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Optimally bounded Interval Kalman filter

Quoc-Hung Lu1, Soheib Fergani1, Carine Jauberthie1, Françoise Le Gall1

Abstract— This paper is concerned with the optimization of
the upper bounds of the interval covariance matrices [1]. This
filter is applied to discrete time linear systems subject to mixed
uncertainties (combining bounded and stochastic uncertainties),
in terms of observations and noises (mainly sensors limitations).
It uses interval analysis in order to provide the optimal bound of
the state estimation error covariance. Based on that, an optimal
state estimation enclosing the set of all possible solutions w.r.t
admissible uncertainties is performed.
In this article, theorems and lemmas proving the optimality of
the proposed solution are provided.
Simulations on an example show the efficiency of the developed
interval estimation.

I. INTRODUCTION

State and parameter estimation are topics of utmost impor-
tance when dealing with system control. Indeed, obtaining
accurate estimations can lead to great improvements in the
systems performances. One of the largely used estimation
strategy is Kalman filtering. Recently, several extensions
of this technique have been presented to deal with the
system uncertainties. In [2] and [3], novel designs of optimal
robust Kalman filters have been introduced to deal with
parameter uncertainties for discrete time-varying systems
subject to norm-bounded uncertainties. The main idea of
these designs is trying to minimize an upper bound on
the estimation error covariance for any acceptable modeling
uncertainties. The drawback of these methods is the large
conservatism when dealing with too many uncertainties. To
overcome this limitation, a solution would be to consider
the resulting model matrices, considering the Gaussian noise,
as intervals containing all admissible values of parameters.
Unfortunately, a singularity problem may appear in interval
matrix inversion.

For the last few years, authors have been working on the
singularity problem of the interval matrix inversion. While
in [1], the solution proposed by using the upper bound of the
interval matrix to be inverted is not guaranteed (the solution
set may not include all the classical Kalman filter solutions
consistent with the bounded uncertainties represented in the
system), [4] presented an improved interval Kalman filter
(iIKF). It solves the interval matrix inversion problem with
the set inversion algorithm SIVIA (Set Inversion Via Interval
Analysis) and constraint satisfaction problems (CSP) (see
[5]). After that, works focused on reducing both the conser-
vatism and the high computational cost of these algorithms
in [6] and [7]. [8] introduced a joint Zonotopic and Gaussian
Kalman filter to handle the two paradigms of bounded dis-

1 LAAS-CNRS, Université de Toulouse, CNRS, UPS, Toulouse, France.
Corresponding author: qhlu@laas.fr

turbances and Gaussian noises for discrete-time LTI (Linear
Time Invariant) systems. It proposes to perform a multi-
objective optimization, minimizing the compromise between
the size of the zonotopic part of the bounded disturbances
and the covariance of the Gaussian noise distribution.

Motivated by the above observations and the following
works in [7], this paper proposes an estimation strategy that
provides the optimal upper bound on the state estimation
error covariance for all admissible uncertainties. It allows to
reduce the size of the set of all possible solutions and im-
prove the computation time of the observations with respect
to the classical Kalman filtering structure. The main objective
is to estimate the tightest intervals [x̂k] that contain the state
variables. The upper bound optimization is achieved by an
accurate choice of parameters involving the computation of
the optimal gain (see section III).

This paper is organized as follows. In Section II, some
important definitions, notations and basic concepts needed
for the estimation strategy developments are provided. Then,
section III presents the main result of the paper which is
the Optimal Upper Bound Interval Kalman Filter. Section
IV shows the simulations results on a numerical example
that prove the efficiency of the proposed estimation strategy.
Finally, conclusions and future works are described in section
V.

II. PRELIMINARIES

This section introduces the notations used throughout the
paper, including some definitions and properties concerning
positive semi-definite matrices and some other basic con-
cepts.

Definition 1 (Positive semi-definite matrix): A real matrix
M ∈ Rn×n is positive semi-definite if and only if M satisfies
zTMz ≥ 0 for all z ∈ Rn. We denote M � 0.

