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OPTIMIZATION ON THE EUCLIDEAN UNIT SPHERE

JEAN B. LASSERRE

Abstract. We consider the problem of minimizing a continuously dif-
ferentiable function f of m linear forms in n variables on the Euclidean
unit sphere. We show that this problem is equivalent to minimizing the
same function of related m linear forms (but now in m variables) on
the Euclidean unit ball. When the linear forms are known, this results
in a drastic reduction in problem size whenever m ≪ n and allows to
solve potentially large scale non-convex such problems. We also provide
a test to detect when a polynomial is a polynomial in a fixed number
of forms. Finally, we identify two classes of functions with no spurious
local minima on the sphere: (i) quasi-convex polynomials of odd degree
and (ii) nonnegative and homogeneous functions. Finally, odd degree-
d forms have only nonpositive local minima and at most (d − 1)m are
strictly negative.

1. Introduction

Optimization on the unit sphere is a fascinating topic. Indeed and despite
it simple formulation (a single quadratic equality constraint), it it has im-
portant applications, in particular when searching for the global minimum.
For instance, and as discussed in e.g. [6]:

- Finding the maximal cardinality of α(G) of a stable set in a graph G
reduces to minimizing a cubic form on the unit sphere.

- Deciding convexity of an n-variate form reduces to minimizing a form
on S

2n−1.
- Deciding nonnegativity of an even degree form reduces to minimizing

this form on S
n−1.

- Deciding copositivity of a symmetric matrix reduces to check whether
some associated quartic form is is nonnegative on R

n (equivalently on S
n−1).

- In quantum information, the Best Separable State problem also relates
to (homogeneous polynomial) optimization; see e.g. [8].

Moreover, with the celebrated MAXCUT problem in combinatorial op-
timization (see .e.g. [5]), it is one of the simplest NP-hard problems (a
single quadratic equality constraint) and therefore serves as an important
case of study to understand the efficiency of LP- and SDP-relaxations for
solving non-convex polynomial optimization problems. In particular, recent
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progress has been reported for convergence rates of the Moment-SOS hier-
archy of lower bounds and the (different) SOS-hierarchy of upper bounds
introduced in [10] and [12] respectively. Namely, Fang and Fawzi [8] (see
also Doherty and Wehner [7]) for the lower bound hierarchy and de Klerk et
al. and Laurent [6] for the upper bound hierarchy, have proved an interest-
ing (and perhaps surprising) O(1/r2) rate of convergence if r denotes step-r
of the hierarchy. The interested reader is referred to [8, 6] as well as Slot
and Laurent [17] and the references therein for a detailed discussion on this
topic. Recently, in the homogeneous case, the author has provided in [9]
a complete characterization of first- and second-order necessary optimality
conditions solely in terms of the first two smallest eigenvalues of the Hessian
of the form to minimize.

In this paper we consider optimization on the unit sphere for the special
class of functions of m linear forms in n variables, i.e., with S

n−1 denoting
the Euclidean unit sphere of Rn,

f∗ = min
x

{h(x) : x ∈ S
n−1 }(1.1)

= min
x

{f((ℓ1 · x), . . . , (ℓm · x)) : x ∈ S
n−1 } ,(1.2)

for some continuously differentiable function f : Rm → R and some linear
forms ℓj : R

n → R, j ∈ {1, . . . ,m} (where “ℓj · x” denotes the usual scalar
product of vectors ℓj and x). As every optimization problem on S

n−1 can
be put in the form (1.2) with m = n, then clearly only the case m < n is
interesting. When m ≪ n, Problem (1.2) can be thought of satisfying a sort
of “sparsity”, as the objective function is expressed as a function of only a
few linear forms. In cite [15] a function of a few linear forms is called a
low-rank function. This sparsity is quite different from the structured- or
term-sparsity exploited in e.g. [11, 19, 20] (and references therein) in a more
general context.

Contribution. In this paper we show that this sparsity can be exploited as
indeed Problem (1.2) is completely equivalent to an optimization problem
of the same form, but in m variables only. More precisely, let Em be the
Euclidean ball {x ∈ R

m : ‖x‖ ≤ 1}. We show that Problem (1.2) reduces to
solving the polynomial problem:

(1.3) f∗ = min
y

{f((L1 · y), . . . , (Lm · y)) : y ∈ Em } ,

where Lj is the jth-row of the matrix L1/2 ∈ R
m×m, with L = (ℓi ·ℓj)i,j∈[m].

Problem (1.3) is equivalent to (1.2) in the sense that :
• To any critical point x∗ ∈ S

n−1 of (1.2) with X∗ · ∇f(X∗) ≤ 0 (in
particular, any local minimizer) is associated a critical point y∗ ∈ Em of
(1.3) with same value.

• The converse also holds. That is, from a critical point y∗ ∈ Em of (1.3)
one may easily obtain a critical point x∗ ∈ S

n−1 with same value.
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• Moreover if x∗ satisfies the second-order necessary optimality conditions
(SONC) (resp. the second-order sufficient optimality conditions) then nec-
essarily X∗ · ∇f(X∗) ≤ 0, and so does the associated critical y∗ ∈ Em for
Problem (1.3). The converse also holds for all critical points y∗ ∈ Em.

• As a consequence (apparently unnoticed, at least to the best of our
knowledge), if m = 1 then solving Problem (1.2) is straightforward as it
reduces to minimizing the univariate polynomial y 7→ f(y ‖ℓ‖) on the inter-
val [−1, 1], which can be done efficiently. Interestingly, this restrictive case
m = 1 applies if h in (1.2) is an odd-degree quasi-convex polynomial1. So if
h is quasi-convex of odd-degree then it has no spurious local minima on the
sphere and f∗ = min[f(−|ℓ‖) , f(‖ℓ‖)].

