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Human Trajectory Prediction Model and its Coupling with a Walking
Pattern Generator of a Humanoid Robot*

I. Maroger1, N. Ramuzat1,2, O. Stasse1 and B. Watier1

Abstract— In order to smoothly perform interactions between
a humanoid robot and a human, knowledge about the human
locomotion can be efficiently used. Indeed, in a human-robot
collaboration, a prediction model of the human behaviour
allows the robot to act proactively. In this paper, an optimal
control based model predicting the human Center of Mass
(CoM) trajectory during gait is presented. A Walking Pattern
Generator (WPG) based on non-linear model predictive control
is, then, introduced in order to generate the robot CoM and
footsteps along the predicted trajectory. The combination of the
human trajectory prediction model and this new WPG aims
to allow the robot to proactively walk along with a human
instead of passively follow him. These models have been tested
in simulation on Gazebo on a TALOS humanoid robot model
using measured human trajectories. To perform the CoM and
foot trajectories computed by the WPG, a real-time whole-body
controller is used. This controller is a Quadratic Program which
solves the inverse dynamics of the robot at torque level.

Index Terms— humanoid robot, human locomotion, optimal
control, prediction, walking pattern generator

I. INTRODUCTION

Interactions between human and humanoid robots raise
great challenges. Indeed, not only are the human behaviours
not always well known but also the humanoid robots are
complex to control. Furthermore, the redundancy of the
musculoskeletal system allows multiple behaviours which
make them hard to predict. This paper is part of a French
project, called ANR-COBOT, which aims at a collaboration
between a human and a TALOS humanoid robot to carry and
move a table. To smoothly achieve such a handling task,
a good knowledge of the human dynamics while walking
with a table is needed to allow the robot to anticipate
and proactively follow the human movements. For now, the
problem of walking with a table has been put aside and the
issue has been reduced to the proactive tracking of a walking
human by a humanoid robot. Thus, this work focuses on
the real-time prediction of human walking trajectory and
its coupling with a Walking Pattern Generator (WPG) for
a TALOS humanoid robot.

A. State of the art

1) Proactive human-robot interactions: To proactively
collaborate with a human, a humanoid robot needs to predict,
or at least guess, its partner’s future actions [1]. As far as we
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Fig. 1. Simulation on Gazebo (left) of the robot executing the predicted
trajectory with N0 = 50 and NOC = 100. The CoM, footsteps (desired
in red, real in blue) and human trajectories (in green) are also displayed in
RViz (right) for comparison.

know, the first experiment where a humanoid robot proac-
tively interacts with a human was performed in [2]. In this
work motion primitives like Stop, Side, Turn and Walk/Turn
were used to generate the robot locomotion according to
the human velocity. Since then, collaborative tasks are often
aimed to be as proactive as possible in order to smooth the
human-robot interactions.

For example, in [3], a co-manipulation task is aimed. To
achieve this goal, the authors design a robot controller which
can generate optimal motions in real time equivalent to those
generated by a human. As this controller takes into account
a whole-body dynamics of the human, it allows a more
proactive interaction between the humanoid-robot and the
human. In this paper, a similar method is enforced, only the
goal differs. Indeed, here, we try to perform a co-navigation
task instead of a co-manipulation task.

Furthermore, proactive co-navigation tasks have already
been well studied. Indeed, in [4], the authors propose a
reactive trajectory planner for robot which takes into account
the human predicted motions and goals to handle human-
robot co-navigation. The estimation of the human movement
is based on its current velocity and three different navigation
modes are presented to make the robot move forward without
colliding with the human. Thus, even if our work also aims
a co-navigation task, the goal is not to smoothly avoid but
to walk along with a human partner.