All along this article, we only deal with real symmetric
positive semi-definite matrices. We denote:
a) S(n)

M
=
{
M ∈ Rn×n : M = MT

}
, the set of n × n

symmetric matrices.
b) S+(n)

M
= {M ∈ S(n) : M � 0}, the set of n × n sym-

metric positive semi-definite matrices.

Definition 2 (Partial order of real squared matrices):
Let M,N be two real squared matrices of the same size.
We define an order between M and N denoted by N �M
if and only if M −N � 0. M is called an upper bound of
N . We also say that N is dominated by M or M dominates
N .



In the case of Hermitian matrices, this order is known
as the Loewner (partial) order (ref. [9], [10]). Recall that a
partial order R satisfies the properties: i) aRa (Reflexivity);
ii) If aRb and bRa then a = b (Anti-symmetry); iii) If aRb
and bRc then aRc (Transitivity).

We also extend this partial order to the notion of bounds
for a non empty set Ω of real squared matrices. If a real
squared matrix K dominates all matrices contained in Ω,
then K is an upper bound of Ω, denoted Ω � K. In other
words,

Ω � K ⇔ M � K, ∀M ∈ Ω.

If K and L are two upper bounds of Ω, then we say that K
is better than L if and only if the norm of K is smaller than
or equal to the norm of L depending on the choice of norms
in definition 3.

An real interval matrix is a matrix which components are
intervals. Let [M ] be an n×n real interval matrix. We denote:

a) M ∈ [M ] to indicate a ponctual matrix M included in
[M ].

b) S([M ])
M
=
{
M ∈ [M ] : M = MT

}
, the set of symmetric

matrices included in [M ].
c) S+([M ])

M
= {M ∈ S([M ]) : M � 0}, the set of symmet-

ric positive semi-definite matrices included in [M ].
d) BS([M ])

M
= {K ∈ S(n) : S([M ]) � K}, the set of sym-

metric upper bounds of S([M ]).
e) BS+([M ])

M
= {K ∈ S+(n) : S+([M ]) � K}, the set

of symmetric positive semi-definite upper bounds of
S+([M ]).

In the sequel, we assume that S+([M ]) is non empty. For
any n × n matrix A, we use the notations σi(A), λi(A)
(i = 1, ..., n) to indicate respectively the singular values and
eigenvalues of A among which σmax(A) and λmax(A) are
the corresponding maximum values.

Definition 3: Let A ∈ Rn×n and x = (x1, ..., xn) ∈ Rn.
Vector norm and matrix norms are defined as follow. ([10])

a) The Euclidian vector norm: ‖x‖2
M
=
√∑n

i=1 x
2
i .

b) The nuclear norm:

‖A‖∗
M
=

n∑
i=1

σi(A) =

n∑
i=1

√
λi(ATA) .

c) The operator norm:

‖A‖ M
= σmax(A) =

√
λmax(ATA) .

d) The Frobenius norm:

‖A‖F
M
=

√√√√ n∑
i=1

σ2
i (A) =

√√√√ n∑
i=1

λi(ATA) =

=
√
tr(ATA) =

√√√√ n∑
i,j=1

|Aij |2.

Remark 1: If A � 0 then σi(A) = λi(A), ∀i = 1, ...n,
so

• ‖A‖∗ =
∑
i λi(A) = tr(A),

• ‖A‖ = λmax(A),
• ‖A‖F =

√∑n
i=1 λ

2
i (A) =

√
tr(A2) =√∑n

i,j=1 |Aij |2.

A. Properties

First of all, we note that S(n) is a vector (sub-)space (of
Rn×n) since αM + βN ∈ S(n),∀M,N ∈ S(n),∀α, β ∈ R
and S+(n) is a convex cone since the above expression is
just satisfied for α, β > 0.

Proposition 1: Let M ∈ S(n) such that λmax(M) < ∞.
Then M � αI if and only if α ≥ λmax(M).

Proposition 2: Let A,B ∈ S+(n) such that A � B then

‖A‖ ≤ ‖B‖ and ‖A‖∗ ≤ ‖B‖∗.

For all the following propositions and corollary, let [M ]
be an n× n real interval bounded symmetric matrix.