Hence Rx]d is the union
⋃n

j=1 Pj of disjoint subsets (Pj)j≤n, where each
member of Pj can be written as a degree-d polynomial of exactly j linear
forms, and not less. For the smallest subset P1, minimization on S

n−1 is
quite easy, and when d is odd P1 contains in particular all quasi-convex
degree-d polynomials. As j increases the resulting equivalent problem (1.3)
on Ej ⊂ R

j is still easier than (1.1), while it brings nothing for Pn.
• When in Problem (1.2) f is hidden, that is when Problem (1.2) is

only defined through h, one provides a simple numerical procedure based
on sufficiently many evaluations of h at arbitrary points (not necessarily on
S
n−1), which allows to reveal a formulation (1.2) for some fh.
• It is rather straightforward to see that the only interesting local minima

of (1.2) are negative. Indeed any x ∈ S
n−1 with ℓj ·x = 0 for all j (guaranteed

to exist whenever m < n) satisfies h(x) = f(0) = 0 and therefore as 0 is
attained trivially, for minimization purposes we are mainly interested in
negative local minima.

• If h is nonnegative and the formulation (1.2) is known, then in view
of the preceding remark, f∗ = 0 is the global minimum. But when only
h is known then the hidden formulation (1.2) identifies a class of functions
with no spurious local minima on the sphere. Any optimization algorithm
converging to a local minimum of h on S

n−1 then converges to the global
minimum f∗ = 0.

• At last we consider the important case alluded to in the introduction,
where h in (1.1) is a positively homogeneous function (and a polynomial
in particular). For homogeneous polynomials of the form (1.2), the recent
characterization of (SONC) points by the author [9] in terms of the first-
and second smallest eigenvalues of the Hessian, directly translates into a
similar but more specific characterization for Problem (1.2) and Problem
(1.3). Also when f is an odd degree-d form, all local minima of (1.3) are

1The class of quasi-convex polynomials include pseudo-convex and convex polynomials.
An odd-degree polynomial h is quasi-convex if and only if h(x) = f(ℓ ·x) for some ℓ ∈ R

n

and some monotonic univariate polynomial f ; see for instance Ahmadi et al. [1] and [13,
Theorem 13.11]
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necessarily nonpositive and there are at most (d − 1)m negative local min-
ima, independently of the dimension n.

When m ≪ n, Problem (1.3) is easier to handle as it is an optimization
problem (i) in a space of much smaller dimension and (ii), on the Euclidean
unit ball Em (a nice convex set) instead of Sn−1. In particular, if f is a
polynomial or a rational function and m is relatively small, then one may
apply the Moment-SOS hierarchy described in e.g. [13, 14] with a good
chance of obtaining the global minimum in a few steps, which could be
impossible when treating the initial problem (1.2) in R

n.
It is worth noticing that polynomials of linear forms are also interesting

for integration of polynomials f((ℓ1 ·x), . . . , (ℓm ·x)) of linear forms (ℓj), on
the simplex. Indeed Baldoni et al. [2] have shown that the computational
complexity essentially depends on (i) the number of forms, (ii) the degree of
f , and not on the dimension n, like in our setting. Finally notice that every
degree-d homogeneous polynomial h admits a decomposition into a (signed)
sum of d-powers of linear forms, i.e.,

x 7→ h(x) =

s∑

j=1

εj (ℓj · x)
d , ∀x ∈ R

n ,

for some (ℓj) ⊂ R
n and ǫj ∈ {−1, 1}. That is f in (1.2) is even more specific

as it reads f(X) =
∑s

j=1 εj X
d
j , and therefore all results of this paper are

valid for the class of homogeneous polynomials. However if h is not directly
defined as a sum of powers of linear forms (or a polynomial of forms as
in (1.2)), then getting the ℓj’s in the above decomposition is an NP-hard
problem.

2. Main

2.1. Notation, definitions and preliminaries. Let [m] denote the set
of integers {1, 2, . . . ,m}, R[x] the ring of real polynomials in the variables
x = (x1, . . . , xn), and R[x]d its subset of polynomials of total degree at
most d. For ease of notation the usual scalar product between two vectors
x,y is denoted x · y. For a real symmetric matrix A ∈ R

n×n, denote by
λ1(A) ≤ λ2(A), . . . ≤ λn(A), its eigenvalues arranged in increasing order.

Given p ∈ R[x]d, its homogenization p̂ ∈ R[x0,x]d is defined by

(x0,x) 7→ p̂(x0,x) := xd0 p(x/x0), (x0,x) ∈ R
n+1.

As a constant term has no influence on the minimization of h in (1.1) we
may and will assume that h(0) = 0 (and so f(0) = 0 as well).

Assumption 2.1. The family (ℓi)i∈[m] ⊂ R
n in (1.2) is linearly indepen-

dent.

Let ℓ ∈ R
m×n be the matrix with i-th row ℓj , j ∈ [m]. Given x ∈ R

n,

let X := ℓx, and introduce the real symmetric psd matrix L = LT ∈ R
m×m
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defined by L = ℓ ℓ
T , i.e.,

(2.1) Lij := ℓi · ℓj , i, j ∈ [m] .

By Assumption 2.1, L is positive definite (denoted L ≻ 0). Therefore we

may and will introduce the well-defined symmetric matrix2 L := L1/2 ≻ 0,
and let Li denote its i-th row.

2.2. First-order optimality conditions. Given y ∈ R
m let Y := Ly and

introduce the function f̃ : Rm → R, defined by:

(2.2) y 7→ f̃(y) := f(Y) = f((L1 · y), . . . , (Lm · y)) .

So f̃ inherits basic properties of f , that is, f̃ is also continuously differen-
tiable and if f is a degree-d polynomial then so does f̃ . Similarly, if f is
positively homogeneous of degree d, (i.e., f(λX) = λdf(X) for all λ > 0 and

all X ∈ R
m) then so does f̃ .

Lemma 2.2. Let Assumption 2.1 hold. Let x∗ ∈ S
n−1 and X∗ = ℓx ∈

R
m. The first-order necessary optimality conditions (FONC) at for problem

(1.2) reads :

∇f(X∗) = 0 or(2.3)

ℓ
T ∇f(X∗) = 2λ∗ x∗ , with 0 6= λ∗ = X∗ · ∇f(X∗)/2.(2.4)

Moreover if f is positively homogeneous of degree d then (2.3)-(2.4) reads:

(2.5) ℓ
T ∇f(X∗),= d f(X∗)x∗ .