The co-navigation task we are trying to perform in this
article is the first step toward a table handling task which can
be compared to one aimed in [5] and [6]. Indeed, in those
papers, the authors target a collaborative handling task while
walking, where the humanoid robot identifies its human
partner intentions. To guess human future motions, a training
of a multiclass classifier of human intentions was performed
using measurements collected from a human-human handling
collaboration. The results of this training, namely the optimal
features to discriminate a set of human motions, was then
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Fig. 2. Description of the whole framework presented in this paper

used to predict human intentions. In this article, instead of
using supervised learning to classify and guess human in-
tentions, an Optimal Control (OC) scheme is built to predict
the human future trajectory. To the best of our knowledge,
machine learning [7] [8] [9] and probabilistic state machines
[10] have already been studied to guess human intentions but
it’s the first time that an OC model is proposed to solve such
a real-time prediction problem. A real-time approach is more
complex but gives more versatility for future works. Indeed,
optimisation problems allow to incrementally add obstacles
or new constraints by adding new terms to the cost function.

2) Human trajectories during gait: Healthy human gait
is a well studied field in biomechanics [11]. However, as
far as we can tell, the focus of those works is rarely
on the modeling and the simulation of human walking
trajectories. Nevertheless, in robotics, some authors studied
this problem to generate human-like paths for a robot to
follow. Thus, models of human walking trajectories using
parametric curves called clothoids [12] or OC models [13]
[14] [15] have been designed. In [16], the authors assessed
those models according to a metrics evaluating the linear and
angular distances between human trajectories and generated
trajectories. The most human-like model was the one intro-
duced in [15] which approximates the human by a holonomic
system instead of a non-holonomic one. Indeed, holonomic
model allows lateral and oblique motions which better fits
human locomotion. This is why a new OC model, inspired
from [15], is defined in [17]. This model gives an accurate
approximation of human behaviour. We will use this OC
model in the following of this paper.

3) Humanoid robot WPG: The generation of a stable
humanoid robot gait is a commonly tackled issue in robotics.
Introduced by [18], the Linear Inverted Pendulum Model
(LIPM) is widely used to approximate the non linear dy-
namics of a humanoid robot Center of Mass (CoM) during
gait as a function of the Zero Moment Point (ZMP). Indeed,
the ZMP is a relevant variable to control as the ZMP has to
stay within the support polygon of the robot at all time to
ensure the humanoid robot balance [19].

In [20], the authors present a ZMP preview control which
computes the CoM of the humanoid robot over a prediction
horizon from imposed footsteps given to the controller. In
[21], a new formulation of this ZMP preview control using a
Model Predictive Control (MPC) scheme is proposed. Nowa-
days, this MPC approach is the most commonly adopted
method to design a WPG for humanoid robots [22] [23]
[24]. Moreover, the original MPC has been improved to
achieve automatic footstep placements by [25]. Even non
linear reformulations of this MPC were proposed in [26]
[27]. The WPG presented in this work is based on the Non-
linear Model Predictive Control (NMPC) proposed by [26]

which allows to simultaneously compute the CoM and the
footsteps positions and orientations. Although only linear
constraints are implemented in this paper, this NMPC scheme
is able to deal with non-linear constraints to avoid obstacles
which will be useful in future works to avoid collisions
between the robot and the table feet for example.

B. Contributions

This article presents a prediction model of human tra-
jectory during gait and its coupling with a WPG which
generates a TALOS humanoid robot CoM and footsteps
along the predicted trajectory. This coupling is aimed to
allow a proactive tracking of a walking human by a humanoid
robot, instead of a passive one, in order to ease every
potential interactions during gait. The whole framework is
assessed in simulation on Gazebo, as Fig.1 shows, and is
described on Fig.2. The focus of this paper is on the two
blue boxes which are presented in section II and III. Their
coupling and the green box are then presented in section IV.

The contributions of this paper are three-fold. First, a
prediction OC model is designed based on a human trajectory
model. This prediction model is expected to provide an
accurate estimation of the human future trajectory. Then,
a new WPG using NMPC* is developed to generate a
TALOS robot CoM and footsteps along a given trajectory.
Finally, the coupling of this WPG with the prediction model
is simulated to assess the efficiency of this process. This
framework is designed to help a humanoid robot to predict
the spontaneous human trajectory during gait according to
its real-time CoM observation. This aims to allow the robot
to move in accordance with its human partner. Thus, if the
human accelerates, slows down or stops, the robot should act
similarly while following the same trajectory as its partner.

