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Abstract

The high stochasticity of collision cascades makes running large sets of molecular dynamics simulations mandatory to
obtain meaningful statistics. The convergence of the number of defects and of clusters and of the Primary Knock-On
Atom (PKA) penetration depth with respect to the number of simulations in the sets is investigated for PKAs of 1 keV
and 5 keV in Si. Two methods for setting the initial directions of the PKAs are compared: one is entirely based on
randomness and the other integrates symmetry considerations. The latter method eases the convergence of the results.
Larger sets are needed to converge the PKA depth than the number of clusters and defects. We observe that the higher
the energy of the PKA, the harder it gets to reach the convergence. We find that large sets of simulations enables to get

rid of the influence of the initial position of the PKA.
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1. Introduction

Over the past 30 years, Molecular Dynamics (MD) has
become the most popular simulation tool for Displacement
Damage (DD) simulations [1, 2]. The atomistic nature of
the technique associated to the good compromise between
computational cost and accuracy of the physical descrip-
tion allowed by the interatomic potentials are true assets
over Binary Collision Approximation (BCA) techniques
[3]. However, the stochastic nature of the collision cas-
cades is generally badly treated within MD whereas the
very little computational cost of collision cascades simula-
tions with BCA codes enables to perform very large num-
ber of simulations. Depending on the initial direction of
the Primary Knock-on Atom (PKA), the sequences of col-
lisions and therefore the resulting cascades outputs can be
drastically different. If one wants to assess the response of
a material to particle irradiation with MD, underestimat-
ing the high stochasticity of the cascades and thus the need
to perform large number of simulations is a fundamental
issue. To provide with the best picture of the response of
a material, it is necessary to work with results (i.e. mean
values and distributions) obtained with meaningful statis-
tical ensembles. Ensuring the convergence of the results
with respect to the number of simulations performed is
therefore of prime importance.

In spite of this, looking at recently published articles,
no consensus on a satisfactory number of simulations to
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perform, on a strategy to employ to have converged re-
sults or even on the need for a preliminary convergence
study appears. Below is a non-exhaustive list of the cho-
sen methods for setting both the initial directions of the
PKA and the size of the statistical ensembles in recent
MD collision cascades simulations articles: Trung et al.
constructed sets of 10 simulations in NiAl [4], He et al.
based their statistical ensembles on 30 simulations initi-
ated in random directions distinct by a little angle from a
defined direction in GaAs [5], Buchan et al. chose to con-
struct their mean values in graphite over 25 simulations in
definite directions [6], Zarkadoula et al.’s statistics for Ni
and NiFe are based on 12 simulations in random directions
[7], Gao et al. chose to initiate the cascades with random
PKA directions for the 20 simulations performed in GaAs
[8] and Christie et al. chose to do 20 simulations in well
defined directions in graphite [9].

This lack of coherence in the methods employed prob-
ably comes from a lack of studies focused on the specific
aspect of the stochasticity in MD simulations of collision
cascades. To our knowledge, there exists only two papers
dedicated to this subject:

e In 2015, Warrier et al. proved in [10] that for cas-
cades initiated with PKAs of energies in the range of
1 keV to 5 keV whose initial directions are distinct
and randomly chosen, 50-60 simulations are needed
to make the number of displaced atoms stabilize in
W and 60-80 simulations in Cu.

e More recently, Voskoboinikov studied the influence
of the number of simulations performed on the es-
timated number of defects and clusters in surface
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collision cascades in Ni, Al, Ti and their alloys [11]
and provided a minimum number of simulations to
be performed to reach the convergence depending on
the system of interest, the temperature and the en-
ergy of the PKA.

In our research group, Jay et al. [12] and Jarrin et al.
[13, 14] based their statistical ensembles on the large num-
ber of 100 simulations in Si, Ge and Si-Ge alloys. More-
over, like some others did [6, 9] but contrary to what War-
rier et al. did in [10], Jay et al. [12] and Jarrin et al.
[13, 14] took into account the symmetry of the system
when setting the initial directions of the PKAs.

