Dimitri Peaucelle 
email: peaucelle@laas.fr
  
Denis Arzelier 
  
Didier Henrion 
  
Frédéric Gouaisbaut 
  
Quadratic separation for feedback connection of an uncertain matrix and an implicit linear transformation

come    

Quadratic separation for feedback connection of an uncertain matrix and an implicit linear transformation

Introduction

Well-posedness of feedback systems provides a fertile framework for stability analysis of non-linear and uncertain systems. An associated fundamental concept is topological separation [START_REF] Safonov | Stability and Robustness of Multivariable Feedback Systems[END_REF]. It states that internal signals of a multivariable feedback connection of two systems F and G are unique and bounded under external disturbances if and only if the graph of F is topologically separated from the inverse graph of G. While finding such topological separator is tricky in general, for several choices of systems F and G there exist, sometimes lossless [START_REF] Meinsma | A dual formulation of mixed µ and on the losslessness of (D, G)-scaling[END_REF], tractable techniques. Among these, major results for robust stability analysis are given in [START_REF] Iwasaki | Well-posedness of feedback systems: Insights into exact robustness analysis and approximate computations[END_REF] and references therein. The purpose of the present paper is to extend these and show how they apply on some significant analysis problems.

It is to be noted that the general framework of topological separation as introduced by Safonov [START_REF] Safonov | Stability and Robustness of Multivariable Feedback Systems[END_REF] considers implicit systems. In this paper we investigate a special case of feedback connections where the first system F is a given implicit finitedimentional linear transformation, Ez = Aw , and the second system G is a complex valued uncertain matrix gain, w = ∇z , ∇ ∈ ∇ . No assumption is made on the set of possible uncertainties ∇. The central result to which is dedicated section 2 proves that well-posedness of such systems is losslessly assessed by a quadratic separator (the topological separator is a quadratic functional of z and w) independent of the uncertainty ∇.

The result is a generalisation of Corollary 1 in [START_REF] Iwasaki | Well-posedness of feedback systems: Insights into exact robustness analysis and approximate computations[END_REF] to implicit linear transformations and therefore generalizes the robust analysis results of [START_REF] Iwasaki | Well-posedness of feedback systems: Insights into exact robustness analysis and approximate computations[END_REF] to descriptor systems. Closely related results for usual LTI systems are full-block S-procedure Theorem 1 in [START_REF] Scherer | A full block S-procedure with applications[END_REF] and IQC Theorem 1 in [START_REF] Megreski | System analysis via integral quadratic constraints[END_REF]. Even closer results that consider special cases of implicit systems are: well-posedness Lemma 4 in [START_REF] Iwasaki | LPV system analysis via quadratic separator for uncertain implicit systems[END_REF] and KYP lemma for implicit systems Theorem 3 in [START_REF] Iwasaki | Generalized KYP lemma: Unified frequency domain inequalities with design applications[END_REF]. As in all these papers, the main task is to demonstrate that there exists a quadratic separator and give (possibly conservative) LMI conditions in accordance with known data on the uncertainty set. The central contribution of the present manuscript extends previous results for the case of nonsquare implicit systems in a unified framework. As a by-product of the generality of the implicit transformation formulation one gets many corollaries for stability analysis of dynamic systems. Combined with redundant system modeling as in [START_REF] Ebihara | Robust performance analysis of linear time-invariant uncertain systems by taking higher-order time-derivatives of the states[END_REF][START_REF] Gouaisbaut | Delay-dependent stability analysis of linear time delay systems[END_REF], it conducts to results that are totally new, even for usual (non singular) LTI systems.

After stating the central result in section 2, the remaining of the paper is dedicated to corollaries of the central result:

• In section 3 we illustrate how previously obtained stability analysis conditions for descriptor systems are related to topological separation. First we show that stability of E ẋ = Ax is equivalent to well-posedness of a feedback connection of ∇ = s -1 1 and s -1 ∈ C + , the closed right half-plane, with an implicit linear transformation. Quadratic separation with respect to this uncertainty set proves to be related to the existence of a quadratic Lyapunov certificate. Extensions to discrete-time system stability as well as to pole location analysis are also given and compared with [START_REF] Masubuchi | H ∞ control for descriptor systems: A matrix inequalities approach[END_REF][START_REF] Hsiung | On the discrete-time bounded real lemma for descriptor systems[END_REF][START_REF] Henrion | D-stability of polynomial matrices[END_REF]. • In section 4 of the paper, corollaries for robust stability of descriptor systems are derived. More general than the framework by [START_REF] Lin | On the stability of uncertain linear descriptor systems[END_REF] and [START_REF] Xu | Robust H ∞ control for uncertain discrete singular systems with pole placement in a disk[END_REF], the contribution considers rationally dependent models where uncertainties enter on both the A and the E matrices. To our knowledge these results are totally new. They allow to test stability of systems with structured uncertainty entering in a very general modeling naturally produced when manipulating Linear Fractional Transform (LFT) models as attested in [START_REF] Hecker | Generalized LFT-based representation of parametric uncertain models[END_REF][START_REF] Monceaux-Cumer | Minimal LFT form of a spacecraft built up from two bodies[END_REF]. But the contribution is more significant than an extension to descriptor systems of previous results. Tests with various degrees of conservatism are given that involve either constant or parameter-dependent Lyapunov functions. The sequence of recursively derived corollaries is an original contribution even when compared to similar results for usual LTI systems such • Finally, section 5 is devoted to stability analysis of descriptor time-delay systems.