II. PREDICTION OF HUMAN TRAJECTORIES DURING GAIT

First of all, to make the robot anticipate the human
behaviour during gait, a model which allows to predict where
a human is going using its past trajectory is needed. In this
part, such a model, based on the OC model described in [17],
is presented.

A. Human walking trajectory model

In [17], the authors designed an OC model which gen-
erates human-like trajectories between a starting and a goal
position. This OC model is solved with a Differential Dy-
namic Programming (DDP) solver [28] from the Crocoddyl
library [29].

*For sake of clarity we keep the term NMPC to differentiate the motion
generation part from the prediction part. But in this paper, there is no state
feedback, it is used as an optimal control approach. But the final aim is to
perform NMPC.



In this OC model, as in [15], the human is approximated
by a holonomic system which follows the following dynam-
ics : 

ṙx = cos rθ.vforw − sin rθ.vorth
ṙy = sin rθ.vforw + cos rθ.vorth
ṙθ = ω
v̇forw = uvf

v̇orth = uvo

ω̇ = uω

(1)

where (rx, ry) is the horizontal position of the system and
rθ is its orientation with respect to a global frame. vforw
and vorth are the forward and orthogonal velocities of the
system with respect to a local frame.

Then, this OC model can be described as follows with
x = (rx, ry, rθ, vforw, vorth, ω)T and u = (uvf , uvo , uω)T :

min
x(.),u(.),T

∫ T

0

φr(x(t), u(t)) dt+ φt(x(T )) (2)

Under the following strict equality constraints : the dynam-
ical constraint ẋ = f(t, x(t), u(t)) (Eq.1) and the initial
constraint x(0) = x0.
In Eq.2, T is the time needed to go from the starting position
to the goal position and φr and φt are the running and
terminal cost functions introduced in [17].

B. Prediction model

The previously described OC model was shown to gen-
erate paths which fit well human CoM trajectories in [17].
This is why, in this paper, a similar OC problem is addressed
to predict human walking behaviour.

First, we hypothesise that a human is walking and that
his CoM position in the horizontal plane and the posterio-
anterior orientation of his pelvis, denoted c̃ = (c̃x, c̃y, c̃θ)T ,
are recorded at all time with a sampling period TOC . Then,
the following assumptions are made:
• c̃ is piecewise constant on each interval [kTOC , (k +

1)TOC ] with k ∈ N. Thus, at time t = kTOC , the human
trajectory can be described by

(
c̃0 c̃1 ... c̃k

)T
.

• The prediction process starts when k ≥ N0 − 1 as N0 is
the amount of measurements needed before being able to
correctly predict the human future trajectory.

• The prediction process stops when the human stops walk-
ing at an a priori unknown time k = nf .

• The prediction process is done on a sliding window of size
NOC > N0.

• At time t = kTOC , the prediction windows goes from n+1
to n+NOC and the prediction process uses the measured
trajectory from n+1 to n+N0 with n ∈ J−1, nf−N0+1K
defined as n = k −N0.

Thus, at time t = kTOC , the prediction process will compute
Xn+1 =

(
xn+1 xn+2 ... xk ... xn+NOC

)T
. The op-

timal solution will be denoted X∗
n+1. This process is repre-

sented on Fig.3.
To solve this prediction problem, an OC model has been

developed based on the one described in Eq.2. This model
can be expressed as follows at time t = kTOC , k = n+N0:

Start

Final goal

Human
Predicted goalGlobal

Frame

Fig. 3. Prediction problem representation at time t = kTOC , k = n+N0

(in green and yellow the whole past human trajectory, in stippled green the
unknown future human trajectory and in purple the predicted trajectory)

(X∗
n+1, U

OC,∗
n+1 ) = arg min

Xn+1,UOC
n+1

n+NOC∑
i=n+1

ϕi(c̃i, xi, ui) (3)

Under the following strict equality constraints:{
ẋ = f(x(t), u(t)) Dynamical constraint (Eq.1)
xn+1 = c̃n+1 Initial constraints (4)

With the following cost functions:

∀i ∈ Jn+ 1, kK, ϕi(c̃i, xi, ui) = α0 + α1u
vf2
i + α2u

vo2
i

+ α3u
ω2
i + γ0((c̃xi − rxi )2 + (c̃yi − r

y
i )2) + γ1(c̃θi − rθi )2

(5a)

∀i ∈ Jk + 1, n+NOCK, ϕi(c̃i, xi, ui) = α0 + α1u
vf2
i

+ α2u
vo2
i + α3u

ω2
i (5b)

with (γ0, γ1) = (10, 10) heuristically chosen so that the
beginning of the prediction fits as much as possible the
measurements and (α0, α1, α2, α3) = (7.9, 4.0, 20.1, 1.0 ×
10−6) computed in [17].

Thus, at time t = kTOC , k = n+N0, this new OC model,
also solved with a DDP solver from the Crocoddyl library,
provides a predicted trajectory X∗

n+1.

C. Prediction process simulation

Thus, the described prediction process needs a human
trajectory as an input. In this paper, we used trajectories of
10 healthy subjects walking from 40 starting positions to one
goal position in front of a table collected as part of a study
of human walking trajectories [16] [17].

To simulate a human walking, the recorded trajectory
was sent at a given rate, simulating the human velocity,
to the prediction process thanks to a ROS framework [30].
According to the chosen rate, the recorded trajectory could
be sped up or slowed down. As part of this work, we
hypothesise that a measured human trajectory is independent
from its travel velocity. One simulation on the RViz software
is shown on Fig.4.

III. WALKING PATTERN GENERATOR FOR TRAJECTORY
TRACKING

Then, as the future trajectory of the human can now be
computed thanks to the prediction model described in the
previous section, only the robot gait remains to be generated



Fig. 4. Example of the current predicted trajectory (in purple) of a human
trajectory (in green) from his latest past trajectory (in yellow) with N0 = 50
and NOC = 100

to perform a proactive tracking of a human. In this part,
a new WPG is designed to generate the CoM trajectory
and the footsteps for a TALOS humanoid robot along the
predicted trajectories. Our work is based on the NMPC
developed in [26] which simultaneously solves the CoM and
footsteps position and orientation problems. There are two
main differences between the NMPC described in this paper
and the one in [26]. Indeed, in this article :
• The controller is designed to track a reference trajectory

rather than a reference velocity which implies a different
cost function in comparison with [26].

• A terminal constraint on the Capture Point (CP) has been
added to avoid the internal instability issue in the problem
formulation.
In the following sections, a short description of the NMPC

core equations is provided and more details can be found in
[25] and [26].

A. Description of the problem variables

1) Center of Mass: As in [26], the robot CoM is con-
trolled on a preview horizon of length NWPG. On each sam-
pling period of time TWPG, the jerk is assumed to be piece-
wise constant i.e. ∀t ∈ [kTWPG, (k + 1)TWPG] with k ∈
J1, NWPGK, ...

c νk(t) =
...
c νk with c the robot CoM position in

the global frame and ν ∈ {x, y}. Then, this leads to the
following equation :

ĉνk+j = Aj ĉνk +

j−1∑
i=0

AiB
...
c νk+i (6)

with ĉνk =

cνkċνk
c̈νk

, A =

1 TWPG
T 2
WPG

2
0 1 TWPG

0 0 1

 and B = T 3
WPG

6
T 2
WPG

2
TWPG

. Thus, the CoM over the preview horizon and its

derivatives are then defined as :
Cνk+1 =

(
cνk+1 ... cνk+NWPG

)T
= SpC

ν
k + Up

...
C
ν

k

Ċνk+1 =
(
ċνk+1 ... ċνk+NWPG

)T
= SvC

ν
k + Uv

...
C
ν

k

C̈νk+1 =
(
c̈νk+1 ... c̈νk+NWPG

)T
= SaC

ν
k + Ua

...
C
ν

k...
C
ν

k+1 =
(...
c νk+1 ...

...
c νk+NWPG

)T
(7)

with Sp, Sv , Sa ∈ RNWPG×3 and Up, Uv ,
Ua ∈ RNWPG×NWPG obtained from a recursive application

of the CoM dynamics (Eq.6).