Because the number of simulations needed to have con-
verged results is highly dependent on the system of inter-
est, on the energy of the PKA and on the chosen conver-
gence criterion, it is not possible to give a definite number
of simulations to perform which would be valid for every
possible case. Nevertheless, by studying the convergence
of collision cascades outputs initiated with PKAs of 1 keV
and 5 keV in Si, this article aims at providing the proofs of
the necessity to conduct a preliminary study on the con-
vergence of cascades properties with respect to the number
of simulations performed to assess the truthfulness of the
results. It also demonstrates the necessity to treat the cas-
cades results in a statistically rigorous way and shows the
assets of setting the initial directions of the PKAs con-
sidering the symmetry of the material. In this article,
we demonstrate that the results obtained when carefully
choosing the initial directions of the PKAs using a method
based on the symmetry of the system (described in sec-
tion 2.2 for diamond-like structures) are better converged
than results obtained by randomly setting the initial di-
rections of the PKAs. Finally, it studies the influence of
the initial position of the PKA on the results in Si. This
last aspect is relatively straightforward to check in simple
structures like Si but can become very complex depending
on the crystal structure of the material under investiga-
tion. In section 2 the simulation details and the methods
employed to study the convergence of the results are pre-
sented. The results of the convergence study are presented
and discussed in section 3.

2. Methods

2.1. Molecular Dynamics simulations

The MD simulations have been run using the LAMMPS
code [15]. The cascades are initiated with 1 keV or 5 keV
PKAs in Si. Boxes of 1 000 000 atoms made of 50x50x 50
diamond-like unit cells are employed in both cases. The
simulation boxes are divided into two areas: in the outer
cells the velocities are rescaled to maintain the tempera-
ture at a desired value (thus absorb the thermal wave),
and the inner cells form an NVE ensemble in which the
atoms evolve freely to simulate the collision cascade.

The initialization of the simulation is made by scaling
the velocities of all atoms, such that the overall tempera-
ture is the desired one (300 K in the current work). The
system is equilibrated during 20 ps with a timestep of 1 fs.

As the velocity of the atoms drastically changes through-
out the cascade, the integration timestep has to be changed
during the simulations. Calculations initiated with both
1 keV and 5 keV PKAs are run for 200 ps. We imposed
the condition that no atom moves more than 0.02 A be-
tween two steps of the simulation, with a timestep varying
between 0.01 fs and 1 fs.

The potential employed is the Stillinger-Weber (SW)
one developed in [16]. To better describe short interatomic
distances, the SW potential must be combined to a repul-
sive two-body potential. The chosen repulsive potential
is the Ziegler Biersack Littmark one (ZBL) [17]. SW and
ZBL potentials are combined together through a Fermi
function as in [18]:

Viot(r) = (1 = F(r))Vzpr(r) + F(r)Vsw(r) (1)

where r is the distance between two atoms, V. is the total
potential, Vg, the repulsive ZBL potential, Vsyr the SW
potential and F' the Fermi function used to link the two
potentials. The expression of the Fermi function as well
as its parameters values used for Si can be found in [13].

To account for the electronic effects, the Two Temper-
ature Model is used in combination with MD [19]. The
chosen parameters are detailed in [13] and [14].

2.2. Settings for the convergence study

Some vocabulary needs to be defined for the proper un-
derstanding of this study. The term ”simulation” refers to
a single collision cascade simulation. The term ”set” refers
to a given number of simulations performed to calculate
the statistical quantities of the set. In each simulation of
a set, the initial direction of the PKA is different and its
energy is the same. The size of the set is the number of
simulations in the set.

Two distinct methods are employed to study the con-
vergence:

(i) In the first method, called Random, the initial
directions of the PKAs are randomly chosen.

(ii) In the second method, called Symmetry, a set of
distinct unit vectors (i.e. directions) uniformly distributed
on the surface of a sphere is defined. Only the directions
which are in the minimal space domain inequivalent to
the others by crystalline symmetries have been kept, as
depicted in Fig. 1. The unit sphere surrounding an atom
is therefore divided into 6 symmetric parts. The minimal
space domain is one of these parts. Thus, for each direc-
tion in the minimal space domain, there exists 5 others
perfectly equivalent in the unit sphere. The weight of all
the chosen directions is therefore the same. The python
script for the construction of the directions of Fig. 1 (i.e.
for a diamond structure) is available as a supplementary
material.



Figure 1: Scheme of the minimal space domain in which 100 in-
equivalent directions are constructed. The two inequivalent atomic
sites of the face-centred cubic diamond primitive unit cell are rep-
resented in blue. The inequivalent directions are depicted by long
green arrows and the minimal space domain is delimited by the grey
boundaries. The red small arrows represent the directions symmet-
rically equivalent to the green arrows of the minimal space domain.