Proof. Notice that the standard constraint qualification of linear indepen-
dent of active constraints at x∗ trivially holds. Therefore (FONC) reads

m∑

j=1

∂f(X∗)

∂Xj
ℓj = 2λ∗ x∗ ,

for some λ∗. If λ∗ = 0 then in view of Assumption 2.1 we conclude that
∇f(X∗) = 0, i.e., (2.3) holds. If λ∗ 6= 0 then the first statement of (2.4)
holds while the second statement in (2.3) follows by multiplying both sides
of the equality by x∗.

Finally, when f is positively homogeneous of degree d we then exploit
Euler’s identity X∗ · ∇f(X∗) = d f(X∗). If (2.3) holds then f(X∗) = 0 and
therefore (2.3) implies (2.5). If (2.4) holds then again 2λ∗ = df(X∗), i.e.,
(2.5) holds. Conversely suppose that (2.5) holds. If f(X∗) 6= 0 then (2.4)
holds with 2λ∗ = df(X∗). If f(X∗) = 0 then necessarily under Assumption
2.1, ∇f(X∗) = 0, i.e., (2.3) holds. �

2Writing the singular value decomposition L = P
TΛP with Λ = diag((λi)i∈[m]), L1/2

is obtained as PTΛ1/2
P with Λ1/2 := diag((

√
λi)i∈[m]).
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Remark 2.3. (i) Let 0 6= x ∈ Ker(ℓ) so that x∗ := x/‖x‖ ∈ S
n−1 with

f(X∗) = f(0) = h(0) = 0. If x∗ satisfies (FONC) then necessarily λ∗ = 0
and ∇f(X∗) = ∇f(0) = 0 as well. Indeed multiplying both sides of (2.4)
by ℓ yields ℓ ℓ

T∇f(0) = 2λ∗
ℓx∗ = 0, and as L is non singular, ∇f(X∗) =

∇f(0) = 0. But then again by (2.4), λ∗ = 0.
(ii) The only interesting local minima are strictly negative because by (i)

any x ∈ Ker(ℓ) provides a local minimizer x∗ := x/‖x‖ ∈ S
n−1 with value

h(x∗) = f(X∗) = f(0) = 0.

Next, consider the new optimization problem defined in (1.3).

Lemma 2.4. Let Assumption 2.1 hold. Let y∗ ∈ Em and Y∗ := Ly∗. The
first-order necessary optimality conditions (FONC) at y∗ for problem (1.3)
reads :

∇f(Y∗) = 0 or(2.6)

L∇f(Y∗) = −2θ∗ y∗ , with

{
0 < θ∗ = −Y∗ · ∇f(Y∗)/2 ,
and y∗ ∈ S

m−1 .
(2.7)

Moreover if f is positively homogeneous of degree d then (2.6)-(2.7) reads:

(2.8) L∇f(Y∗) = −d f(Y∗)y∗ .

Proof. The Fritz-John necessary optimality conditions [4] at y∗ ∈ Em read:

θ∗0 L∇f(Y∗) + 2 θ∗ y∗ = 0 ; λ∗
1 (1− ‖y∗‖2) = 0 ,

for some nonnegative couple 0 6= (θ∗0, θ
∗) ∈ R

2
+. The case θ∗0 = 0 is not

possible since as θ∗ 6= 0, it implies y∗ = 0 and ‖y∗‖2 = 1. Therefore one
obtains the first-order Karush-Kuhn-Tucker (KKT) optimality conditions
(FONC)

L∇f(Y∗) + 2θ∗ y∗ = 0 ; θ∗(1− ‖y∗‖2) = 0 ,

for some θ∗ ≥ 0. Suppose that θ∗ = 0. In view of Assumption 2.1 we have
seen that the matrix L � 0 in (2.1) is non singular and so is L = L1/2.
Therefore ∇f(Y∗) = 0, which yields (2.6).

Next suppose that θ∗ > 0 so that necessarily ‖y∗‖2 = 1 and then∇f(Y∗) 6=
0. Multiplying by y∗ yields

0 < 2 θ∗ = −Y∗ · ∇f(Y∗) and y∗ = −L∇f(Y∗)/2θ∗ ,

which yields (2.7)
Finally, when f is positively homogeneous of degree d we then again

exploit Euler’s identity Y∗ · ∇f(Y∗) = d f(Y∗) and (2.8) covers the two
cases. �

2.3. Main result. We now can state our first main result. Recall that
L = ℓ ℓ

T .
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Theorem 2.5. Let Assumption 2.1 hold and let x∗ ∈ S
n−1 satisfy (FONC) for

Problem (1.2).
(i) If x∗ ∈ S

n−1 satisfies (FONC) for Problem (1.2) with X∗·∇f(X∗) ≤ 0
then there exists y∗ ∈ Em which satisfies (FONC) for problem (1.3) with
same value f(Y∗) = f(X∗), in addition, Y∗ = X∗.

(ii) Conversely if y∗ ∈ Em satisfies (FONC) for Problem (1.3) then there
exists x∗ ∈ S

n−1 which satisfies (FONC) for problem (1.2), with same value
f(X∗) = f(Y∗) and with X∗ · ∇f(X∗) ≤ 0.

A detailed proof is postponed to §5.1.

Remark 2.6. (a) If h is positively homogeneous of degree d then by Euler’s
identity, X∗ · ∇f(X∗) > 0 reads f(X∗) > 0. But if m < n the interesting
local minima are strictly negative because f(X) = 0 can always be attained
at X = ℓx/‖x‖ for any 0 6= x ∈ Ker(ℓ) (and x/‖x‖ ∈ S

n−1). Therefore the
interesting critical points of (1.2) are those x∗ for which X∗ · ∇f(X∗) ≤ 0,
i.e., exactly those of Problem (1.3).