Proposition 3: The following properties are verified:

a) S([M ]) is compact in the norm vector space S(n).

b) S+([M ]) is a compact subset of S([M ]).

c) Γ
M
= {γ = ‖M‖ : M ∈ S+([M ])} is compact in R.

d) supM∈S+([M ]) {λmax(M)} <∞.

Proof:

a) The upper triangular part of matrix [M ] is composed
of m = n2+n

2 intervals I1, ..., Im. We can construct
a continuous function f from I1 × ... × Im in Rn×n.
Then, since I1 × ... × Im is compact in Rm, the image
f(I1 × ... × Im) = S([M ]) is also compact in S(n).
The construction of f is given by: f = ψ ◦ φ with
φ : I1× ...×Im −→ Rn×n verifying x = (x1, ..., xm) 7→
φ(x) = N = 

x1 x2 · · · xn
0 xn+1 · · · x2n−1
... · · ·

. . . · · ·
0 0 · · · xm


and ψ : Rn×n −→ Rn×n verifying

N 7→ ψ(N) = N +NT − diag(N)

are two continuous functions.
b) It is only necessary to prove that S+([M ]) is closed in

S(n), and the result is concluded by the property: If K
is compact in a topological space X and if F is closed
in X with F ⊆ K, then F is compact.
We assume that {Mk}k is a sequence in S+([M ]) con-
verging to M∞ ∈ S(n) and prove that M∞ ∈ S+([M ]),
i.e. M∞ ∈ [M ] and M∞ � 0 .



By assumption,

‖Mk −M∞‖2F =
∑
i,j

(Mk,ij −M∞,ij)2
k→∞−−−−→ 0

hence

(Mk,ij −M∞,ij)2
k→∞−−−−→ 0 , ∀i, j = 1, ..., n.

Since each Mk,ij belongs to an (closed) interval Iij of
matrix [M ] then M∞,ij ∈ Iij and M∞ ∈ [M ].
Next, we prove that uTMku

k→∞−−−−→ uTM∞u,∀u ∈ Rn.
In fact,

∣∣uTMku− uTM∞u
∣∣ =

∣∣∣∣∣∣
∑
i,j

ui (Mk,ij −M∞,ij)uj

∣∣∣∣∣∣
≤ ‖Mk −M∞‖F

∑
i,j

|uiuj |

and ‖Mk − M∞‖F
k→∞−−−−→ 0 induce uTMku

k→∞−−−−→
uTM∞u,∀u ∈ Rn. Since for each u ∈ Rn, uTMku ≥ 0
so it is impossible that uTM∞u < 0. We conclude that
uTM∞u ≥ 0,∀u ∈ Rn or equivalently M∞ � 0.

c) Since the operator norm is a continuous function and
S+([M ]) is compact, then Γ is also compact.

d) The result is induced by extreme value theorem using the
compactness of Γ.

In the sequel, we denote α∗
M
= supM∈S+([M ]) {λmax(M)}.

Proposition 4: a) S+([M ]) � αI if and only if α ≥ α∗.

b) E M
= {M ∈ S+([M ]) : diag(M) = diag(sup([M ]))} is

the non empty set of maximal elements of S+([M ]).

c) If Ec M
= S+([M ])\E contains at least two elements M,N

such that Mkl 6= Nkl for some tuple (k, l) : k 6= l,
(k, l = 1, ..., n), then S+([M ]) has no greatest element.

Proof:

a) Thanks to proposition 1, we get α ≥ α∗ if and only
if M � αI, ∀M ∈ S+([M ]). The proposition 4a) is
concluded.

b) First, let M ∈ S+([M ]) (which is non empty). If M ∈ E
then E is non empty. If M /∈ E , i.e. diag(M) 6=
diag(sup([M ])), we denote M̂ = M + ∆ where ∆ =
−diag(M) + diag(sup([M ])). Then M̂ ∈ S+([M ]) and
satisfies diag(M̂) = diag(sup([M ])). So E is non empty
since M̂ ∈ E . In addition, no matrix M ∈ S+([M ]) such
that diag(M) 6= diag(sup([M ])) is a maximal element
of S+([M ]) since such a matrix M is always dominated
by another matrix M̂ ∈ E . In other words, any maximal
element of S+([M ]) (if it exists) must belong to E .
Next, we prove that any element of E is a maximal
element of S+([M ]). In fact, no matrix M ∈ S+([M ])\E
dominates an element P ∈ E since tr(P ) � tr(M) (using
proposition 2). Hence, we prove that any two elements
in E do not dominate each other. Let P,Q ∈ E such that
P 6= Q and L = P − Q. Then L satisfies Lii = 0 and