The convergence is studied on: the distributions and
the mean values of the number of defects and of the num-
ber of clusters of defects at the end of the cascades and
of the PKA penetration depth. Depending on the ini-
tial direction of the PKA, the size of the cascades can be
very different. In some cases, the PKA or a Secondary
Knock-On Atom (SKA) can find itself in what is called a
channeling direction and travel over long distances without
undergoing any collision. Thus, the size of the simulation
box has to be carefully chosen so that no atom exits the
box, even in the case of channeling. The size of the box
is therefore highly dependent on the energy initially im-
parted to the PKA. During a simulation, if one atom or
more exits the box, the simulation should not be deleted
from the statistics. Actually, the channeling simulations
are important cases which must be part of the statistics
to have a complete picture of the material response. As
a solution, the simulation can be relaunched from its last
non-exited step with a bigger box.

Throughout this article, the number of defects refers
to the number of vacancies or interstitials, not the sum
of the two. The Lindemann criterion [20] is employed for
counting the defects in the damage structures. A discus-
sion on the different existing methods for counting defects
can be found in [1]. It was observed that the ratio of the
number of defects obtained with all the methods, including
Wigner-Seitz and Lindemann, is nearly constant for every
considered cascade. Two defects are in the same cluster
when they are not distant by more than a x v/3/2, a being
the lattice parameter of the system (5.431 A in Si [21]) so
that a cluster of defects is defined as a group of two or

more defects. For a single collision cascade, the PKA pen-
etration depth corresponds to the maximum value of the
projection of the vector linking the initial position of the
PKA to its current position, on the initial velocity vector
of the PKA. It is detailed with a scheme in [13].

The convergence is here considered as a combination of
reproducibility and accuracy. To study the reproducibility
of the simulations, statistical quantities for sets of differ-
ent sizes are compared. Those quantities of interest are the
mean value (u), the minimum value (Min), the first quar-
tile value (Q1), the median or second quartile value (Q2),
the third quartile (Q3) and the maximum value (Max).
The quartile values are defined as follows: 25% of the val-
ues of the statistical distribution lies below the first quar-
tile value (Q1), 50% below the median value (Q2) and
75% below the third quartile (Q3) value. Those statistical
quantities are useful to describe distributions as they al-
low us to investigate the stabilization (i.e. reproducibility)
of the distributions with respect to the number of simula-
tions performed. The accuracy is quantified through the
standard error of the mean (SEM). This quantity measures
the uncertainty in the calculation of a mean value. Rather
than the brute standard error of the mean we employ the
ratio of the standard error of the mean to the mean value
SEM/u (called error coefficient).

3. Results and discussions

For both the Random and Symmetry methods, the dis-
tributions (i.e. box plots) and mean values of the number
of defects, number of clusters and of the PKA penetration
depth for Si PKAs of 1 keV in Si and sets of size 10, 20,
30, 40, 50, 60, 70, 80, 90 and 100 are presented in sec-
tions 3.1, 3.2 and 3.3. For the same set sizes, with the
Symmetry method and with Si PKAs of 5 keV in Si, the
distributions and mean values of the number of defects,
number of clusters and of the PKA penetration depth are
presented in section 3.4. The influence of the lattice site
initially chosen as the position of the PKA is investigated
in section 3.5.

8.1. Convergence of the number of defects for 1 keV PKAs

Results provided in this section are obtained for PKAs
of 1 keV in Si. The mean values of the number of defects
in the Random and Symmetry cases for PKAs of 1 keV
in Si are respectively shown in Fig.2(a) and Fig.2(b). The
box plots of the number of defects in the Random and
Symmetry cases for PKAs of 1 keV in Si are respectively
displayed in Fig.2(c) and Fig.2(d).

Both the box plots and mean values of Fig.2 are sub-
ject to strong variations for simulation sets of size inferior
or equal to 30: the mean values range from 58 to 70 in the
Random case and from 63 to 69 in the Symmetry case.
Between 40 and 70 simulations in the sets, the discrepan-
cies between the mean values are smaller, except in the
Symmetry case (i.e. Fig.2(b)) where a noticeable differ-
ence can be spotted between the sets of size 50 (67 defects)
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(d) Distributions of the number of defects

Mean number of defects in the (a) Random and (b) Symmetry cases and box plots of the number of defects in the Random (c)

and Symmetry (d) cases for 1 keV Si PKAs in Si with respect to the size of the simulation sets (i.e. the number of simulations in the sets).
In (a) and (b), for each size of set, the error bars correspond to -1.96xSEM and 1.96 x SEM. The probability that the real mean value sits
within the error bars range is equal to 0.95. The region of the graphs delimited by the error bars of each set size is shaded. Solid blue lines
are guides to the eye. In (a) and (b), dashed lines correspond to the mean values calculated with all the simulations performed, in each case
(550). In (c) and (d), dashed lines represent linear regressions of the Min and Max values.