(b) If h is convex (or even pseudo-convex) then necessarily X∗ ·∇f(X∗) ≥
0 ⇒ h(x∗) ≥ 0. Indeed by convexity of h, −x∗ · ∇h(x∗) ≥ 0 ⇒ 0 (= h(0)) ≥
h(x∗), i.e., −ℓx∗ · ∇f(X∗) ≥ 0 ⇒ 0 (= h(0)) ≥ f(X∗). Therefore again
as in (a), the interesting critical points of (1.2) are those x∗ for which
X∗ · ∇f(X∗) ≤ 0, i.e., exactly those of Problem (1.3).

As we next see, the second-order optimality conditions (SONC) show
that problem (1.2) is indeed equivalent to Problem (1.3).

2.4. Second-order optimality conditions.
We now consider second-order optimality conditions (SONC) that com-

plement (FONC) . Given x ∈ R
n, let x⊥ := {u ∈ S

n−1 : x ·u = 0}, and let

ℓ ∈ R
m×n be the matrix (ℓij)i≤m,j≤n. Recall that L = (ℓ ℓT )1/2 is non singu-

lar and symmetric. Next, observe that with h(x) := f((ℓ1 · x), . . . , (ℓm ·x)),

∇2h(x) = ℓ
T ∇2f(X) ℓ .

Therefore, at a point x∗ ∈ S
n−1 that satisfies (FONC) for Problem (1.2),

the second-order necessary optimality condition (SONC) reads:

u · ∇2h(x∗)u ≥ 2λ∗ , ∀u ∈ (x∗)⊥ ,

where

(2.9) (x∗)⊥ = {u ∈ S
n−1 : ℓu · ∇f(X∗) = 0 } .

Equivalently, by Lemma 2.2:

(2.10) ℓu · ∇2f(X∗) ℓu ≥ 2X∗ · ∇f(X∗) , ∀u ∈ (x∗)⊥ ,

and (2.10) covers the two cases ∇f(X∗) = 0 and X∗ ·∇f(X∗) 6= 0. Similarly,
the second-order sufficient optimality condition (SOSC) reads:

ℓu · ∇2f(X∗) ℓu > −2 θ∗2X∗ · ∇f(X∗) , ∀u ∈ (x∗)⊥ .
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Remark 2.7. If m < n notice that with 0 6= u/‖u‖ ∈ Ker(ℓ) ∈ (x∗)⊥ in
(2.10), one immediately sees that necessarily (SONC) implies X∗·∇f(X∗) ≤
0. In particular if f is positively homogeneous then (SONC) implies f(X∗) ≤
0.

Similarly, at a (FONC) point y∗ ∈ Em for (1.3), (SONC) reads

u · L∇2f(Y∗)Lu ≥ −2θ∗ , ∀u ∈ (y∗)⊥ ,

and (SOSC) reads

u · L∇2f(Y∗)Lu > −2θ∗ , ∀u ∈ (y∗)⊥ ,

where θ∗ ≥ 0 is as in (2.7), and

(2.11) (y∗)⊥ = {u ∈ S
m−1 : u · L∇f(Y∗) = 0 } .

We next show an analogue of Theorem 2.5 for second-order necessary
optimality conditions (SONC) .

Theorem 2.8. (i) Let x∗ ∈ S
n−1 satisfy (FONC) and (SONC) for Prob-

lem (1.2). Then y∗ ∈ S
m−1 in Theorem 2.5(i) also satisfies (FONC) as

well as (SONC) for Problem (1.3), and with same value f(Y∗) = f(X∗).

(ii) Conversely, let y∗ ∈ S
m−1 satisfy (FONC) and (SONC) for Prob-

lem (1.3) Then x∗ ∈ S
n−1 in Theorem 2.5(ii) also satisfies (FONC) as well

as (SONC) for Problem (1.2), and with same value f(X∗) = f(Y∗).

In addition, (i) and (ii) also hold true if we replace (SONC) by (SOSC) .

A detailed proof is postponed to §5.2.

Theorem 2.8 nicely complements Theorem 2.5. Indeed now, to every point
x∗ ∈ S

n−1 that satisfies (SONC) for (1.2), corresponds a point y∗ ∈ S
m−1

(with same value) that satisfies (SONC) for (1.3), and the converse is
also true. We have eliminated the ambiguity in (FONC) for (1.2) where
X∗ · ∇f(X∗) can be positive or negative as indeed a local maximum also
satisfies the same (FONC) condition. This is because with an equality
constraint, the Lagrange multiplier λ∗ is unsigned. This is not true for (1.3)
where with the inequality constraint, the associated Lagrange multiplier is
nonnegative (whence Y∗ · f(Y∗) ≤ 0). However in (SONC) the ambiguity
“local minimum versus local maximum” disappears.

An important consequence of Theorem 2.8 is that if the form (1.2) of
Problem (1.1) is known (i.e., the ℓj ’s are available) then instead of solving
Problem (1.2) in R

n, one may rather consider solving Problem (1.3) in R
m,

especially when m ≪ n. In particular, it is much easier to optimize on Em

(a nice convex set) than optimize on the non convex set Sn−1. Moreover if f
is a polynomial, then one may apply the Moment-SOS hierarchy described
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in e.g. [13]. Generically it has finite convergence and fast in practice (as
observed at least for reasonable dimension m).

2.5. The case m = 1. Interestingly, the case m = 1 which seems rather
restrictive in fact contains the class of odd-degree quasi-convex polynomials.
Indeed if h ∈ R[x] is quasi-convex of odd-degree then h(x) = f(ℓ · x) for
some ℓ ∈ R

m and some monotonic univariate polynomial f . See for instance
Ahmadi et al [1] or [13, Theorem 13.11].

Corollary 2.9. Let m = 1 and let f be the univariate polynomial

t 7→ f(t) =

d∑

k=1

fk t
k , t ∈ R ,

so that (1.2) reads minx { f(ℓ · x) : x ∈ S
n−1 } for some ℓ ∈ R

n. Let
T := { t : f ′(t) = 0 ; |t| ≤ ‖ℓ‖ } (so that #T ≤ d− 1). Then:

(2.12) f∗ = min [ f(‖ℓ‖) , f(−‖ℓ‖) ,min[ f(t) : t ∈ T ]] ,

that is, it suffices to compare the values of f at d+ 1 points of [−1, 1].
In particular, if h in (1.2) is quasi-convex of odd degree then

f∗ = min [ f(‖ℓ‖) , f(−‖ℓ‖) ] ,

and h has no spurious minimum on the sphere.