Lij = Pij −Qij , ∀i, j = 1, ..., n. To obtain Q � P , it is
necessary:

∀u = (u1, ..., un) 6= 0 , uTLu = 2
∑
i<j

uiujLij ≥ 0.

This expression must be satisfied for all following choices
of vector u. Let p, q = 1, ..., n and p < q. By choosing

u = ũ = (δp(1) + δq(1), ..., δp(n) + δq(n))

and

u = û = (δp(1)− δq(1), ..., δp(n)− δq(n)) ,

where δk(l) is the Kronecker delta, it is necessary that:
ũTLũ = 2

∑
i<j (δp(i) + δq(i)) (δp(j) + δq(j))Lij =

2Lpq ≥ 0,

ûTLû = 2
∑

i<j (δp(i)− δq(i)) (δp(j)− δq(j))Lij =

−2Lpq ≥ 0.

then, Lpq = 0,∀p, q = 1, ..., n and p < q, which implies
a contradiction.

c) Let M,N ∈ Ec such that Mkl 6= Nkl for some
tuple (k, l) : k 6= l, (k, l = 1, ..., n). Let P =
M − diag(M) + diag(sup([M ])) and Q = N −
diag(N)+diag(sup([M ])). Then P and Q are such that
P,Q ∈ S+([M ]), P 6= Q and diag(P ) = diag(Q) =
diag(sup([M ])). Hence P and Q belong to E and are
two different maximal elements of S+([M ]). This implies
that S+([M ]) does not have the greatest element.

Corollary 1: There exists a matrix N∗ ∈ E such that
λmax(N∗) = α∗.

Proposition 5: Let K ∈ BS+([M ]). Then:

a) α∗I is the optimal upper bound of S+([M ]) in the set
BS+([M ]) in the sense of operator norm minimization.

b) α∗I is the optimal upper bound of S+([M ]) in the set of
upper bounds K ∈ BS+([M ]) such that

λ1(K) + ...+ λn(K)

n
≥ α∗

in the sense of nuclear norm minimization.

In the folowing, the notation mid([M]) stands for the matrix
of center points.

Proposition 6: Let Max be a matrix determined by

Maxij =

{
sup([M ])ij , if mid([M ])ij ≥ 0

inf([M ])ij , otherwise

then supM∈S+([M ]) {‖M‖F } ≤ ‖Max‖F and α∗ ≤
‖Max‖F . In addition, if Max � 0, then

λmax(Max) ≤ α∗ ≤ ‖Max‖F .



III. MAIN RESULTS

We have proved that a non empty set S+([M ]) can be
dominated by an upper bound of the form αI (α > 0).
Furthermore, we pointed out that the particular upper bound
α∗I is the optimal bound for S+([M ]) among other bounds
in BS+([M ]) according to the operator norm. And if we use
the nuclear norm as a criterion, α∗I is also the optimal bound
in a rather large subset of BS+([M ]): the set of matrices
K ∈ BS+([M ]) such that

λ1(K) + ...+ λn(K)

n
≥ α∗.

The use of this particular upper bound ensures on one hand
a solution to the singularity problem of the interval matrix
inversion as well as the conservatism of the algorithms, and
on the other hand an appreciable reduction of the compu-
tation time. This fact is verified in a numerical simulation
in which the use of this kind of upper bound reduces by
over 40% the computation time and ensures more consistent
estimate intervals. In addition, by using an appropriate choice
of coefficients (βk and σk) the traces of estimated covariance
error bounds are well controlled. Although we did not find
the exact value of α∗ but a bound for it, the numerical
simulation showed that we can rather use its upper bound
(‖Max‖F ) to obtain the desired results presented in section
IV.