and 60 (61 defects). From 70 simulations in the sets, the
mean values of the number of defects are well stabilized
in the Symmetry case (i.e. Fig.2(b)): the mean values
range from 62 to 65 defects. It seems to be the case as
well for the Random case of Fig.2(a) but the mean value
for the set size 100 suffers from a non negligible decrease
compared to the previous value (change of 5 defects be-
tween the set of size 90 and the set of size 100). From sets
of size 30, the distributions of Fig.2(c) and Fig.2(d) seem
to be consistent one with each other. The distributions of
the sets made of 80, 90 and 100 simulations for the Sym-
metry case have almost equal median (64.5, 64.5 and 65.0
respectively) and third quartile value (76.0, 75.0 and 75.0
respectively) whereas for the same set sizes for the Ran-
dom case, the box plots still show some more important
discrepancies.

Both in the Random and Symmetry case, the Min and
Max values of the box plots are respectively smaller and
greater for large sets than for small sets (see linear re-
gressions i.e. dashed lines in Fig.2(c) and Fig.2(d)). The

simulations having their Min and Max values far from the
central box not being very frequent, it is more likely to
observe such simulations with larger sets of simulations.
Also, the extreme cases depicted by the Min and Max
simulations corresponding to worst cases (PKA and SKAs
channelling) scenarios or best cases (PKA and SKAs shock
very close neighbor atoms) scenarios, they contain impor-
tant physical information. Indeed, the worst case scenario
corresponds to a cascade going deep into the material with
defects distributed all along the trajectories of the PKA
and SKAs and the best case scenario depicts a cascade
with a small but dense region of defects. To correctly
sample the Min and Max cases, it is needed to resort to
large sets of simulations.

The evolution of the error coefficient (SEM/u) of the
number of defects of Fig.3 gives valuable information re-
garding the convergence of the sets. The error coefficient
is very similar for both the Random and Symmetry cases
and decreases from 0.09-0.10 to 0.03-0.04, with a faster
decrease for smaller sets. Thus, the uncertainty in the cal-



culation of the mean value decreases by a factor of about
three when going from a set of size 10 to a set of size 100.
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Figure 3: Ratio of the Standard Error of the Mean SEM to the mean
value p of the number of defects, clusters and PKA penetration depth
for collision cascades initiated by PKAs of 1 keV in Si in the Random
(dashed lines) and Symmetry (full lines) cases with respect to the
size of the simulation set. Lines are only guide to the eye.

Considering the better stability of the box plots in
the Symmetry case (Fig.2(d)) than in the random case
(Fig.2(c)) and the good consistency of the mean values of
Fig.2(b) for large simulation sets, the Symmetry method
appears to be more efficient than the Random one to make
the number of defects converge for 1 keV cascades in Si.
However, even with the Symmetry method, sets made of a
minimum of 70 simulations need to be employed in order
to stabilize both the mean values and distributions.

3.2. Conwvergence of the number of clusters for 1 keV PKAs

Results provided in this section are obtained for PKAs
of 1 keV in Si. The mean values of the number of clusters
in the Random and Symmetry cases for PKAs of 1 keV in
Si are respectively displayed in Fig.4(a) and Fig.4(b). The
box plots of the number of clusters in the Random and
Symmetry cases for PKAs of 1 keV in Si are respectively
shown in Fig.4(c) and Fig.4(d).

The variations in the mean number of clusters are more
visible in the Random case (Fig.4(a)) than in the Symme-
try case (Fig.4(b)): the mean number of clusters goes from
5.5 to 6.5 and from 6.0 to 6.5 respectively. The distribu-
tions of the Symmetry case of Fig.4(d) show the striking
feature of all having the same median value (6), eight out
of ten sharing the same first quartile value (5) and the
same third quartile value (7) for seven out of ten. In com-
parison the distributions of Fig.4(c) show much less con-
sistency, with median values ranging from 5 to 7 and only
six out of ten showing the same median value of 6 for the
Random case. Just like for the defects, the Min and Max
value of the box plots are respectively smaller and greater
for large sets than for small sets.

The evolution of the error coefficient for the number of
clusters in Fig.3 shows the same trend than for the pre-
viously commented error coefficient for the number of de-
fects: it decreases quickly for low values of set size and
slower and slower as the set size increases. It means that
the accuracy in the calculation of the mean values of the
number of clusters substantially increases with the size of
the set increasing.