2) Zero Moment Point: According to the LIPM, the ZMP
can be expressed as a linear function of the CoM as follows:

zνk =
(

1 0 −hg
)
ĉνk (8)

with h the height of the CoM with respect to the ground and
g the gravity. Thus, the ZMP over the preview horizon can
be expressed as:

Zνk+1 =
(
zνk+1 ... zνk+NWPG

)T
= SzC

ν
k + Uz

...
C
ν

k (9)

with Sz ∈ RNWPG×3 and Uz ∈ RNWPG×NWPG .

3) Footsteps: The position and orientation of the support
foot are described by :

F ηk+1 =
(
fηk+1 ... fηk+NWPG

)T
= vk+1f

η
k + Vk+1F̃

η
k+1

(10)
fηk with η = {x, y, θ} is the current position and orientation
of the support foot. F̃ ηk+1 of size nDS is the free variable
of the problem with nDS the maximum number of double
support phase in the preview. The vector vk+1 ∈ RNWPG

and the matrix Vk+1 ∈ RNWPG×nDS are called selection
matrix, they indicate which foot is the support foot during
the sampling interval. The footsteps placement strategy is
defined in section III-B.

Let fθ,Rk+1 and fθ,Lk+1 respectively be the orientation of the
right foot and the left foot. The orientation of the free-flyer
is defined as follows :

Cθk+1 =
1

2
(fθ,Rk+1 + fθ,Lk+1), Ċθk+1 =

1

2
(ḟθ,Rk+1 + ḟθ,Lk+1)

and C̈θk+1 =
1

2
(f̈θ,Rk+1 + f̈θ,Lk+1)

4) Capture Point: The CP was introduced by [31] and
[32]. It can be derived from the LIPM system equations and
is defined as follows:

ξνk = cνk +
ċνk
ω

(11)

with ω =
√

h
g . Thus, the CP over the preview horizon can

be defined as follows :

Ξνk+1 =
(
ξνk+1 ... ξνk+NWPG

)T
= SξC

ν
k + Uξ

...
C
ν

k (12)

with Sξ = Sp + 1
ωSv and Uξ = Up + 1

ωUv . In section III-C,
a terminal constraint on the CP is defined.

B. Cost function for trajectory tracking

As a reminder, in this work, we want the humanoid robot
to follow the predicted trajectory defined in section II-B.
Moreover, as we want the robot to dynamically follow a
human, the robot needs to follow the trajectory with the same
velocity as the human walking velocity. In this part, the cost
function of this NMPC, which is one of the contributions of
this paper, is described.

At time t = kTOC , k = n+N0, the following data, defined
in section II-B, can be given to the controller:
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Fig. 5. Representation of the 3 possible scenarios : at the top, the robot
walks behind the human, on the middle they are synchronized, at the bottom
the robot walks ahead of the human

• The measured human trajectory until time t :(
c̃0 c̃1 ... c̃k

)T
• The predicted trajectory at time t : X∗

n+1 =(
x∗n+1 ... x∗k ... x∗n+NOC

)T
.

From the measured human trajectory, an average current
human walking velocity can be computed :

v̄n+1 =

√
(c̃xk − c̃xn+1)2 + (c̃yk − c̃

y
n+1)2

N0 × TOC
(13)

At this point, three scenarios should be considered :
1) The robot walks behind the human at a constant distance

dbehind.
2) The robot and the human act synchronously so that no

distance divides them. Experimentally, this scenario can
be achieved by putting the robot and its human partner
side by side to show that the robot is mimicking the
human motions without any delay.

3) The robot walks ahead of the human at a constant distance
dahead.