From a statistical point of view, we used this particular
upper bound as a covariance matrix of a multi-dimensional
(Gaussian) noise which components are mutually indepen-
dent. In other words, in our problem, all covariance matrices
included in an interval [Q] can be represented by the one of a
multi-dimensional variable which components are mutually
independent. These results are used to develop our new
Optimal Upper Bound Interval Kalman Filter.

A. Optimal Upper Bound Interval Kalman Filter

Consider the linear discrete time dynamic system repre-
sented by the states and measures equations{

xk = Akxk−1 +Bkuk + wk

yk = Ckxk + vk
(1)

where the notations are usual for the classic Kalman filter:
xk ∈ Rnx state variables, yk ∈ Rny measures, uk ∈ Rnu

inputs, wk ∈ Rnx state noises, vk ∈ Rny measure noises.
Matrices Ak, Bk, Ck are unknown, deterministic and in-
cluded in bounded interval matrices [A], [B], [C] respectively.
wk, vk are centered Gaussian with covariance matrices Qk
and Rk included respectively in bounded interval matrices
[Q] and [R]. The initial state x0 is also Gaussian. In addition,
x0, {w1 : wk} and {v1 : vk} are assumed to be mutually
independent.

Our aim is to estimate intervals [x̂k] which contain state
variables xk. Moreover, each value x̂k ∈ [x̂k] can be
considered as a point estimate of xk. By applying the Kalman
classic filter calculations, we obtain, ∀Ak ∈ [A], ∀Ck ∈

[C], ∀Qk ∈ [Q], ∀Rk ∈ [R], ∀x̂k ∈ [x̂k] and ∀k ≥ 1:

Pk|k = E[(xk − x̂k)(xk − x̂k)T ] (2)

= (I −KkCk)(AkPk−1|k−1A
T
k +Qk︸ ︷︷ ︸

Pk|k−1

)(I −KkCk)
T

+ KkRkK
T
k .

Let S+([Pk|k−1]) � αkI and S+([R]) � γI , then

Pk|k � αk(I −KkCk)(I −KkCk)T + γKkK
T
k .

By applying the same strategy as the one in [7], we obtain,
∀Ak ∈ [A], ∀Ck ∈ [C], ∀Qk ∈ [Q], ∀Rk ∈ [R], ∀x̂k ∈ [x̂k]
and ∀k ≥ 1:

Pk|k � αk

(
1 +

ny∑
i=1

nx∑
j=1

β−1
ij,kTij

)
(I −Kkm) (I −Kkm)T

+

ny∑
i=1

nx∑
j=1

Tij

(
βij,k +

ny∑
u=1

nx∑
v=1

Tuvσijuv,k

)
Kkrijr

T
ijK

T
k

+ γKkK
T
k ,

for any βij,k > 0, σijuv,k > 0 and where m = mid([C]),
rij = rad([Cij ]) and Tij = 1 if rad([C])ij > 0 and null
otherwise. Note that the notations mid([C]) and rad([C])
stand for the matrix of center points and the matrix of radius
of [C] respectively.

We choose βij,k = βk > 0 and σijuv,k = σk > 0, for all
i, j, u, v. Then

Pk|k � αk
(
1 + n0β

−1
k

)
(I −Kkm) (I −Kkm)

T

+ (βk + n0σk)Kk

 ny∑
i=1

nx∑
j=1

rijr
T
ij

KT
k

+γKkK
T
k , (3)

where n0 is the number of non null radius of [C]. The right
term of (3) is denoted by Pk|k. The optimal gain Kk which
minimizes the trace of Pk|k is

K∗k = mT
(
mmT + ukD + vkI

)−1
where D =

∑ny

i=1

∑nx

j=1 rijr
T
ij , uk = βk+n0σk

1+n0β
−1
k

and vk =
γ

αk(1+n0β
−1
k )

. By choosing Kk = K∗k we get

Pk|k = αk
(
1 + n0β

−1
k

)
(I −K∗km) .