Proof. By Theorem 2.8, the global minimum f∗ of (1.2) is the same as that
of Problem (1.3), i.e., the global minimum of a univariate polynomial on the
interval E1 = [−1, 1]. That is, (1.3) reads:

min { f̃(y) : y2 ≤ 1 } = min { f(‖ℓ‖ y) : y2 ≤ 1 } .

trivial to solve. The critical points are the end points y = ±1 and the points
t ∈ [−1, 1] where t ‖ℓ‖ is a zero of the derivative f ′, which yields (2.12).
Finally if h in (1.2) is quasi-convex of odd-degree then as f is monotonic,
its global minimum is attained at one of the end-points y = ±1, and it is
the unique local (hence global) minimum on [−1, 1]. �

Corollary 2.9 states that Problem (1.2) withm = 1, has at most d spurious
local minima, and in fact at most roughly d/2 since only half of the points
in T can be local minima, and among them only those with negative value
since f(0) = 0.

2.6. Detecting the formulation (1.2). An optimization problem (1.1)
may have a hidden formulation (1.2), i.e., (1.2) is valid but only h is known.
Therefore if the form (1.2) exists and is to be exploited, an important issue
is how to reveal a formulation (1.2) from the sole knowledge of h in the n
variables x = (x1, . . . , xn).

Let En := {x ∈ R
n : ‖x‖2 ≤ 1}. and let µ be the Lebesgue measure on En

normalized to a probability measure.
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Theorem 2.10. Let h ∈ R[x]d in (1.1) be such that the hidden formulation
(1.2) exists for some unknown f ∈ R[X]d and some unknown linear forms
ℓj, j ∈ [m], that are linearly independent.

Let (x(i))i∈[m] ⊂ En be a sample of m points drawn from µ, and assume
that the vectors si := ∇h(x(i)), i ∈ [m], are linearly independent.

Let s ∈ R
m×n be the matrix with ith row vector si := ∇h(x(i)), i ∈ [m],

so that L := s sT ∈ R
m×m is non singular. Let L := L−1/2 and introduce

the polynomial fh ∈ R[y]d:

y 7→ fh(y) := h(sL−1y) , y ∈ R
m .

Then every critical point x∗ ∈ S
n−1 of (1.1) with ∇h(x∗) 6= 0, corresponds

a critical point y∗ ∈ S
m−1 of

(2.13) min
y

{ fh((L1 · y), . . . , (Lm · y)) : y ∈ S
m−1 } .

with same value h(x∗) = fh((L1 · y
∗), . . . , (Lm · y∗)).

Proof. As h ∈ R[x]d satisfies (1.2) for some hidden f , then by construction
and under our assumption on the ℓj’s,

∇h(x) = ℓ
T ∇f(X) ∈ Span(ℓ1, . . . , ℓm) =: V .

Therefore H := Span{∇h(x) : x ∈ En} ⊂ V is an r-dimensional subspace of
V with r ≤ m, and in particular the sj ’s form a basis of H. In fact as the
vectors {∇h(x(i))}i∈[m] are linearly independent, r = m and the sj ’s form
a basis of V .

By (2.4) in Lemma 2.2, a critical point x∗ ∈ S
n−1 of (1.2) with∇h(x∗) 6= 0

is of the form x∗ = ∇h(x∗)/2λ∗ and so necessarily x∗ ∈ V . Therefore, as
for optimization purpose we are only interested in such critical points, write
x = sTy, with y ∈ R

m, so that h(x) = h(sT y) ∈ R[y]d for all such points.
Moreover, the constraint x∗ ∈ S

n−1 reads y · s sTy = yTLy = 1. Therefore
to every critical point x∗ ∈ S

n−1 of (1.1) with ∇h(x∗) 6= 0, corresponds a
critical point y∗ ∈ S

m−1 of the minimization problem:

min
y

{ fh((L1 · y), . . . , (Lm · y)) : y ∈ S
m−1 } ,

where L = L−1/2 and y 7→ fh(y) := h(sTL−1y), which yields (2.13). �

As the points {x(i)}i∈[m] ⊂ En are drawn from the uniform distribution
µ on En, then under reasonable hypotheses on the unknown f in (1.3), with
probability 1 the vectors {∇h(x(i))}i∈[m] are linearly independent. Indeed

∇h(x) = ℓ
T∇f(ℓx) and therefore it enough that with probability 1, the

vectors {∇f(ℓx(i))}i∈[m] are linearly independent. So consider the polyno-
mial θ ∈ R[U1,U2, . . . ,Um], defined by:

(U1, . . . ,Um) 7→ θ(U1, . . . ,Um) := det[∇f(ℓU1), . . . ,∇f(ℓUm)] .
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If θ is not identically zero, then with µ⊗m being the product measure
µ⊗ µ⊗ · · · ⊗ µ
︸ ︷︷ ︸

m times

on E m
n ,

µ⊗m ({(U1, . . . ,Um) : θ(U1, . . . ,Um) = 0 }) = 0

because level sets of polynomials have zero-Lebesgue measure. Therefore if θ
is not identically null then with probability 1, the sample {∇h(ℓ x(i))}i∈[m]

of Theorem 2.10 is a linearly independent family.

Remark 2.11. Theorem 2.10 also holds if h in (1.1) and the hidden function
f in (1.2) are continuously differentiable functions. Indeed by construction,
∇h(x) ∈ V for all x, where V is the m-dimensional vector space spanned by
the unknown {ℓj}j∈[m]. Again by Lemma 2.2, all critical points x∗ ∈ S

n−1

with ∇f(X∗) 6= 0, are in V . However, some more detailed analysis is needed
to check whether the family {∇h(x(i))}i∈[m] spans V , or a larger sample may
be needed. But the same conclusion with (2.13) is valid.