Considering the very consistent box plots for the num-
ber of clusters with the Symmetry method of Fig.4(d) and
the very small variations in the mean values of the num-
ber of clusters with the Symmetry method (Fig.4(b)), this
method eases the convergence, in terms of reproducibility,
of the number of clusters compared to the Random one.
The number of clusters appears to need a smaller set size
to be already converged properly than the number of de-
fects. From 60 simulations with the Symmetry method,
for collision cascades of 1 keV in Si, the number of clusters
already shows excellent stability in terms of distributions
and mean values.

8.8. Convergence of the PKA depth for 1 keV PKAs in Si

Results provided within this section are obtained with
1 keV PKAs in Si. Fig.5(a) and Fig.5(b) respectively show
the mean values of the penetration depth of 1 keV Si PKAs
in Si in the Random and Symmetry cases with respect
to the size of the simulation sets. Fig.5(c) and Fig.5(d)
display the box plots of the PKA penetration depth in the
Random and Symmetry cases respectively, with respect to
the size of the simulation sets.

In the Random case, the mean values of Fig.5(a) and
distributions of Fig.5(c) show significant variations up to
set sizes of 50 simulations: mean values range from 22.6 A
to 33.4 A. From 50 simulations, the mean values stabilize
(but still show some discrepancies) between 24.1 A and
28.5 A and the distributions show a lot less variations.

In the Symmetry case, the mean values of Fig.5(b)
show great consistency for set sizes of 10 to 40. Within
the same range the distributions of Fig.5(d) also show re-
markable stability for such small set sizes. However, this
consistency in the results at small set sizes cannot be at-
tributed to an early reproducibility of the results. Indeed,
from 50 simulations, the mean values are all shifted up
compared to the mean values obtained from smaller set
sizes. The same happens for the distributions which are
all shifted up. To us, this artifact of convergence observed
for sets of 40 simulations and less results from the stochas-
ticity of the cascades and is therefore coincidental. It also
proves that assessing the reproducibility and thus the con-
vergence of the results is not an easy task. From set sizes
of 50 simulations, the mean values show excellent consis-
tency: they are all comprised between 24.3 A and 26.2 A.

Concerning the box plots, the median values show some
variations, but the overall shapes are consistent. This
combined with the good stability of the mean values of
Fig.5(b) point towards the fact that reproducibility is at-
tained. Also, once again, both in the Random and Sym-
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Mean number of clusters in the (a) Random and (b) Symmetry cases and box plots of the number of defects in the Random (c)

and Symmetry (d) cases for 1 keV Si PKAs in Si with respect to the size of the simulation sets (i.e. the number of simulations in the sets).
In (a) and (b), for each size of set, the error bars correspond to -1.96xSEM and 1.96 X SEM. The probability that the real mean value sits
within the error bars range is equal to 0.95. The region of the graphs delimited by the error bars of each set size is shaded. Solid green lines
are guides to the eye. In (a) and (b), dashed lines correspond to the mean values calculated with all the simulations performed, in each case
(550). In (c) and (d), dashed lines represent linear regressions of the Min and Max values.

metry case, the Min and Max value of the box plots are re-
spectively smaller and greater for large sets than for small
sets.

The analysis of Fig.3, which displays the evolution of
the error coefficient of all the properties of interest in the
Random and Symmetry cases reveals that the error coef-
ficient is comparable in the Symmetry and Random case.
However, even if showing the same decrease rate, the error
coefficient of the PKA depth (Fig.3) is noticeably higher
than the ones of the number of defects and clusters. It
is approximately of 0.15 when the error coefficient for the
other properties is around 0.10 (set size of 10) and of 0.05
when the error coefficient for the other properties is around
0.03 (set size of 100). It reveals that the PKA penetration
depth mean values are more subject to uncertainties and
thus more difficult to converge than the number of clus-
ters and defects: if one wants to reach an error coefficient
of 0.06, about 30 simulations are needed for the number
of clusters and defects whereas about 80 simulations are
needed for the PKA penetration depth. Another argu-