The trace of Pk|k is optimal according to the choice Kk =
K∗k , but we can do better by well choosing the coefficients
βk and σk. We have

tr(Pk|k) = αk

(
1 +

n0

βk

)
tr
[
I −mT

(
mmT + ukD + vkI

)−1
m
]

= αk

(
1 +

n0

βk

)[
tr(I)− tr

(
mmT

(
mmT + ukD + vkI

)−1
)]

= αk (βk + n0σk) tr
(
D
(
mmT + ukD + vkI

)−1
)

+ γtr
((
mmT + ukD + vkI

)−1
)

We observe that if βk and σk converge to 0, then tr(Pk|k)

converges to γtr
((
mmT

)−1)
. The use of upper bounds

of Pk|k−1 and [R] with the forms αI (α > 0) decreases



the computation time of the algorithm (with a rate more
than 40% according to a numerical result). In addition, by
choosing βk and σk sufficient small, we can control the trace
of Pk|k.

IV. NUMERICAL EXAMPLE

We simulate an example described by equation (1) with
no input, where:

[A] =

 [2.45, 2.72] [−1.41,−1.28] [0.26, 0.28]
[6.32, 6.98] [−3.56,−3.22] [2.45, 2.72]

[−0.79,−0.72] [0.3, 0.34] [0.1, 0.11]

 ,

[C] =

[−8.16,−7.84] [−4.08,−3.92] [1.96, 2.04]
[−2.04,−1.96] [1.96, 2.04] [5.88, 6.12]
[−0.41,−0.39] [15.68, 16.32] [6.86, 7.14]

 ,

[Q] = [R] =

 [8, 12] [−6,−4] [3.2, 4.8]
[−6,−4] [8, 12] [1.6, 2.4]
[3.2, 4.8] [1.6, 2.4] [8, 12]

 .

The initial state is x0 = (5,−2, 6)T and the model
starts at [x̂0] = ([−2, 2], [−2, 2], [−2, 2])T . The initial error
covariance bound is P0|0 = 10I .
First, we simulate with N = 10000 steps for state vari-
ables xk, measures yk and covariance matrices Pk|k. More
precisely, at each step k, from [A], [C], [Q], [R], we gener-
ate respectively matrices Ak.Ck, Qk, Rk such that Qk and
Rk are symmetric positive semi-definite. Then wk, vk are
simulated such that wk ∼ N (0, Qk) and vk ∼ N (0, Rk).
From these informations, we can calculate xk, yk and Pk|k.
In a second phase, we run our algorithms, named OUBIKF
(Optimal Upper Bound Interval Kalman Filter), together with
the one of [7], named UBIKF, for N steps to obtain [x̂optk ],
Poptk|k and [x̂k], Pk|k respectively. The following results are
adapted to the choice of upper bounds αI with α = ‖Max‖F
and of coefficients βk = 1

2.n0.103
and σk = 1

n0.103
.

Simulations results

The computation time of OUBIKF is reduced more than
40% w.r.t the one of UBIKF (see Table I).

RMSE Time
x1 x2 x3

UBIKF 413.41 448.83 343.82 51.375 s
OUBIKF 416.95 451.48 346.51 28.719 s

TABLE I: Results of the OUBIKF versus UBIKF

The traces of bounds Poptk|k decrease rapidly and have
a convergence tendency while the traces of Pk|k increase
(although bounded) (Fig. 1, Fig. 2).

In addition, we have tr(Pk|k) ≤ tr(Poptk|k ) ≤ tr(Pk|k) for all
k ≥ 1. This fact is verified experimentally for all k ≥ 1 and
a summary is presented in Table II. Furthermore, all estimate
intervals [x̂optk ] are contained in the corresponding estimate
intervals [x̂k].

The next result concerns the confidence intervals defined
by
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Fig. 1: Behavior of Traces of OUBIKF Matrix bounds
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Fig. 2: Behavior of Traces of UBIKF Matrix bounds

CIoptk,i =

[
inf([x̂optk,i ])− r

√
Poptk,ii , sup([x̂optk,i ]) + r

√
Poptk,ii

]
,

CIk,i =
[
inf([x̂k,i])− r

√
Pk,ii , sup([x̂k,i]) + r

√
Pk,ii

]
for i = 1, ..., nx and r = 1, 2, 3 corresponding to
68%, 95%, 99.7% confidence interval (the 3-sigma rule).
According to the simulation, the 68% confidence intervals
contain all corresponding state variables xk and, more over,
CIoptk,i ⊆ CIk,i,∀k ≥ 1,∀i = 1, .., 3 (Fig. 3).