Both delay-independent and delay-dependent results are derived. In the former case the results are a generalization of those in [START_REF] Bliman | LMI characterization of the strong delay-independent stability of linear delay systems via quadratic Lyapunov-krasovskii functionals[END_REF] to descriptor systems. In the latter case, results not only encompass all existing LMI formulas as proved in [START_REF] Gouaisbaut | A note on stability of time delay systems[END_REF], but extend these by proposing new tests with reduced conservatism. As for all corollaries of the other sections, the delay-dependent results are tested on a numerical example. Conservatism reduction is shown to be significant without increasing drastically the numerical burden.

Notations: R m×n and C m×n are the sets of m-by-n real and complex matrices respectively. A T is the transpose of the matrix A and A * is its transpose conjugate.

A ⊥ is a full rank matrix whose columns span the null-space of A. Define as well A • as a full rank matrix whose columns span the same space as the columns of A.

If A = U 1 U 2 diag(S, 0) V 1 V 2 *
is the singular value decomposition with S containing all non zero singular values, then one can choose

A ⊥ = V 2 and A • = U 1 . In addition, define A = A * • (or A T • if real-valued) which is such that the columns of A ⊥ A span C m (assuming A ∈ C n×m ).
1 and 0 are respectively the identity and the zero matrices of appropriate dimensions. For Hermitian matrices, A > (≥)B means that A -B is positive (semi) definite.

Well-posedness condition

Consider two possibly non-square finite dimensional matrices E and A. Let an uncertain matrix ∇ with appropriate dimensions that belongs to some set ∇. No assumption is made on the uncertainty set ∇ at this stage.

The feedback system of Figure 1 is said to be well-posed if for all uncertainties and all bounded input vectors, the internal vectors characterizing the system are unique and bounded. More specifically, consider the decomposition of z and z in the E ⊥ E basis, i.e. z = E ⊥ y 1 +E y and z = E ⊥ ȳ1 +E ȳ. With these notations, the feedback connected system writes

w -w = ∇E ⊥ y 1 + ∇E y EE (y -ȳ) -Aw = 0 . (1) 
As ∇ may be rank-deficient, the vector y 1 may be non-unique and unbounded, at least for some values of ∇. The vector y 1 is therefore not an internal variable of the system but rather a perturbation, possibly unbounded. The definition of wellposedness of the feedback connected system is therefore based on proving that for all uncertainties ∇ ∈ ∇, all vectors y 1 and all bounded inputs w and ȳ, the internal variables w and y are unique and bounded. Since only linear transformations enter the feedback system, w and z are necessarily unique if we can prove they are bounded. Well-posedness writes as

∃γ > 0 : ∀( w, z, y 1 ) ∀∇ ∈ ∇ ,    w y    ≤ γ    w ȳ    . (2) 
Note that [START_REF] Bliman | LMI characterization of the strong delay-independent stability of linear delay systems via quadratic Lyapunov-krasovskii functionals[END_REF] implies

(E -A∇)E y = E ȳ + A∇E ⊥ y 1 + A w .
Well-posedness of the system states that for all admissible ∇ ∈ ∇, the null space of (E -A∇)E is empty (the matrix is non-singular if square) and one gets ((E -A∇)E ) † A∇E ⊥ = 0 since y is unique for all y 1 .

Theorem 1 The uncertain feedback system of Figure 1 is well-posed if and only if there exists a Hermitian matrix Θ = Θ * satisfying both conditions

EE -A ⊥ * Θ EE -A ⊥ > 0 (3) 
   0 1 ∇E ⊥ ∇E    * Θ    0 1 ∇E ⊥ ∇E    ≤ 0 , ∀∇ ∈ ∇ . ( 4 
)
If E and A are real, the equivalence still holds with Θ restricted to be real.

Before getting into the details of the proof, note that the conditions of Theorem 1 have a much simpler expression in case E is full column rank (which is common for many systems). In that case, E = 1 and E ⊥ is an empty matrix (zero number of columns), the inequalities (3) and (4) write as

E -A ⊥ * Θ E -A ⊥ > 0 ,    1 ∇    * Θ    1 ∇    ≤ 0 In addition if E = 1 then one can choose E -A ⊥ = A * 1 *
which leads exactly to the well-posedness conditions of [START_REF] Iwasaki | Well-posedness of feedback systems: Insights into exact robustness analysis and approximate computations[END_REF].

Proof of sufficiency: Assume (3) holds. It implies the existence of some positive scalar such that

EE -A ⊥ * (Θ -1) EE -A ⊥ ≥ 0 .

