back to Nom1 when openv13

occurs. From Nom1 (resp. Nom2), the system can switch
to Deg2 (resp. Deg3) if fault f1 occurs. Finally, from Deg2
and Deg3, the system may enter Fail4 and Fail3 if the
water level in tank T2 becomes smaller than the minimum
value h2min

. This is represented with the occurrence of a
fault event f0. The modes in the red square in Figure 4 are
the a priori learnable modes of our system, be it directly
through the occurrence of events (for closev3 and openv13 )
or through a modification in dynamics (for the occurrence
of f1).

Fig. 4: Multimode representation of the three-tank system

B. Learning the HtPN structure

The simulated scenario is shown in Figure 5. 310min after
the initialization, v13 is closed every hour during 20min in
order to perform a water treatment in T1 . Fault f1 is injected
at 201840s and f0 occurs at 206040s. Neither f1 nor f0

Fig. 5: The simulated scenario

are observable. Looking at this behavior, after the structural
learning, five places can be expected.

A part of the data obtained with the simulated system is
shown in Figure 6(a). The first column is the time stamp
of the sample. The second, third and fourth columns are
the water level in the first, second and third tank. The last
column indicates the occurrences of events. When an event
occurs in the data, it will be memorized until the occurrence
of another event. For example, the event openv13 occurred
at t = 0, and is memorized until the occurrence of the event
closev13 at t = 309.

(a)

(b)

Fig. 6: Example of data before (a) and after (b) normalization

For illustration, the data given in Figure 6(a) are shown
post normalization in Figure 6(b). The first column remains
unchanged as it corresponds to the time stamps of data. The
values in columns 2, 3 and 4 were normalized between 0
and 1. The last column is split in two columns: one for the
event openv13 and one for the event closev13. Each of these
columns takes the value 1.0 when the corresponding event
has occurred and 0.0 otherwise.

The normalized data are used by DyClee configured with
a chosen size of the micro clusters equals to 0.2. This value
was obtained empirically.

The results obtained by DyClee are shown in Figure 7: 4
clusters are obtained.

The results from DyClee are then interpreted to learn the
HtPN structure. For each of the four clusters identified by
DyClee, a place pi is created, with i ∈ [1..4]. Five transitions
are created by using Algorithm 1: p1 → p2, p2 → p1, p1 →

Fig. 7: Clusters identified by Dyclee



Fig. 8: Obtained HtPN structure

p4, p4 → p3 and p3 → p4. Figure 8 illustrates the learned
HtPN structure with places and transitions.

The clusters identified by DyClee can be compared to the
true modes of the simulated system illustrated in Figure 5.
First, looking at both figures, mode Nom1 can be linked to
place p1 and mode Nom2 can be linked to place p2. The
injection of fault f1 can be noticed in Figure 7 as the change
to places p3 and p4. As a matter of fact, although being
unobservable, fault f1 impacts the behavior of the water level
in tank T1. However, the fault f0 goes unnoticed as fault f0
represents the failure of the system and is based on the water
level in tank T2 crossing a given threshold. Fault f0 does not
impact any dynamics of the system, thus it cannot be detected
by DyClee.

The whole multimode representation could not be learned
from observations in the available data. As said earlier, the
learned part corresponds to the red square in Figure 4.

Considering these comments, the learning of the HtPN
structure performed by Dyclee gives satisfying results. It is
able to model the behavior of the system quite precisely, as
we managed to recover all the multimode representation that
was retrievable with the available data.

C. Learning continuous dynamics

During the complete learning process, all the continu-
ous dynamics associated with the continuous variables are
learned. For understandability purposes, we illustrate the
learning process only on three specific sets of samples for the
water level in tank T1 by applying RFR and SVR algorithms.
The first dataset contains samples from 0 to 309 which

correspond to the place p1 from the operation start until
the occurrence of event closev13. The second set contains
samples from 310 to 329 associated to place p2. The last
dataset contains samples from 330 to 370 for which the
system returns in place p1. The results of the dynamics
learning process for the three datasets are shown respectively
in Figures 9, 10 and 11. The real data are represented with
red dots, the fitted SVR with the blue line and the fitted RFR
with the yellow line. For each mode (i.e. a place), the fitted
algorithms are scored using the coefficient of determination
R2 and the computational time and are compared in Table I.

Fig. 9: Algorithms results for samples [0:309]

Fig. 10: Algorithms results for samples [310:329]

R2 fitting time
samples SVR RFR SVR RFR
0 to 309 0.99356 0.99997 0.7ms 6.7ms

310 to 329 0.98908 0.99604 0.4ms 4.4ms
330 to 370 0.68164 0.99003 0.3ms 4.4ms

TABLE I: Comparison of the R2 score and fitting time

For this particular application, the SVR is usually faster



Fig. 11: Algorithms results for samples [330:370]

by a factor 10 but has a very slightly inferior R2 to the
one of RFR, except for the samples 330 to 370 for which
its R2 shows that the fitted model cannot really convey the
dynamics of the system.