In all those scenarios, the robot is trying to follow the same
trajectory as the human. According to which scenario is
played, the part of the predicted trajectory used in the cost
function will be different. Indeed, it will respectively be
X

∗(m)
n+1 =

(
x∗m ... x∗n+NOC

)T
with :

4) 0 ≤ m < k such that
√

(cxk − cxm)2 + (cyk − c
y
m)2 ≈

dbehind
5) cνm = cνk
6) k < m ≤ k + bNOC−N0

2 c such that√
(cxk − cxm)2 + (cyk − c

y
m)2 ≈ dahead

Those scenarios are represented on Fig.5
Then, to respect the human walking velocity, not the

entirety of X∗(m)
n+1 has to be sent to the NMPC. Indeed,

the robot should travel during TWPG × NWPG the same
distance as the human, namely v̄n+1 × TWPG × NWPG.
So, we should compute the index l ∈ Jm,n+NOCK such as∑l
i=m

√
(rx,∗i − rx,∗i−1)2 + (ry,∗i − r

y,∗
i−1)2 ≈ v̄n+1×TWPG×

NWPG. Then
(
x∗m ... x∗l

)T
can be interpolated in order

to count NWPG terms. Then, the following vector can be
sent to the NMPC :

Cη,refk+1 =
(
x̃∗m ... x̃∗l

)T
(14)

Now, the cost function used in this new NMPC can be
defined as follows :

J(UWPG
k ) =

α

2
J1(UWPG

k ) +
β

2
J2(UWPG

k ) +
γ

2
J3(UWPG

k )

(15)
with UWPG

k =
(...
C
x

k F̃ xk
...
C
y

k F̃ yk F̃ θk
)T

and α, β and
γ the same cost weights as in [26].
J1 is the cost function ensuring the tracking of the

predicted trajectory and is defined as follows :

J1(UWPG
k ) = ||Cxk+1 − C

x,ref
k+1 ||

2
2 + ||Cyk+1 − C

y,ref
k+1 ||

2
2

+ ||Cθk+1 − C
θ,ref
k+1 ||

2
2 (16)

J2 is the cost function placing the ZMP as close as possible
to the projection of the ankle on the ground, this cost defined
the footsteps placement strategy:

J2(UWPG
k ) = ||F xk+1 − Zxk+1||22 + ||F yk+1 − Z

y
k+1||

2
2 (17)

J3 is the cost function minimizing the jerk :

J3(UWPG
k ) = ||

...
C
x

k+1||22 + ||
...
C
y

k+1||22 (18)

Thus, the problem solved in this NMPC is the following:

min
UWPG

k

J(UWPG
k ) (19)

under the constraints presented in the following section.

C. Constraints of the NMPC

Among the constraints presented in [26], the balance, the
footstep feasibility and the foot orientation have been kept
to perform the trajectory tracking with the NMPC defined in
the previous section.

Moreover, one more constraint has been added to deal
with the inherent instability of the LIPM system equations.
Indeed, in the LIPM-based models, the CoM can diverge
exponentially even if the ZMP is maintained in the support
polygon. Thus, this generates an unfeasible walking pattern
[33]. One way to solve this instability is to add a terminal
constraint [24]. This terminal constraint can be a capturabil-
ity constraint which imposes the robot to stop at the end of
the planning horizon [34].

Thus, in this paper, a terminal inequality constraint which
imposes the CP to be in the support polygon at the end of
the preview horizon was added. This terminal constraint can
be expressed as :

nνi,n+NWPG
ξνn+NWPG

(UWPG
n+NWPG

) < nνi,n+NWPG
V νi,n+NWPG

(20)

∀i ∈ J1, 4K, ni =

(
V yi+1 − V

y
i

V xi − V xi+1

)
is the vector orthogonal to

the edges ViVi+1 of the support foot and Vi its vertices.
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Fig. 6. Example of a CoM trajectory (in red) and the footsteps generated
(in green) with the presented WPG along a given trajectory generated with
the OC model presented in section II-A (in blue)

D. Solver

As in [26], this optimisation problem is turned into a least
squares problem using a generalized Gauss-Newton method.
Thus, solving the previously described problem amounts to
solving a Sequential Quadratic Problem (SQP). This SQP is
solved with the qpOASES library [35]. More details about
this transformation can be found in [26].