By definition of EE -A

⊥ and assuming (4) holds, one gets for all vectors that satisfy (1)

   y - ȳ w    * (Θ -1)    y - ȳ w    ≥ 0    y w - w    * Θ    y w - w    ≤ 0 .
Combining both inequalities, results in a quadratic constraint on the vector X =

w * y * w * ȳ * * such as X *    1 T 1 T * 1 T 2    X ≤ 0. Take any ˜ such that > ˜ > 0
and take a sufficiently large γ > 0 such that

   ˜ 1 0 0 -γ1    ≤    1 T 1 T * 1 T 2    to finally get X *    ˜ 1 0 0 -γ1    X ≤ 0 which is the well-posedness condition (2).
Proof of necessity: Assume the system in Figure 1 is well-posed and equivalently that ( 1) is well-posed. First, note that if inequality ( 2) holds for γ it also holds for all γ ≥ γ. Define

Y * = w * y * w * ȳ * y * 1 , M =    -1 ∇E 1 0 ∇E ⊥ A -EE 0 EE 0    , Ξ =        1 0 0 0 -γ1 0 0 0 0       
.

Well-posedness of (1) implies that, for all γ ≥ γ and for all ∇ ∈ ∇, if the equality constraint MY = 0 holds, then the quadratic constraint Y * ΞY ≤ 0 also holds. Due to Finsler's lemma [START_REF] Skelton | A unified Approach to Linear Control Design[END_REF], it is equivalent to

M ⊥ * ΞM ⊥ ≤ 0 . ( 5 
) Partition EE -A ⊥ = N * 1 N * 2 * such that EE N 1 = AN 2 . Moreover, define R = N * 1 N 1 + N * 2 N 2 and Q = γR -N * 2 N 2 .
Since EE is full rank, N 2 is also full rank and one can choose γ sufficiently large such that

Q > 0. Take M ⊥ * =        0 0 -E ⊥ * ∇ * 0 1 0 1 -E * ∇ * 1 0 N * 2 0 N * 2 -N * 1 0       
, the inequality (5) then writes as

       -γE ⊥ * ∇ * ∇E ⊥ -γE ⊥ * ∇ * ∇E γE ⊥ * ∇ * N 2 -γE * ∇ * ∇E ⊥ 1 -γ1 -γE * ∇ * ∇E γE * ∇ * N 2 + γN 1 γN * 2 ∇E γN * 2 ∇E + γN * 1 -Q        ≤ 0 .
Applying a Schur complement argument on the block -Q, one gets inequality ( 4) where

Θ =    1 -γ1 + γ 2 N 1 Q -1 N * 1 γ 2 N 1 Q -1 N * 2 γ 2 N 2 Q -1 N * 1 -γ1 + γ 2 N 2 Q -1 N * 2    .
This matrix is real if E and A are real. Let us prove now that (3) also holds.

EE -A ⊥ * Θ EE -A ⊥ = N * 1 N 1 -γR + γ 2 R(γR -N * 2 N 2 ) -1 R Recall the matrix inversion lemma (a + bcd) -1 = a -1 -a -1 b(c -1 + da -1 b) -1 da -1 . Apply this result a first time to (γR -N * 2 N 2 ) -1 to get EE -A ⊥ * Θ EE -A ⊥ = N * 1 N 1 + N * 2 (1 -N 2 (γR) -1 N * 2 ) -1 N 2 and a second time to (1 -N 2 (γR) -1 N * 2 ) -1 to conclude EE -A ⊥ * Θ EE -A ⊥ = N * 1 N 1 + N * 2 (1 + N 2 (γR -N * 2 N 2 ) -1 N * 2 )N 2 = R + N * 2 N 2 Q -1 N * 2 N 2 > 0 .
Both inequalities (3) and (4) hold for any γ sufficiently large to ensure Q > 0.

Remark that the heart of the proof relies on the use of Finsler's lemma. As in [START_REF] De Oliveira | Perspectives in Robust Control, chapter Stability tests for constrained linear systems[END_REF][START_REF] De Oliveira | On stability tests for linear systems[END_REF] this is the key tool that enables to deal with implicit linear transformation constraints.

3 Stability of descriptor systems

Continuous-time descriptor systems

A linear descriptor system characterised by the state-space equation E ẋ = Ax fits the feedback system framework of Figure 1 if one considers

z = ẋ , w = x , E = E , A = A , ∇ = s -1 1 , s -1 ∈ C + .
The inverse Laplace operator s -1 is constrained to the closed right hand-side of the complex plane and hence well-posedness proves the that there are no poles with non-negative real part. For this set of "uncertainties", a choice of quadratic separator is given in the following corollary.