3. The homogeneous case

In this section we assume that f is a homogeneous polynomial of degree
d > 2, that is f(λX) = λd f(X) for all λ > 0 and all x ∈ R

n. Then of
course x 7→ h(x) := f(ℓx) is also positively homogeneous of degree d.

Any local minimum x∗ ∈ Sn−1 satisfies (SONC) and so if m < n, then
by Remark 2.7, necessarily f(X∗) ≤ 0. Moreover for any x ∈ Ker(ℓ)∩ S

n−1,
f(X) = f(0) = 0; see Remark 2.6. As a matter of fact, we even obtain the
following consequence:

Corollary 3.1. Let m < n and let x 7→ h(x) := f(ℓx) be a twice contin-
uously differentiable and positively homogeneous function. Then necessarily
f(X∗) ≤ 0 at any point x∗ ∈ S

n−1 that satisfies (SONC) (and so at any
local minimizer).

In particular, if h is nonnegative then f∗ = 0 is the unique local (hence
global) minimum of h on S

n−1, and is attained at any point x ∈ Ker(ℓ) ∩
S
n−1. Moreover f∗ = 0 is also the unique local (hence global) minimum of

Problem (1.3) and is attained at some point y∗ ∈ Em.

Proof. Let x∗ ∈ S
n−1 satisfy (SONC) so that necessarily f(X∗) ≤ 0; see

Remark 2.7. If ∇f(X∗) = 0 then by homogeneity h(x∗) = f(X∗) = 0. Next,
assume that h is nonnegative. As m < n, any point x∗ ∈ Ker(ℓ) ∩ S

n−1

(guaranteed to exist, see Remark 2.6) is a global minimizer with h(x∗) =
f(0) = 0. As x∗ necessarily satisfies (SONC) , let y∗ ∈ Em be obtained from
x∗ as in Theorem 2.8(i). Then as X∗ = Y∗, f(Y∗) = f∗. Suppose that y∗

is not global minimizer so that there exists a global minimizer z ∈ Em with
f(Z) < f∗. As necessarily z satisfies (SONC) , then by Theorem 2.8(ii)
there exists x′ ∈ S

n−1 with same value f(X′) = f(Z) < f∗, in contradiction
with x∗ being a global minimizer. �
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Corollary 3.1 characterizes a class of positively homogeneous functions
that have no spurious local minima on S

n−1. Of course if a nonnegative h is
given in the form (1.2) then it suffices to find a point in x∗ ∈ Ker(ℓ)∩S

n−1.
But if only h is given (i.e., without knowing that h is of the form (1.2) for
some matrix ℓ ∈ R

m×n), then any local minimization algorithm converging
to a point that satisfies (FONC) would converges to the global optimum
f∗ = 0.

Therefore for homogeneous problems in the form (1.2) we are especially
interested with negative local minima h(x∗) (= f(X∗)) < 0 whenever they
exist (e.g. when d > 2 is odd). Given a real symmetric matrix A ∈ R

t×t

denote by

λ1(A) ≤ λ2(A) ≤ · · · ≤ λt(A)

its eigenvalues, counting multiplicities and ordered by increasing values. In
the following we assume that h is a homogeneous polynomial of degree d > 2
(and then so is f). In this case the author has recently provided in [9] a
complete characterization of first- and second-order necessary optimality
conditions solely in terms of the first two smallest eigenvalues of the Hessian
of h. We first need the following result whose proof is quite straightforward.

Proposition 3.2. Let h ∈ R[x]d in (1.1) be homogeneous of odd degree
d > 1 and let y∗ be (SONC) point of (1.3) with negative value f(Y∗) < 0.
Then y∗ is a (SONC) point of

(3.1) min { f(Ly) : y ∈ S
m−1 } .

Proof. AsY∗·∇f(Y∗) = d f(Y∗) < 0 then by Lemma 2.7, y∗ ∈ S
m−1. Next,

by Lemma 2.2 applied to (3.1), y∗ is a (FONC) point of (3.1). Finally as
y∗ ∈ S

m−1 satisfies (SONC) for (1.3) it also satisfies (SONC) for (3.1)
since there is no restriction of sign for θ∗. �

Lemma 3.3. Let m < n and let h in (1.1) be a degree-d homogeneous
polynomial with d > 2. Then:

(i) x∗ ∈ S
n−1 with f(X∗) < 0 satisfies (SONC) for (1.2) if and only if

(3.2) λ2(ℓ
T∇2f(X∗) ℓ) ≥ d f(X∗) .

In particular X∗ is an eigenvector of L∇2f(X∗) with eigenvalue d(d −
1)f(X∗), i.e.,

(3.3) L∇2f(X∗)X∗ = d(d− 1) f(X∗)X∗ .

(ii) Similarly, y∗ ∈ Em with f(Y∗) < 0 satisfies (SONC) for (1.3) if and
only if

(3.4) λ2(L∇2f(Y∗)L) ≥ d f(Y∗) .

In particular Y∗ is an eigenvector of L∇2f(Y∗) associated with the eigen-
value d(d− 1)f(Y∗), i.e.,

(3.5) L∇2f(Y∗)Y∗ = d(d− 1) f(Y∗)Y∗ .
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Proof. (i) (3.2) is a direct consequence of [9, Corollary 2.4], in which it is
also proved that x∗ ∈ S

n−1 is en eigenvector of ∇2h(x∗) associated with its
smallest eigenvalue λ1(∇

2h(x∗)) = d (d− 1)h(x∗). Therefore

d (d − 1)h(x∗)x∗ = ∇2h(x∗)x∗

= ℓ
T ∇2f(X∗) ℓx∗ = ℓ

T∇2f(X∗)X∗ ,

and multiplying on the left by ℓ yields (3.3).
(ii) Let y∗ be a (SONC) point of (1.3) with negative value f(Y∗) < 0. By

Lemma 2.7, y∗ ∈ S
m−1 and y∗ is a (SONC) point of (3.1) (a homogeneous

problem on S
m−1). Then again as a direct consequence of [9, Corollary 2.4]

applied to (3.1),

λ2(L∇2f(Y∗)L) ≥ d f(Y∗)

which is (3.4), and y∗ is an eigenvector of L∇2f(Y∗)L associated with the
smallest eigenvalue λ1(L∇2f(Y∗)L) = d (d − 1)f(Y∗). That is,

L∇2f(Y∗)Ly∗ = d (d− 1) f(Y∗)y∗ ,

and multiplying on the left by L yields

L∇2f(Y∗)Y∗ = LL∇2f(Y∗)Ly∗

= d (d − 1) f(Y∗)Ly∗ = d (d − 1) f(Y∗) ,

which is (3.5). �

3.1. Odd-degree forms of m linear forms. We mentioned in the intro-
duction that interesting NP-hard combinatorial problems reduce to mini-
mizing a cubic form on the Euclidean sphere. In this section we consider
the case (m,d) = (m, 2p + 1) with p ≥ 1, that is, f is a m-variate form of
odd degree (whose cubic forms are a particular case).