E. Generation of robot CoM trajectory and footsteps

To test the NMPC behaviour, trajectories generated with
the OC model presented in section II-A were given to
the NMPC with a constant velocity v̄n+1 = 0.25 m/s.
Moreover, for steep changes in the orientations, a threshold
on the velocity was defined to prevent the constraints to
become unreachable. The result obtained for a trajectory with
(x0, y0, θ0) = (0, 0, 0) as a starting pose and (xf , yf , θf ) =
(1.35, 4, π) as a goal pose is represented on Fig.6. This
version of the WPG is called offline WPG. An online
version coupled to the prediction process is described in the
following section. Let us note that the computational time
for each iteration of the NMPC is about 2 × 10−3s with
NWPG = 16 and TWPG = 0.2 s.

IV. SIMULATION ON A TALOS ROBOT

A. Coupling of the Prediction Process and the WPG

As a reminder, the purpose of this paper is to design a
whole architecture that allows a humanoid robot to smoothly
follow a human who walks to an a priori unknown goal while
predicting his future trajectory. This tracking is aimed to be
proactive as a prediction process estimates the human future
trajectory so that the future steps of the robot planned by the
WPG are already in the right direction. This may cancel the
reaction time of the robot and make the tracking smoother.
The coupling of the prediction process described in Sec.II
and the WPG for a TALOS humanoid robot described in
Sec.III is a first step towards this purpose.

This coupling can be described as follows. First, a pre-
recorded human trajectory is streamed and retrieved by
the prediction process like in SecII-C. Then, it sends the
predicted trajectory to the WPG which computes, thanks to
a NMPC, the robot CoM and feet positions and orientations
over the preview horizon with respect to the human velocity
computed with Eq.13. All those data are shared through
a ROS framework and displayed on the RViz software

Fig. 7. The robot CoM (in red) and footsteps (past steps in grey, current
support foot in red and future support foot in green) are generated from the
current predicted human trajectory (in purple) with N0 = 50 and NOC =
100

as shown on Fig.7 for a trajectory with (x0, y0, θ0) =
(−1.5, 4, 0) as a starting pose and (xf , yf , θf ) = (0, 0, π2 ). In
this figure, the chosen scenario is the second one on Fig.5,
namely the synchronization of a robot and a human. This
coupling matches with the blue boxes represented in Fig.2
which shows the whole framework. In the next section, the
last steps of this process, namely the whole-body controller
(the green box on Fig.2) and the simulation on the TALOS
robot on Gazebo are presented.

All the results and simulations resulting of this cou-
pling are reproducible as all the libraries are open-
source and the source code and the data are avail-
able on: https://github.com/imaroger/human_
walking_trajectory_prediction.

B. Whole-body controller

The whole-body controller computes a stable command
from the reference trajectories and the actual state of the
robot. In this paper, the controller used in simulation is
a Weighted Quadratic Program (WQP), which solves the
inverse dynamics of a robot in rigid contact with the environ-
ment [36]. It has been successfully tested on the humanoid
robot TALOS in simulations in [37]. The controller takes as
inputs the reference trajectories of the WPG and implements

https://github.com/imaroger/human_walking_trajectory_prediction
https://github.com/imaroger/human_walking_trajectory_prediction


Fig. 8. Tracking of the CoM and Feet trajectories in the Gazebo simulation.

task functions with them, as acceleration-based tracking law.
The controller optimises a cost function using these tasks,
prioritised with weights, while respecting constraints such
as the robot dynamics and feet contacts. The interest of
this controller is that it implements an Angular Momentum
(AM) regularisation task, which allows to control the angular
momentum part generated by the contact transition [38]. In
[37] three controllers are compared, in this paper, the torque
controller is used.

C. Simulation

The simulation has been realized using Gazebo on a
standard laptop (Intel CPU i7-8850H @ 2.6 GHz). The
reference trajectories from the WPG are registered in files
which are read by the whole-body controller during the
simulation. The controller computes the desired torque for
all the joints of the robot at 1kHz and sends this command
to the simulated robot in Gazebo. The simulation result of
the same trajectory presented in Fig.7 is shown in Fig.1.
The CoM and feet references are well followed by the
controller, their tracking are presented in Fig.8, allowing
the robot to successfully perform the motion. Compared
to [37], gains tuning were needed to make the controller
successfully perform the trajectory wide side steps (the CoM
proportional gains were raised to 800 and the AM ones
decreased to 2.5). The whole prediction process and some
simulations are shown in the video available at https:
//youtu.be/hu-cuUYl-58.