ment in favor of this statement is the comparison of the
mean values obtained with all the simulations performed in
the Random and Symmetry cases (550 simulations in each
case). To our knowledge, no collision cascades simulations
mean values have ever been calculated on ensembles that
large. For the number of defects we obtain 65 and 64 in
the Random and Symmetry case respectively (see 2) and
for the number of clusters 6.2 (see 4) in both cases. Those
values, obtained with two completely independent sets of
simulations, are very close and indicate excellent conver-
gence for very large sets. In the case of the PKA depth,
the mean values obtained are 25.8 A and 24.4 A in the
Random and Symmetry case respectively (see 5). Even if
close, the discrepancy between those two values is by far
more important than for the number of defects and clus-
ters. Even with sets as large as 550 simulations, the mean
PKA depth values show some variations. Additionally to
the reduced accuracy of the PKA depth property com-
pared to the number of defects and of clusters observed in
Fig.3, PKA depth mean values are more difficult to repro-
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Mean PKA depths in the (a) Random and (b) Symmetry cases and box plots of the number of defects in the Random (c) and

Symmetry (d) cases for 1 keV Si PKAs in Si with respect to the size of the simulation sets (i.e. the number of simulations in the sets). In (a)
and (b), for each size of set, the error bars correspond to -1.96XSEM and 1.96xSEM. The probability that the real mean value sits within
the error bars range is equal to 0.95. The region of the graphs delimited by the error bars of each set size is shaded. Solid red lines are guides
to the eye. In (a) and (b), dashed lines correspond to the mean values calculated with all the simulations performed, in each case (550). In
(c) and (d), dashed lines represent linear regressions of the Min and Max values.

duce even with very large sets.

Considering the box plots and mean values of Fig.5, no
method seems to provide with better convergence results
than the other method. The mean values and distributions
are stabilized from sets of size 70, even if the consistency
is less obvious than with the number of defects or clusters.
If the question of a compromise is not relevant for the
number of clusters and defects as the error coeflicient is
already very low and the distributions and mean values
stabilized for set sizes of 70 simulations and above for both
properties, it is an interesting question for the PKA depth.
Indeed, an error coefficient on the PKA depth of 0.04 is not
even attainable with a set of 100 simulations. By choosing
the number of simulations to be performed, one somehow
chooses the accuracy of the mean values conclusions are
built from.

On the whole, the analysis of the results of Fig.2, Fig.3,
Fig.4 and Fig.5 allows us to draw some conclusions on the
convergence of the outputs of cascades initiated with 1 keV
PKAs in Si:

(i) Cascades results constructed from sets of made of
less than 60 simulations show too much variations and too
big error coeflicients to draw conclusions.

(#) The results obtained with the Symmetry method
are subject to less variations in both the mean values and
distributions, especially for small set sizes.

(#i) Accuracy on the estimation of mean PKA depth
values is reduced compared to the accuracy of estimated
mean values of other properties The production of defects
and clusters being global effects, the distributions are well
centred around their mean values (variation coefficient o/
about 0.3). As an illustration, a PKA in a channeling
direction usually produces less defects than the mean (it
loses more energy to the electrons through the TTM) but
the production of the defects being global, i.e. also due to
SKAs and other atoms, a large part of the cascade behaves
7as usual”. On the contrary, the PKA depth is drastically
affected by a slight change in the PKA direction. The PKA
depth distributions are therefore very dispersed (variation
coefficient o/p about 0.5): the distributions tend to show



more variations and the errors in the mean value (SEM/ )
greater than for the number of defects and clusters.

(iv) Large sets are needed to correctly sample the Min
and Max cases, i.e. the best and worst cases scenarios. In-
deed, channeling and PKAs shocking very close atoms be-
ing "rare events”, a large number of simulations are needed
to observe a sufficient number of those events for the Min
and Max values to be consistent between all the tested set
sizes.

3.4. Convergence of collision cascades results with 5 keV
PKAs in Si

Considering the results of sections 3.1, 3.2 and 3.3
which proved that the Symmetry method is more ade-
quate, within this section, only the Symmetry method is
employed. Fig.6 shows the evolution of the error coeffi-
cient for all the properties studied in the Symmetry case
for 1 keV and 5 keV PKAs. Fig.7(a), Fig.7(c) and Fig.7(e)
respectively display the mean values of the number of de-
fects, of the number of clusters and of the PKA penetra-
tion depth for cascades of 5 keV in Si. Fig.7(b), Fig.7(d)
and Fig.7(f) respectively display the box plots of the num-
ber of defects, of the number of clusters and of the PKA
penetration depth for cascades of 5 keV in Si.