So Problem (1.2) of minimizing an odd-degree form of m linear forms on
S
n−1, reduces to (1.3), i.e., minimizing an m-variate odd-degree form on Em.

As the degree is odd, we have seen that all local minima are nonpositive and
are attained on S

m−1. Therefore with g(y) = f(L1y, . . . ,Lmy) consider the
generic problem

min { g(y) : ‖y‖2 = 1 },

where g is a cubic form. Then (FONC) condition in Lemma 2.4 yields that
that any critical point y∗ ∈ S

m−1 should solve

∇g(y) + λy = 0 ; ‖y‖2 = 1 ,

for some λ, and by Bézout theorem, the above system has at most 2 (d −
1)m = 2.(2p)m solutions.

Moreover, −(y∗, λ) is solution whenever (y∗, λ) is solution. But only one
of the two provides a negative value for g(y∗). So there are at most (2p)m

local minimizers for Problem (1.3), all with negative associated value f(Y∗).
These are also the only “interesting” local minima for problem (1.2) since
all others (if any) have f∗ = 0 associated value.
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Corollary 3.4. If f is an odd degree-d form, then independently of the di-
mension n, Problem (1.2) has at most (2 ⌊d/2⌋)m local minima with negative
value. In particular, cubic forms have at most 2m local minima with negative
value.

4. Conclusion

We have presented some results on optimization of functions of m (< n)
linear forms on the Euclidean sphere S

n−1. The key result is to reduce the
problem to one of the same type but now on the Euclidean unit ball Em ⊂
R
m. Indeed, to every point that satisfies the standard second-order necessary

optimality conditions is associated a point that satisfies the standard second-
order necessary optimality conditions of the latter, and the converse is also
true. It thus results in a drastic reduction of the computational effort ifm ≪
n and the forms are known. If they are not known then there is a practical
algorithm to reveal this hidden formulation. As a by-product we also obtain
that quasi-convex polynomials of odd-degree have no spurious local minima
on S

n−1 and the global minimum has an analytical easy expression. The
general homogeneous case has also some interesting properties.

5. Appendix

5.1. Proof of Theorem 2.5.

Cases ∇f(X∗) 6= 0 and ∇f(Y∗) 6= 0.

Proof. (i) If x∗ ∈ S
n−1 satisfies (FONC) for problem (1.2) then by Lemma

2.2:

x∗ = τ−1
s∑

j=1

∂f(X∗)

∂Xj
ℓj =:

s∑

j=1

z∗j ℓj

with τ z∗ = ∇f(X∗). Next, as x∗ ∈ S
n−1, and letting y∗ := Lz∗,

1 = ‖x∗‖2 = ‖

s∑

j=1

z∗j ℓj‖
2 = z∗ · L z∗ = ‖Lz∗‖2 = ‖y∗‖2 .

It remains to prove that f(Ly∗) = f(X∗). But this follows from

X∗
j = ℓj · x

∗ =
s∑

i=1

(ℓj · ℓi) z
∗
i = (L z∗)j

= (LLz∗)j = (Ly∗)j = Lj · y
∗ = Y∗

j , j ∈ [s] ,

and therefore

f(X∗) = f((ℓ1 · x
∗), . . . , (ℓm · x∗))

= f((L1 · y
∗), . . . , (Lm · y∗)) = f(Y∗) ,

which completes the proof of (i).
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(ii) Conversely let y∗ ∈ Em satisfy (FONC) for Problem (1.3) and let
Y∗ := (Lj · y

∗)j∈[m]. That is, by Lemma 2.4:

m∑

j=1

∂f(Y∗)

∂Xj
Lj = −2θ∗ y∗ and − 2θ∗ = Y∗ · ∇f(Y∗) 6= 0.

Hence

y∗ = (−2θ∗)−1
m∑

j=1

∂f(Y∗)

∂Xj
Lj

and with z∗ := L−1 y∗, let x∗ :=
∑

j z
∗
j ℓj. Then

‖x∗‖2 = z∗L z∗ = z∗LLz∗ = ‖y∗‖2 = 1 ,

so that x∗ ∈ S
n−1. Next,

X∗ = ℓx∗ = ℓ ℓ
T z∗ = LLz∗ = Ly∗ = Y∗ ,

and in view of the definition of f̃ in (2.2), f(X∗) = f(Y∗) = f̃(y∗). Next,

z∗ = L−1y∗ = (−2θ∗)−1
m∑

j=1

∂f(Y∗)

∂Xj
L−1Lj

= (−2θ∗)−1
m∑

j=1

∂f(Y∗)

∂Xj
ej ,

and thus z∗j = (−2θ∗)−1∂f(Y∗)/∂Xj , for all j ∈ [m]. Next, recalling that
y∗ = Lz∗, one obtains Y∗ = LLz∗ and therefore,

x∗ =

s∑

j=1

z∗j ℓj = (−2θ∗)−1
m∑

j=1

∂f(Y∗)

∂Xj
ℓj .

s∑

j=1

∂f(X∗)

∂Xj
ℓj =

s∑

j=1

∂f(Y∗)

∂Xj
ℓj = −2 θ∗ x∗ ,

that is, x∗ ∈ S
n−1 satisfies (FONC) for problem (1.2) with

−2 θ∗ = Y∗ · ∇f(Y∗) = X∗ · ∇f(X∗) .