Corollary 2 The descriptor system E ẋ = Ax is admissible, i.e. regular, stable and impulse free [START_REF] Masubuchi | H ∞ control for descriptor systems: A matrix inequalities approach[END_REF], if and only if the following LMI conditions hold

E T P E > 0 , E T P E ⊥ = 0 , E ⊥T P E ⊥ < 0 (6) EE -A ⊥T    0 E T P P E 0    EE -A ⊥ < 0 . (7) 
Proof : One way to prove Corollary 2 is to show how this result is related to the LMI conditions of [19]

E T X T = XE ≥ 0 , A T X T + XA < 0 . (8) 
For an admissible descriptor system there exist two non singular matrices V and U such that

V EU =    1 0 0 0    , V AU =    A 1 0 0 1    . (9) 
Based on this factorisation take

E = U    1 0    , E ⊥ = U    0 1    , EE -A ⊥ =    A 1 E   
and P = XV -1 U -1 . With these notations after simple manipulations one gets that

E T X T = U -T    E T P E E T P E ⊥ 0 0    U -1 .
The two first conditions of ( 6) are therefore equivalent to XE = E T X T ≥ 0. Next, assuming E T P E ⊥ = 0, one gets

A T X T + XA = U -T    (7) 0 0 2E ⊥T P E ⊥    U -1
which concludes the proof.

Remark that conditions of Corollary 2 imply to solve a smaller LMI problem in terms of number of variables and size of the constraints. This can prove more efficient for large scale problems. On the other hand, the constraints (8) may be useful when dealing with design problems [START_REF] Masubuchi | H ∞ control for descriptor systems: A matrix inequalities approach[END_REF], it is not the case for the proposed result.

Remark also that the matrix P in Corollary 2 defines a quadratic Lyapunov function V (x) = x T P x such that V (x) > 0 for all x in the image of E , while V (x) < 0 for all ( ẋ, x) in the null space of EE -A .

As an example, consider as in [START_REF] Masubuchi | An LMI condition for stability of implicit systems[END_REF] the scalar 'switch' system

   1 0    ẋ =    1 δ    x.
If δ = 0 the system is 'turned off' and resumes to x(t) = 0, it is stable. Otherwise the system is unstable, ẋ = x.

Assume δ = 0 then E = 1 and EE -A

⊥ =    1 -1 0 -δ   
⊥ is an empty matrix (zero number of columns). The LMI conditions of Corollary 2 are summarized by the existence of a scalar p > 0. Take for example p = 1, the stability is proved.

Now what happens when δ = 0? In that case EE -A

⊥ =    1 -1 0 0    ⊥ =    1 1   
and the LMI conditions are p > 0 , 2p < 0. They cannot be fulfilled, the system is unstable.

Discrete-time descriptor systems

The discrete-time case is very much similar to the continuous-time case. The statespace representation Ex k+1 = Ax k is identically modelled as a feedback system in Figure 1. The unique difference is the uncertainty set

∇ = s -1 1 , |s -1 | ≤ 1 .
Non-conservative separators can be parameterised as

Θ =    -E T P E 0 0 P   
with P satisfying [START_REF] Ebihara | Robust performance analysis of linear time-invariant uncertain systems by taking higher-order time-derivatives of the states[END_REF]. Applying Theorem 1, condition (3) with this choice of separator is a necessary and sufficient LMI condition for the stability of the discretetime descriptor system. The result is related to the generalised discrete Lyapunov inequality of [START_REF] Hsiung | On the discrete-time bounded real lemma for descriptor systems[END_REF] [33, lemma 1] that writes E T XE > A T XA , E T XE ≥ 0 , by taking P = U -T V -T XV -1 U -1 where U and V are those defined in (9).

Pole location

The procedure can be extended to pole location analysis. For example, take regions of the complex plane described by a scalar quadratic inequality:

D = { s ∈ C : d 1 + d 2 s + d * 2 s * + d 3 ss * < 0 } .
Such regions are half-planes, interior of disks or exteriors of disks. The poles of E ẋ = Ax (i.e. values such that rank(Es -A) drops from its normal value) lie in D if the feedback system of Figure 1 is well-posed for all s outside the region. Pole location analysis amounts to testing well-posedness with respect to the following uncertainty set:

∇ = s -1 1 : d 1 s -1 s - * + d 2 s - * + d * 2 s -1 + d 3 ≥ 0 .
Necessary and sufficient LMI condition for pole location analysis are then obtained applying Theorem 1 with the following separator:

Θ =    d 3 E T P E d * 2 E T P d 2 P E d 1 P   
with P satisfying [START_REF] Ebihara | Robust performance analysis of linear time-invariant uncertain systems by taking higher-order time-derivatives of the states[END_REF]. For many other regions (as well as for unions of regions) separators can be chosen following the methodology in [START_REF] Henrion | D-stability of polynomial matrices[END_REF][START_REF] Iwasaki | Generalized KYP lemma: Unified frequency domain inequalities with design applications[END_REF]. For intersections of regions, the procedure consists in proving pole location in each region independently.

Polynomial systems

Consider a polynomial matrix differential equation of degree d defined by x ∈ R n and d i=0 A i x (i) = 0, then its stability is equivalent to well-posedness of the system of Figure 1 with

E =           A d 0 • • • 0 0 -1 0 . . . . . . 0 0 -1           , A = -           A d-1 • • • A 1 A 0 1 0 0 . . . . . . 0 1 0           , ∇ = s -1 1 dn s -1 ∈ C + .
In case A d is full rank, stability and pole location LMI conditions obtained when applying Theorem 1 to this system are exactly the same as the one proposed in [START_REF] Henrion | D-stability of polynomial matrices[END_REF].