0.16 1 keV 5 keV
’ —— PKA depth  —G- PKA depth
0.14 —&— Defects —A- Defects
: —#— Clusters —3- Clusters
0.12
3
S 0.10
w
Y 0.08
0.06
0.04
0.02
Size of the simulation set
Figure 6: Ratio of the Standard Error of the Mean (SEM) to the

mean value p of the number of defects, clusters and PKA penetration
depth for collision cascades initiated by PKAs of 1 keV and 5 keV
in Si with respect to the size of the simulation set. Lines are only
guide to the eye.

The mean numbers of defects of Fig.7(a) show signifi-
cant variations for set sizes up to 60: it ranges from 287 to
306 defects. For larger sets, the data still do not show clear
sign of convergence: variations of about 3-5 defects be-
tween all adjacent mean values from 60 simulations in the
sets to 100 simulations in the sets are observed. However,
with respect to the number of defects at stake (around
300) the variations between each set size are in the order
of 2% only: if no perfect consistency is reached, it does
not jeopardize the interpretation of the results. The dis-
tributions of the defects in Fig.7(b) show great consistency

already from a set size of 60. It supports our thinking that
the variations in the mean values of Fig.7(a) are therefore
not the result of a bad convergence but simply are due to
slight variations in the distributions.

The evolution of the mean PKA penetration depth of
Fig.7(f) is very similar to the one of the mean number of
defects commented above: strong variations for small set
sizes, smaller variations but still no obvious convergence at
larger set sizes. Just like in the case of the mean number
of defects the variations are very small for set sizes above
70 (about 4% at most) and does not prejudice the inter-
pretation of the results. Moreover, the range of the error
bars is larger than the variations in the mean values, thus
reducing the risk in the misinterpretation of the results.
The distributions of the PKA depth of Fig.7(f) show sig-
nificant variations in the min, max, first quartile and third
quartile values except for the sets of sizes 90 and 100 which
are very similar. For all the set sizes the median values are
very consistent and do not show large variations.

The evolution of the mean number of clusters of Fig.7(c)
shows small variations with mean values ranging from 19
to 21 clusters. The three last values (for set sizes of 80,
90 and 100) seem pretty well converged: the mean val-
ues are of 20.3, 20.0 and 19.6. The box plots of Fig.7(c)
show significant variations for small sizes of sets but great
consistency for large set sizes (above 60 simulations per
sets).

For all the properties investigated, the Min and Max
values of the box plots (i.e. right column of Fig.7) are
respectively always smaller and greater with large sets of
simulations than small sets of simulations. The Min and
Max value appears to be consistent from 50 simulations
for the number of defects, 60 simulations for the number
of clusters and 90 simulations for the PKA depth. Again,
it highlights that the PKA depth is harder to converge
than the number of defects and number of clusters.

The error coefficient of the PKA depth of Fig.6 are
similar in the 1 keV and 5 keV cases: decrease from around
0.15 to approximately 0.05. However, the error coefficients
of the number of defects and clusters in the 5 keV case are
lower than in the 1 keV case.

On the whole, for 5 keV cascades in Si, it appears that:

(i) Stability in the distributions can be attained when
no obvious stability in the mean values is reached.

(#) The mean values should always come with the SEM
value in order not to misinterpret the results.

(#ii) Reproducibility between the sets is harder to at-
tain with 5 keV cascades than with 1 keV cascades.

8.5. Influence of the initial position of the PKA

After having studied the convergence of the number of
defects and of clusters and of the PKA penetration depth
for 1 keV and 5 keV PKAs in Si, one may ask if the initial
position of the PKA has an influence. We seek to answer
two questions in this section: (i) does the initial site of
the PKA have an influence on the cascades outputs? (i)
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Figure 7: Mean (a) and box plots (b) of the number of defects, (c), (d) number of clusters and (e), (f) PKA penetration depth in collision
cascades initiated by 5 keV Si PKAs in Si with respect to the size of the simulation set. For (a), (b) and (c), solid lines are guides to the eye.
Dashed lines in (a), (¢) and (e) correspond to the mean values obtained from all the simulations performed (550). Dashed lines in (b), (d)

and (f) correspond to linear regressions of the Min and Max values.

do the two lattice sites of Fig.1 need to be sampled with
the Symmetry method? We highlight the fact that drawn
conclusions of this part are only valid for mono-atomic
materials in the diamond-like structure.

We ran four sets of 10 simulations and four sets of 100
simulations with 1 keV PKAs in Si with the Symmetry
method. Four distinct initial PKA positions are sampled.