V. DISCUSSION

In this paper, a whole framework allowing a proactive
co-navigation task is presented. This framework including a
prediction of human trajectory and a WPG generating the
CoM and the footsteps of a TALOS humanoid robot along
the predicted trajectory gave good results in simulations as
it is presented in the previous section.

Human walking trajectory model. The presented OC
model used to predict the human trajectory depends a lot on
the chosen human trajectory model. In this work, the chosen
model is the one described in section II-A. This model
has been optimised in [17] to generate smooth trajectory
of the human CoM. That is to say that it does not take
into account the oscillations of the CoM due to the steps.

Fig. 9. Result of the coupling of the prediction model and the WPG for
4 different human subjects

So, another model of human gait taking the steps into
account could be consider in case of the prediction model
needs to be more precise. Moreover, the chosen human
trajectory model has been shown to fit well the average
human behaviour while its performance could be poorer
when apply to individual subjects. However, when testing
the prediction model over trajectories of numerous subjects,
it seems to achieve its goals whoever the subject is. The
results of 4 predictions for 4 different subjects going from
the same starting pose (x0, y0, θ0) = (−1.5, 4, π2 ) to the
same goal pose (xf , yf , θf ) = (0, 0, π2 ) are presented on
Fig.9. This demonstrates that the coupling of the prediction
process and the WPG provides consistent results which do
not depend on the human partner with whom the robot
interacts.

Role of the parameters in the whole process performance.
On the one hand, the prediction process efficiency depends
a lot on the parameters N0 and NOC . Indeed, when
performing multiple tests, it seems that the greater N0

is and the closer NOC is from N0 the more precise the
prediction will be. However, to give a satisfying result,
the prediction process accepts a wide range of parameters.
When taking N0 = 15 and NOC = 75 the process is still
able to predict the human behaviour even if this prediction
is less accurate than with N0 = 50 for example. Yet, for the
whole-body controller using NOC = 100 leads to a more
stable motion. A numerical assessment of the prediction
model is presented in [39]. On the other hand, the precision
of the human tracking performed by the WPG relies on
the chosen scenario and on the potential chosen distance to
the human. The greater dbehind is, the cleaner the footsteps
are because the part of the predicted trajectory used by the
WPG is mostly in the the measured part. On the opposite,
the greater dahead is, the messier the footsteps are because
all those generated footsteps are based on the prediction
which can vary a lot according to the measurements.

Feasibility of the SQP for high velocity When the robot is
required to walk at velocity higher than 0.25m/s following
a trajectory with a non-zero curvature, the SQP turns out
to be infeasible and the robot cannot walk with its human
partner anymore. This may be solved relaxing the constraint
on the foot rotation or adapting the foot constraint bounds

https://youtu.be/hu-cuUYl-58
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for a TALOS robot as, in this paper, we used the ones
computed for HRP-2 in [26]. We could also use another
solver like the ones implemented in the Crocoddyl library
[29]. The improvement of the WPG to achieve a higher
maximum velocity in non-zero curvature trajectories will be
the focus of future works.

Toward a full online application on the real robot. The
test on the TALOS robot is an ongoing work. Torque-based
walking has been successfully realized. However this walk-
ing pattern generator has some limited speed. Developments
are under way to reach a sufficient speed to realize a human-
humanoid robot interaction.

VI. CONCLUSION

In this paper, we aim to ease the tracking of a human
by a humanoid robot by helping the robot to predict, and
thus anticipate, its partner behaviour. To this end, we first
present a prediction model of human walking trajectory
which generates the future trajectory of a human from its
recent past trajectory. Then, a WPG is designed to gen-
erate a TALOS humanoid robot CoM and footsteps along
the predicted trajectory in real time. Finally the CoM and
footsteps trajectories resulting from the WPG are given to
a torque whole-body controller which computes a stable
command for the robot to follow. This whole framework has
been successfully tested in real-time simulation. Thus, in this
work, we achieve to develop a whole framework to control
a simulated TALOS humanoid robot in order to make him
proactively walk along with a human partner.
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