Robust stability of descriptor systems

Consider the following uncertain descriptor system

(E A + (B∆ -E B )(E D -D∆) -1 E C ) ẋ = (A + (B∆ -E B )(E D -D∆) -1 C)x (10) 
where the state-space model matrices are rational functions of the uncertain parameters ∆ that are assumed to belong to a set ∆. Note that this very general modeling naturally arises from Linear Fractional Transform (LFT) modeling as attested in [START_REF] Hecker | Generalized LFT-based representation of parametric uncertain models[END_REF][START_REF] Monceaux-Cumer | Minimal LFT form of a spacecraft built up from two bodies[END_REF]. Moreover, it can often give minimal LFT formulations which is of major interest as the numerical complexity of analysis tools grows significantly with the dimensions of the uncertain operator ∆.

Model [START_REF] Hecker | Generalized LFT-based representation of parametric uncertain models[END_REF] matches the framework of Figure 1 if one considers

E    E A E B E C E D       ẋ z ∆    = A    A B C D       x w ∆    (11) 
along with the set ∇ =

        s -1 1 n 0 0 ∆    : s -1 ∈ C + , ∆ ∈ ∆     
. For that type of sets, the quadratic separator can be chosen as

E =    F 1 F 2    n m , E ⊥ =    G 1 G 2    n m , Θ =        F T 2 Θ 1 F 2 -F T 1 P F T 2 Θ 2 -P F 1 0 0 Θ T 2 F 2 0 Θ 3        (12) 
where the constraints on P are as follows

F •T 1 P F • 1 > 0 , F T 1 P G 1 = 0 , G •T 1 P G • 1 < 0 ( 13 
)
and the constraints on the Θ i matrices depend on the uncertainty set ∆.

Unstructured uncertainty

Assume the uncertainties are non-structured norm-bounded: ∆ T ∆ ≤ 1 m . A choice of quadratic separators for ∇ is described by [START_REF] Hsiung | On the discrete-time bounded real lemma for descriptor systems[END_REF] with the constraints [START_REF] Iwasaki | Well-posedness of feedback systems: Insights into exact robustness analysis and approximate computations[END_REF] and

Θ 1 = -τ 1 , Θ 2 = 0 , Θ 3 = τ 1 , τ > 0 , G 2 = 0 . (14) 
In case E is full rank this separator is known to be non-conservative [START_REF] Meinsma | A dual formulation of mixed µ and on the losslessness of (D, G)-scaling[END_REF]. Applying Theorem 1 with this choice of separator, an LMI condition for robust stability of the uncertain descriptor system is directly derived.

Scalar repeated uncertainty, real-valued case

Consider now the structured uncertainty such that ∆ = δ1 m with δ real and normbounded, |δ| ≤ δ. Parametric uncertainty is assumed: δ is an unknown constant scalar. Based on mixed P-separators and vertex-separators [START_REF] Iwasaki | Well-posedness of feedback systems: Insights into exact robustness analysis and approximate computations[END_REF], a choice of quadratic separators for ∇ is described by [START_REF] Hsiung | On the discrete-time bounded real lemma for descriptor systems[END_REF] with the constraints (13) and

F T 2 Θ 3 F 2 ≥ 0 ,    G T 2 Θ 3 G 2 G T 2 Θ * 2 F 2 F T 2 Θ 2 G 2 F T 2 (Θ 1 + δΘ 2 + δΘ T 2 + δ2 Θ 3 )F 2    ≤ 0 , G T 2 Θ 3 F 2 = 0 ,    G T 2 Θ 3 G 2 G T 2 Θ * 2 F 2 F T 2 Θ 2 G 2 F T 2 (Θ 1 -δΘ 2 -δΘ T 2 + δ2 Θ 3 )F 2    ≤ 0 . (15) 
Applying Theorem 1 with this choice of separator, we get an LMI condition for robust stability of the descriptor system with scalar, repeated, real-valued, bounded uncertainty.

Consider the following simple example

   E A E B E C E D    =           1 0 0 0 0 1 0 0 0 2 1 0 2 0 0 1           ,    A B C D    =           -1 0 1 0 0 -1 0 1 1 0 0.1 0 0 1 0 0.1          
. This uncertain descriptor system also writes as

   1 2δ a 2δ a 1    ẋ = (δ a -1)x , δ a = δ 1 -0.1δ
.

It is quite simple to see that for |δ| < 1 2.1 , E(δ) is non singular and E(δ) -1 A(δ) is stable. For δ = 1 2.1 E(δ) is no longer invertible but the system is driven by

ẋ1 + ẋ2 = - 1 4 (x 1 + x 2 ) , x 1 -x 2 = 0 ,
it is asymptotically stable. For any value of δ > 1 2.1 , E(δ) is non singular but E(δ) -1 A(δ) is unstable.