So the O(%) which is the percentage of confidence
intervals containing corresponding state variables are both
100% for two algorithms, however the CIoptk,i ’s are more
consistent.

We note that the 68% confidence intervals do not always
contain the corresponding state variables with O(%) = 100%
for different simulations (with the same input), but often
reach over 99.9%. And until now, none of our simulations for
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Fig. 3: State variable and its 68% Confidence Intervals

this example with 99.7% confidence interval gets the O(%)
under 100%.

Concerning the meaning of the confidence interval def-
inition presented above, we can think in the manner
that CIk,i =

⋃
x̂k,i∈[x̂k,i]

CIk,i(x̂k,i) where CIk,i(x̂k,i) =[
x̂k,i − r

√
Pk,ii , x̂k,i + r

√
Pk,ii

]
. A state xk belonging to

CIk,i means that xk ∈ CIk,i(x̂k,i) for some x̂k,i ∈ [x̂k,i]. It
is the same thing for CIoptk,i .

We also deal with a criterion called Root Mean Squared
Error (RMSE) to compare the performance of the two
algorithms. The RMSE is defined by

RMSEi =

√√√√ 1

N

N∑
k=1

(xk,i −mid([x̂k,i]))
2

for i = 1, ..., nx. And the result is that the RMSE for
OUBIKF is slightly increasing w.r.t the one for UBIKF
(Table I). We use this criterion since it has been used before
to compare different algorithms, e.g. in [7]. But a critical
point of view can be pointed out. The distance between
the state xk,i and the center point of the corresponding
estimate interval is used. This fact dismisses the issue of
the estimate interval width. Naturally, two estimate intervals
with the same center point have the same RMSE. In other
words, this index just stand for the concentration of state
xk with respect to the corresponding estimate interval center
point. We propose another distance to improve the meaning
of this criterion. We will use the Hausdorff distance defined
as follow:

dH(X,Y ) = max

{
sup
x∈X

inf
y∈Y

d(x, y), sup
y∈Y

inf
x∈X

d(x, y)

}
for any two non empty sets X,Y in the metric space (Ω, d).
In our case, we have

dH(xk,i, [x̂k,i]) = max {|xk,i − inf([x̂k,i])|, |xk,i − sup([x̂k,i])|}

and the new RMSE is defined by

R̂MSEi =

√√√√ 1

N

N∑
k=1

dH(xk,i, [x̂k,i])2.

The result for R̂MSE in Table III shows that the estimate
intervals [x̂optk,i ] are more relevant by their tightness.

Trace Min Mean Max Width*
tr(Pk|k) 1.0592 1.3399 1.6418 0.5826

tr(Pboptk|k) 2.7361 2.7361 2.7418 0.0057

tr(Pbk|k) 15.353 132.72 133.47 118.117
*Width = Max - Min

TABLE II: Traces of Covariance matrices and Traces of its
Upper bounds

R̂MSE
x1 x2 x3

UBIKF 5047.2 4159.1 4213.6
OUBIKF 4708.5 3847.7 3934.2

TABLE III: The R̂MSE

V. CONCLUSION

This paper proposes a novel result to find an optimal
upper bound of set S+([M ]) that ensures a solution to the
singularity problem of the interval matrix inversion as well
as the conservatism of the algorithms. Based on that result,
an Optimal Upper Bound Interval Kalman Filter (OUBIKF)
is developed to perform an optimal state estimation that
encloses the set of all possible solutions w.r.t admissible
uncertainties. Simulations results shows the efficiency and
accuracy of the proposed strategy.
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stochastic filters and their interval extensions,” in Proceedings of
the 4th IFAC International Conference on Intelligent Control and
Automation Sciences, Reims, France, June 2016.

[7] T. A. Tran, C. Jauberthie, F. Le Gall, and L. Travé-Massuyès, “In-
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