The first two positions (named site #1 and site #1 bis)
correspond to the first site of the primitive diamond cell
(lower site of Fig.1), the two other positions (named site
#2 and site #2 bis) correspond to the second site of the
primitive diamond cell (upper site of Fig.1). Site #1 and
Site #1 bis (respectively Site #2 and Site #2 bis) occupy
the same site in their own primitive unit cell, but were



Table 1:

Mean values of the number of defects, number of clusters and PKA depth for 1 keV cascades in Si from sets of sizes 10 and 100.

To asses the influence of the initial position of the PKA, both sites of the primitive diamond cell (see Fig.1) are sampled twice: for each of
the two sites, two initial positions are chosen in the simulation box. In parenthesis are given the SEM values.

PKA position | Mean defects Mean clusters Mean PKA depth (A)
Site #1 63 (6) 6 (0.9) 20.1 (2.9)
. . Site #1 bis 62 (5) 6 (0.6) 16.7 (2.0)
10 simulations | ;4o 59 (5) 6 (0.6) 26.8 (4.4)
Site #2 bis 60 (7) 5 (0.6) 28.7 (4.7)
Site #1 65 (2) 6 (0.2) 25.1 (1.2)
. . Site #1 bis 63 (2) 6 (0.2) 25.9 (1.4)
100 simulations | ;¢ 4 64 (2) 6 (0.2) 24.4 (1.2)
Site #2 bis 66 (2) 6 (0.2) 24.6 (1.2)

chosen in in the following simulation in different primitive
cells. Table 1 displays the mean values of the number of
defects, number of clusters and PKA depth for the sets of
10 and 100 simulations in the four sampled positions (Site
#1, Site #1 bis, Site #2 and Site #2 bis).

Considering the four sets made of 10 simulations, the
mean number of defects and clusters are coherent between
all the sampled PKA positions: the mean number of de-
fects ranges from 59 to 63 and the mean number of clusters
from 5 to 6. However, the SEM values are quite large (ex-
pected knowing the error coefficient graph of Fig.3) which
reveals the mean values suffer from big uncertainties. The
most striking feature is the significant variations in the
mean PKA depth. It ranges from 16.7 A to 28.7 A. The
initial PKA position has a drastic influence on the mean
PKA depth. Moreover, it appears that the primitive cell
site on which the PKA is initially located plays an impor-
tant role: mean PKA depth of 16.7 A and 20.1 A for sites
#1 and of 26.8 A and 28.7 A for sites #2.

Considering the four sets made of 100 simulations, the
mean number of defects and clusters and, contrary to the
sets of size 10, the mean PKA depth show excellent coher-
ence between the four PKA positions sampled: the mean
number of defects ranges from 63 to 66, the mean num-
ber of clusters is equal to 6 for all the simulations and the
mean PKA depth ranges from 24.4 A to 25.9 A. The large
variations observed with sets of size 10 disappear with sets
of 100 simulations. The site of the primitive cell of the di-
amond structure does not influence the results as it does
with sets of size 10. The SEM values are also a lot smaller
than in the 10 simulations cases and show great consis-
tency. Therefore, with sets of size 100, the influence of the
initial position of the PKA is not an issue anymore.

4. Conclusion

The present study is the result of more than 2 000
MD simulations of collision cascades in Si. We find that
a method based on symmetry considerations for the de-
termination of the initial directions of the PKA improves
the convergence and the consistency of the results in Si. It
is also shown that in Si, it is harder to converge the PKA
penetration depth than the number of defects and clusters.
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To obtain satisfactory convergence of the PKA depth and
of the mean number of defects and clusters in Si, sets of
simulations made of at least 70 simulations are needed even
for PKA energies as low as 1 keV. At 5 keV, convergence
as satisfactory as what is obtained at 1 keV is not yet ob-
tained with sets of 100 simulations but the consistency of
the results is enough to be able to draw meaningful conclu-
sions on the data obtained with sets of around 80 simula-
tions. It appears that the higher the energy of the PKAs,
the bigger the sets must be. The simulations correspond-
ing to best case and worst case scenarios being consistent
between the size of sets starting from 60 simulations for
1 keV PKAs and 80 simulations for 5 keV PKAs in Si,
large sets are also necessary to correctly sample the range
of possible scenarios. Additionally, the initial position of
the PKA is not found to have any influence on the results,
at least at 1 keV, if the simulation sets are large enough.
Finally, taking as example 1 keV and 5 keV PKAs in Si,
more than only providing with a method to cope with the
stochasticity of the cascades, this article proves the need
to treat the data related to cascades in a statistically rig-
orous way: a convergence study is mandatory, the mean
values should always come with the SEM value and the
distributions be graphically represented.
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