�

Cases ∇f(X∗) = 0 and ∇f(Y∗) = 0.

Proof. (i) Let x∗ ∈ S
n−1 satisfy (FONC) for (1.2) with ∇f(X∗) = 0. Write

x∗ = ℓ
T u + v with v ∈ Ker(ℓ), so that ℓv = 0 and ℓ

Tu ⊥ v. Then by
orthogonality:

1 = ‖x∗‖2 = ‖ℓTu‖2 + ‖v‖2 ⇒ ‖ℓTu‖ ≤ 1 .

Let y∗ := Lu so that ‖y∗‖2 = u · LLu = u · ℓ ℓTu = ‖ℓTu‖2 ≤ 1, and
so y∗ ∈ Em. In addition,

X∗ = ℓx∗ = ℓ ℓ
T u = LLu = Ly∗ = Y∗ ,
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and therefore f(X∗) = f(Y∗).
Finally, 0 = ∇f(X∗) = ∇f(Y∗) so that y∗ satisfies (FONC) with θ∗ = 0.
(ii) Let y∗ ∈ Em satisfy (FONC) for (1.3) with ∇f(Y∗) = 0. Define

x∗ := ℓ
T L−1y∗ + v where v ∈ Ker(ℓ) is arbitrary with ‖v‖2 = 1 − ‖y∗‖2.

Then by orthogonality, ‖x∗‖2 = ‖ℓTL−1y∗‖2 + ‖v‖2. Moreover,

‖ℓT L−1 y∗‖2 = y∗ · L−1
ℓ ℓ

TL−1 y∗ = ‖y∗‖2 ≤ 1 ,

and therefore ‖x∗‖2 = 1, i.e., x∗ ∈ Sn−1. Moreover,

∇f(X∗) = ∇f(ℓ ℓT L−1 y∗) = ∇f(Ly∗) = ∇f(Y∗) = 0,

so that x∗ ∈ S
n−1 satisfies (FONC) for (1.2) with λ∗ = 0. �

5.2. Proof of Theorem 2.8.

Proof. (i) Recall that L = (ℓ ℓT )1/2, and recall that X∗ · ∇f(X∗) ≤ 0 when-
ever x∗ satisfies (SONC) . Therefore, let y∗ ∈ S

m−1 be as in Theorem
2.5(i) so that Y∗ = X∗. Next, the second-order necessary optimality condi-
tion (SONC) for problem (1.3) reads:

(5.1) Lv · ∇2f(Y∗)Lv ≥ 2Y∗ · ∇f(Y∗) , ∀v ∈ (y∗)⊥ .

where
(y∗)⊥ = {v ∈ S

m−1 : Lv · ∇f(Y∗) = 0 } .

Hence suppose that v ∈ (y∗)⊥ violates (SONC) for Problem (1.3), i.e.,

Lv · ∇2f(Y∗)Lv < 2Y∗ · ∇f(Y∗)

or, equivalently, since Y∗ = X∗,

(5.2) Lv · ∇2f(X∗)Lv < 2X∗ · ∇f(X∗) .

Next, since L = (ℓ ℓT )1/2 is symmetric and nonsingular, v = Lw for some
for some w ∈ R

m. In addition,

‖ℓTw ‖2 = ‖ℓT (ℓ ℓT )−1/2v ‖2 = ‖v‖2 = 1 .

So letting u := ℓ
Tw, observe that

ℓu · ∇f(X∗) = wT
ℓℓ

T ∇f(X∗) = wTLL∇f(X∗)

= v · L∇f(Y∗) = Lv · ∇f(Y∗) = 0 .

In addition, since Lv = LLw = ℓ ℓ
T w = ℓu, (5.2) reads

ℓu · ∇2f(X∗) ℓu < 2X∗ · ∇f(X∗) ,

and therefore we have exhibited u ∈ (x∗)⊥ which violates (2.10).
If we now replace (SONC) by (SOSC) , the same conclusion indeed

holds and with exactly same above arguments.

(ii) We show that (2.10) holds by contradiction. Let y∗ ∈ S
m−1 be as

in the statement of (ii). Then x∗ ∈ S
n−1 as in Theorem 2.5(ii) satisfies

(FONC) and X∗ = Y∗. Observe that from (2.10)-(2.9)

(x∗)⊥ = { (a+ ℓ
Tb) : a ∈ Ker(ℓ) ; Lb · ∇f(X∗) = 0 ; ‖a+ ℓ

Tb‖ = 1 } .
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Suppose that there exists (a+ℓ
Tb) ∈ (x∗)⊥ such that (2.10) is violated, i.e.,

ℓ ℓ
T b · ∇2f(X∗) ℓ ℓT b < 2X∗ · ∇f(X∗) (≤ 0 ).

Next, by orthogonality 1 = ‖a+ℓ
Tb‖2 = ‖a‖2+‖ℓT b‖2, so that ‖ℓTb‖ ≤ 1.

So let Lv := γ ℓ ℓTb with γ = 1/‖ℓTb‖ ≥ 1. Hence (recalling ℓ ℓ
T = L2)

‖v‖2 = γ2bT
ℓ ℓ

TL−1L−1
ℓ ℓ

Tb = γ2bT
ℓ ℓ

Tb = γ2‖ℓTb‖2 = 1 .

In addition

Lv · ∇2f(Y∗)Lv = γ2 ℓ ℓT b · ∇2f(X∗) ℓ ℓT b

≤ ℓ ℓ
T b · ∇2f(X∗) ℓ ℓT b [as γ2 ≥ 1]

< 2X∗ · ∇f(X∗) = 2Y∗ · ∇f(Y∗) ,

and

Lv · ∇f(Y∗) = γ Lb · ∇f(Y∗) = γ Lb · ∇f(X∗) = 0,

so that v ∈ (y∗)⊥. Therefore we have exhibited a contradiction with y∗

satisfying (SONC) and so (2.10) holds.
The same arguments are valid when (SONC) is replaced with (SOSC) .

�
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