It can also be noticed that the continuous dynamic for h1
learned from samples 0 to 309 is very different from the
continuous dynamics learned from samples 330 to 370, even
if it is considered as the same place p1. This can be explained
by the fact that samples 0 to 309 can be associated with
an initialization phase in the system behavior. Considering
this, an additional place could be added in the set P of the
HtPN model and associated with the samples identified as
the initialization phase in the system behavior. In this case,
a place p0 and a transition from p0 to p1 are created.

VI. CONCLUSION

This article presents a method to learn hybrid model for
system monitoring from data.

The HtPN formalism is chosen to perform hybrid system
health monitoring under uncertainty because of its capability
to represent the evolution of different hypotheses on the
hybrid system health state thanks to parallelism. However,
the learning process could be applied to other formalisms
for hybrid systems like hybrid automata. The first step of
the learning method focuses on the global HtPN structure
comprised of a set of places P , a set of transitions T and
a set of arcs A using the DyClee clustering method. The
second step aims at learning continuous dynamics associated
to each place of the obtained structure. Continuous dynamics
C are learned through RFR and SVR regression algorithms.
The proposed learning method was applied on a three tank
example. Based on simulation data, a hybrid model was
learned and compared to the a priori known model. The
results obtained are satisfying as the learned model fits what
was expected given the available data.

Future work will focus on the learning of the missing parts
of the model, as well as the possibility to learn and improve a
known model. Although missing, the sets E,X and M0 can

be easily retrieved from the inputted raw data and are thus
considered easy to obtain. The retrieval of the sets Guard,
Jump, Γ, and D, however, will be the core of our future
works as it appears to require thorough works. Moreover, the
learnability of the process has to be defined and thoroughly
investigated.

REFERENCES

[Awad and Khanna, 2015] Awad, M. and Khanna, R. (2015). Support
vector regression. In Efficient learning machines, pages 67–80. Springer.

[Barbosa et al., 2017] Barbosa, N. A., Travé-Massuyès, L., and Grisales,
V. H. (2017). Diagnosability improvement of dynamic clustering through
automatic learning of discrete event models. IFAC-PapersOnLine,
50(1):1037–1042.

[Djedidi and Djeziri, 2020] Djedidi, O. and Djeziri, M. A. (2020). Power
profiling and monitoring in embedded systems: A comparative study and
a novel methodology based on narx neural networks. Journal of Systems
Architecture, 111:101805.

[Dotoli et al., 2008] Dotoli, M., Fanti, M. P., and Mangini, A. M. (2008).
Real time identification of discrete event systems using petri nets.
Automatica, 44(5):1209–1219.

[Drezet and Harrison, 1998] Drezet, P. and Harrison, R. (1998). Support
vector machines for system identification.

[Feng et al., 2010] Feng, C., Lagoa, C. M., and Sznaier, M. (2010). Hybrid
system identification via sparse polynomial optimization. In Proceedings
of the 2010 American Control Conference, pages 160–165. IEEE.

[Henzinger, 2000] Henzinger, T. (2000). The theory of hybrid automata.
In Verification of Digital and Hybrid Systems, pages 265–292. Springer.

[Lauer and Bloch, 2008] Lauer, F. and Bloch, G. (2008). Switched and
piecewise nonlinear hybrid system identification. In HSCC 2008, pages
330–343. Springer.

[Liaw et al., 2002] Liaw, A., Wiener, M., et al. (2002). Classification and
regression by randomforest. R news, 2(3):18–22.

[Moreira and Lesage, 2019] Moreira, M. V. and Lesage, J.-J. (2019). Dis-
crete event system identification with the aim of fault detection. Discrete
Event Dynamic Systems, 29(2):191–209.

[Pillonetto, 2016] Pillonetto, G. (2016). A new kernel-based approach to
hybrid system identification. Automatica, 70:21–31.

[Roa et al., 2019] Roa, N. B., Travé-Massuyès, L., and Grisales-Palacio,
V. H. (2019). Dyclee: Dynamic clustering for tracking evolving environ-
ments. Pattern Recognition, 94:162–186.

[Tamssaouet et al., 2020] Tamssaouet, F., Nguyen, K. T., Medjaher, K., and
Orchard, M. (2020). A contribution to online system-level prognostics
based on adaptive degradation models. In ePHM Conf., volume 5.

[Vignolles et al., 2021] Vignolles, A., Chanthery, E., and Ribot, P. (2021).
Modeling complex systems with Heterogeneous Petri Nets (HtPN).
working paper or preprint.

[Zhang and Xi, 2004] Zhang, L. and Xi, Y. (2004). Nonlinear system iden-
tification based on an improved support vector regression estimator. In
International Symposium on Neural Networks, pages 586–591. Springer.


	Introduction
	Related work
	Learning a hybrid model
	Learning a discrete event model
	Learning continuous dynamics

	Heterogeneous Petri Nets Formalism
	Places and tokens
	Arcs 

	Methodology for learning an HtPN
	Input data
	Learning the HtPN structure
	Normalization
	DyClee
	Interpretation of DyClee results

	Learning continuous dynamics

	Application and results Results
	System description
	Learning the HtPN structure
	Learning continuous dynamics

	Conclusion
	References