All this analytical analysis can be done here because the example is simple. For a real problem it would be more involved. But in all cases the LMI results can be tested efficiently for example using YALMIP [START_REF] Löfberg | YALMIP : A toolbox for modeling and optimization in MATLAB[END_REF]. For the given example, the LMIs are feasible for the limit bound δ = 1 2.1 . For any larger value of δ the LMIs are infeasible. Results prove to be non-conservative for this example. This may not be the case for all systems and there is a need for less conservative methods. One way to reduce the conservatism is to work on the separator constraints. For example, ( 15) is only sufficient for the separation with respect to the scalar interval uncertainty. The conservatism of this constraint may be reduced following the result of [START_REF] Scherer | Relatations for robust ilnear matrix inequality problems with verifications for exactness[END_REF]Theorem 7.1] which, based on a generalization of Pólya's theorem, gives new LMI conditions for a polynomial matrix function to be positive. This result has some asymptotic properties in terms of conservatism, nevertheless it may not by itself reduce to zero the overall conservatism and another approach based on parameter-dependent Lyapunov functions may be needed. The two approaches are we believe complementary and should be combined for systems with structured uncertainties.

Scalar repeated uncertainty, real-valued case -parameter-dependent Lyapunov functions

The parametric uncertainty δ is constant, therefore it is always possible to write redundant equations such as:

   E A E B E C E D       x (i+1) z (i) ∆    =    A B C D       x (i) w (i) ∆    , x (i) = s -1 x (i+1) w (i) ∆ = δz (i) ∆
where • (i) is the i-th derivative of •. Introducing derivatives up to order r, system (10) equivalently writes as

z T = ẋT . . . x (r) T z T ∆ . . . z (r-1) ∆ T w T = x T . . . x (r-1) T w T ∆ . . . w (r-1) ∆ T E        1 (r-1)n 0 (r-1)n×n 0 1 r ⊗ E A 1 r ⊗ E B 1 r ⊗ E C 1 r ⊗ E D        z = A        0 (r-1)n×n 1 (r-1)n 0 1 r ⊗ A 1 r ⊗ B 1 r ⊗ C 1 r ⊗ D        w (16) 
with a feedback operator

∇ =    s -1 1 rn 0 0 δ1 rm    .
Based on this expanded model description an other corollary to Theorem 1 is:

Corollary 3 Choose an integer order r. For E and A defined in [START_REF] Li | Delay-dependent robust stability and stabilization of uncertain linear delay systems : A linear matrix inequality approach[END_REF], if there exist a matrix P ∈ R rn and matrices Θ i=1,2,3 ∈ R rm that satisfy (3), ( 12), ( 13) and ( 15), then the uncertain system [START_REF] Hecker | Generalized LFT-based representation of parametric uncertain models[END_REF] is stable for all ∆ = δ1, δ ∈ R, |δ| ≤ δ.

As the order r grows, the LMIs of Corollary 3 grow in numerical complexity. More precisely, the number of decision variables is given by rn(rn+1)/2+rm(2rm+1) and the number of rows of the LMI constraints grow by a factor 2r. The growth of the numerical complexity goes along with reducing conservatism. It is illustrated on the following example.

First take the example from [START_REF] Bliman | A convex approach to robust stability for linear systems with uncertain scalar parameters[END_REF] and consider the last case of one real-valued uncertainty that enters the considered framework when taking:

   E A E B E C E D    = 1 6 ,    A B C D    =                  -12 + α -7 7 1 3 0 -11 -13 + α -5 -2 -1 2 -2 9 -8 + α -1 3 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0                  .
The aim is to evaluate a robustness margin for real valued uncertainties bounded by δ = 1, that is to maximize α under the constraint for the system to be robustly stable. For r = 1 the LMIs of Corollary 3 are feasible up to α 1 = 3.249. For r = 2 and r = 3 the results are identical and give α 2,3 = 5.4176. Note that for α = 5.4177 and δ = 1 the system is unstable which indicates that the maximal bound is reached at a precision of 10 -4 . These results can be compared to those of [START_REF] Bliman | A convex approach to robust stability for linear systems with uncertain scalar parameters[END_REF]. That paper builds following a comparable technique of successive LMIbased relaxations of the robust stability problem. Applied to the example, the three first estimates are respectively 3.24, 5.39 and 5.41. The dimensions of these LMI problems are comparable to those of Corollary 3.

In case of usual LTI systems (E

A = 1, E B = 0, E C = 0, E D = 1)
, closely related results were obtained by [START_REF] Iwasaki | LPV system analysis via quadratic separator for uncertain implicit systems[END_REF]. For example, our Corollary 3 corresponds to the problem solved in their Theorem 5. For an exact comparison, their result corresponds to the following expanded model description

E               0 0 1 0 1 0 0 0 0 1 0 -1 0 0 1 0 -C 0 0 1                         ẋ ż∆ z ∆ ż∆           = A               0 1 0 0 A 0 B 0 0 0 0 0 C 0 D 0 0 0 0 D                         x z ∆ w ∆ ẇ∆           with a feedback operator ∇ =    s -1 1 n+m 0 0 δ1 2m    .
Both this result and that of Corollary 3 read as analysis conditions where stability is proved with a parameterdependent Lyapunov function V ∆ (x) = x T P (∆)x. But the choice of P (∆) is different. In Corollary 3 stability of ẋ = A(∆)x = (A + B∆(1 -D∆) -1 C)x is assessed by

P (∆) =    A(∆) 1    T P    A(∆) 1   
while in [START_REF] Iwasaki | LPV system analysis via quadratic separator for uncertain implicit systems[END_REF] the parameter-dependent Lyapunov matrix is such that

P (∆) =    ∆(1 -D∆) -1 C 1    T P    ∆(1 -D∆) -1 C 1    .
Note that this last type of Lyapunov matrix includes the former. Moreover, on the given example conditions of [START_REF] Iwasaki | LPV system analysis via quadratic separator for uncertain implicit systems[END_REF] are feasible up to α = 5.4176.

Scalar repeated uncertainty, complex-valued case

Consider the uncertainty with identical diagonal structure ∆ = δ1 m with δ complexvalued and norm-bounded, |δ| ≤ δ. Based on mixed P-separator and D-scalling [START_REF] Iwasaki | Well-posedness of feedback systems: Insights into exact robustness analysis and approximate computations[END_REF], a choice of quadratic separators for ∇ is described by [START_REF] Hsiung | On the discrete-time bounded real lemma for descriptor systems[END_REF] with the constraints [START_REF] Iwasaki | Well-posedness of feedback systems: Insights into exact robustness analysis and approximate computations[END_REF] and

Θ 1 = -Q , Θ 2 = 0 , Θ 3 = Q , F •T 2 QF • 2 > 0 , F T 2 QG 2 = 0 , G •T 2 QG • 2 < 0 . ( 17 
)
Based on this description of the separator one gets the following corollary.

Corollary 4 Choose an integer order r. For E and A defined in [START_REF] Li | Delay-dependent robust stability and stabilization of uncertain linear delay systems : A linear matrix inequality approach[END_REF], if there exist a matrix P ∈ R rn and a matrix Q ∈ R rm that satisfy (3), ( 12), ( 13) and [START_REF] Lin | On the stability of uncertain linear descriptor systems[END_REF], then the uncertain system [START_REF] Hecker | Generalized LFT-based representation of parametric uncertain models[END_REF] is stable for all ∆ = δ1, δ ∈ C, |δ| ≤ δ.

As an illustration take again the example from [START_REF] Bliman | A convex approach to robust stability for linear systems with uncertain scalar parameters[END_REF] with |δ| ≤ 1, complex valued. For r = 1 and r = 2, Corollary 4 gives respectively 3.249 and 4.147 as maximal admissible bounds on the robustness margin α. Increasing r ≥ 3 does not bring any improvement. For comparison the same bounds 3.24 and 4.14 where found in [START_REF] Bliman | A convex approach to robust stability for linear systems with uncertain scalar parameters[END_REF]. This result is in fact expected because, for the case when E = 1 (usual LTI systems) with a single scalar complex parameter, the result of Corollary 4 is identical to that in [START_REF] Bliman | A convex approach to robust stability for linear systems with uncertain scalar parameters[END_REF]. This reference moreover proves that the conservatism of the method vanishes asymptotically as r grows to infinity.

Stability of descriptor time-delay systems

Consider the following time-delay descriptor system

E ẋ(t) + E h ẋ(t -h) = Ax(t) + A h x(t -h) . (18) 
Define η(t) = Ex(t) + E h x(t -h). The model matches the framework of Figure 1 if one considers

E    1 -A 0 E       η(t) x(t)    = A    0 A h 1 -E h       η(t) x(t -h)    (19) 
along with the set:

∇ =         s -1 1 n 0 0 e -hs 1 n    : s -1 ∈ C +     
.

Delay-independent case

Delay-independent stability is achieved if the system is stable for all delays h ∈ [0 + ∞[. In that case, the delay operator e -hs is equivalent to a complex normbounded uncertainty e -hs = δ, |δ| ≤ 1. Therefore this case is a subcase of the previously considered problem of robust stability analysis with scalar repeated complex valued uncertainty, and hence all previous results apply. Note that for E = 1, the expanded versions based on Corollary 4 are exact reformulations of results in [START_REF] Bliman | LMI characterization of the strong delay-independent stability of linear delay systems via quadratic Lyapunov-krasovskii functionals[END_REF]. Moreover, that last reference proves that as r grows, the conservatism of the method vanishes.

Delay-dependent case

The delay-dependent case amounts to proving asymptotic stability for all bounded delays 0 ≤ h ≤ h. To do so, papers such as [START_REF] Zhang | Stability of time-delay systems: Equivalence between Lyapunov and scaled small-gain conditions[END_REF][START_REF] Gouaisbaut | A note on stability of time delay systems[END_REF] introduce the following bounded operator δ h = s -1 (1 -e -hs ) that operates on the system signals as

δ h [ η(t)] = η(t) -η(t -h) .
This operator is bounded such that:

|δ h | ≤ h , ∀ s ∈ C + , 0 ≤ h ≤ h . (20) 
Bounding in this way the operator amounts to an approximation that may be reduced if considering fractions of the delay h:

|δ h/r | ≤ h r , ∀ s ∈ C + , 0 ≤ h ≤ h . (21) 
As the fractioning integer r goes to infinity the bounded approximation |δ h/r | tends to zero . Based on these considerations, for a given r, we introduce the signals x(t -ih r ) where i ∈ {0 . . . r + 1} and the augmented system signals:

υ(t) =           x(t -h r ) x(t -2h r ) η(t) υ(t) x(t -(r+1)h r ) η(t) -η(t -h r )          
. These signals make system (18) match the framework of Figure 1 with:

E               1 -A 0 0 0 E 0 0 0 0 1 rn 0 1 0 0 -1 0 0 0 0               z = A                0 0 • • • 0 A h 0 0 1 0 • • • 0 -E h 0 0 0 1 rn 0 0 0 0 0 0 -1 E 0 • • • 0 E h 1                w (22) 
and an uncertainty set defined as:

∇ =                     s -1 1 n 0 0 0 e -hs r 1 (r+1)n 0 0 0 δ h/r 1 n        : s -1 ∈ C + , 0 ≤ h ≤ h             
.

Define the following row partitioning

E =        F 1 F 2 F 3        n (r + 1)n n , E ⊥ =        G 1 G 2 G 3        n (r + 1)n n . (23) 
Based on mixed P-separator, D-scallings [START_REF] Iwasaki | Well-posedness of feedback systems: Insights into exact robustness analysis and approximate computations[END_REF], a choice of quadratic separators for ∇ is described by

Θ =           -F T 2 QF 2 - h2 r 2 F T 3 RF 3 -F T 1 P 0 0 -P F 1 0 0 0 0 0 Q 0 0 0 0 R           (24) 
and constrained by

F •T 1 P F • 1 > 0 , F •T 2 QF • 2 > 0 , F •T 3 RF • 3 > 0 , F T 1 P G 1 = 0 , F T 2 QG 2 = 0 , F T 3 RG 3 = 0 , G •T 1 P G • 1 < 0 , G •T 2 QG • 2 < 0 , G •T 3 RG • 3 < 0 . (25) 

Corollary 5

Choose an integer fractioning r. For E and A defined in [START_REF] Meinsma | A dual formulation of mixed µ and on the losslessness of (D, G)-scaling[END_REF], if there exist a matrix P ∈ R n , a matrix Q ∈ R (r+1)n and a matrix R ∈ R n that satisfy

(3), ( 24) and ( 25), then the time-delay system [START_REF] Löfberg | YALMIP : A toolbox for modeling and optimization in MATLAB[END_REF] is stable for all 0 ≤ h ≤ h.

Here again, as the fractioning r grows, the LMIs of Corollary 5 grow in numerical complexity and this goes along with reducing conservatism. It is illustrated on the following example.

To illustrate this result consider the time delay system defined by

E = 1 , E h = 0 , A =    -2 0 0 -0.9    , A h =    -1 0 -1 -1    (26) 
This example has for long been used to illustrate delay-dependent results. The left hand-side of Table 1 summarizes these previously published results by giving the reference, the obtained bound and the number of variables involved in the corresponding LMIs. The right hand-side gives the results of Corollary 5 for various fractionings.

On the considered example the proposed method shows to be more effective, except compared to that of [START_REF] Zhang | Stability of linear time-delay systems: A delaydependent criterion with a tight conservatism bound[END_REF]. In this last reference, the improvement is essentially due to a Padé approximation of e -hs which goes further than the basic operator s -1 (1 - e -hs ). Combining the Padé approximation and the proposed fractioning scheme is a promising approach currently under investigation.

Conclusion

A novel quadratic separation framework for feedback connected systems with implicit linear transformation is described. Directly related robust stability analysis results are derived for descriptor and time-delay systems. Only two special cases of uncertainties were considered but extensions can be obtained for more complex and time-varying structured uncertainties following results of [START_REF] Iwasaki | LPV system analysis via quadratic separator for uncertain implicit systems[END_REF][START_REF] Dettori | Robust stability analysis for parameter dependent systems using full block S-procedure[END_REF]. Results for delaydependent systems are given for the case of systems with one single delay and without uncertainties but extensions are trivial for such more involved problems. The procedure amounts to combinations of constraints on the quadratic separator. Prospective work will be dedicated to analysing the relative conservatism of several independent results when stability is proved with parameter-dependent Lyapunov certificates.

Figure 1 .

 1 Figure 1. Feedback systemas[START_REF] Iwasaki | LPV system analysis via quadratic separator for uncertain implicit systems[END_REF][START_REF] Bliman | A convex approach to robust stability for linear systems with uncertain scalar parameters[END_REF].• Finally, section 5 is devoted to stability analysis of descriptor time-delay systems.Both delay-independent and delay-dependent results are derived. In the former case the results are a generalization of those in[START_REF] Bliman | LMI characterization of the strong delay-independent stability of linear delay systems via quadratic Lyapunov-krasovskii functionals[END_REF] to descriptor systems. In the latter case, results not only encompass all existing LMI formulas as proved in[START_REF] Gouaisbaut | A note on stability of time delay systems[END_REF], but extend these by proposing new tests with reduced conservatism. As for all corollaries of the other sections, the delay-dependent results are tested on a numerical example. Conservatism reduction is shown to be significant without increasing drastically the numerical burden.
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