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Abstract

The integral quadratic separation (IQS) framework is a specialization of topological separation theory to the
case where operators are described by (or embedded in) integral quadratic constraints. IQS applies both to regular
and descriptor system representations. Thanks to this feature, IQS provides a methodology for deriving sequences
of LMI conditions with reducing conservatism. It has been applied for robust performance analysis of systems
with uncertainties and delays. In this paper the methodology is adapted for the first time for region of attraction
evaluation in the case of systems with saturations. Results are illustrated on a launcher attitude control example
with saturated inputs.
Keywords: Stability analysis, Saturation, Convex optimization, Launcher control .

1 Introduction
The work exposed in the paper is part of a project dedicated to robust analysis of a launcher control system. The
global goal is to provide efficient tools for assessing stability and performance of non-linear, time-varying, models
with uncertainties, delays, saturations, dead-zones and hybrid features. Among all these features, the paper focuses
on saturations and considers the launcher in ballistic phase. The issue is formulated in terms of regions of stability
estimation. It corresponds to the situation where, because of stage separation related disturbances or temporary
loss of actuators/sensors, the attitude control of the launcher starts with initial conditions far from the required
equilibrium. Guaranteeing, robustly, large regions of attraction is crucial in the validation of control laws at this
phase of the launcher trajectory.

Region of attraction estimation is a long standing problem that has been considered by many authors. Actually,
the exact geometric characterization of the region of attraction of the origin for a system subject to input saturation
is not an easy task [SLT96], [Rom96], [Kha92]. The region of attraction can be non-convex, open and unlimited.
Thus, in general, this region can be approximately determined only by intensive simulations, but its visualization
is practically impossible for systems with more than 3 states. Hence, it is important to characterize subsets of
the region of attraction with a well-defined analytical representation, such as for example ellipsoidal or polyhedral
sets. It is the reason for which region of attraction estimation, and therefore the determination of region of stability,
has been a long standing problem considered by several authors, most of the approaches being developed based
on the use of Lyapunov functions (quadratic, polyhedral, piecewise quadratic, ...) and an adequate model for the
saturated terms [BM95], [Joh99], [HL01], [KE02], [AaDLC06], [Fia10], [TGGQ11].

∗This work is developed in the frame of SAFE-V an ESA TRP (“Robust Flight Control System Design Verification and Validation Frame-
work”, Contract Nb 4000102288).
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A necessary tradeoff has to be done between the available performance and/or robustness properties and the size
of the region of the guaranteed stability (see, for example, [KE02], [TGGQ11] and references therein). Yet, these
robust results are not as rich as what would permit merging Lyapunov-based approaches with Integral Quadratic
Constraints (IQC) results. Unfortunately, most IQC-type results for systems with saturations deal with global
stability: [MR97, Meg01, VKS09]. Some papers such as [FLR06, MS09] deal with region of attraction estimation
by means of IQCs but room is clearly left for better insight in that direction.

The contribution of this paper is to consider region of attraction estimation in a framework closely related to
IQCs. This framework named Integral Quadratic Separation (IQS) is a specialization of topological separation
proposed by [Saf80] for linear systems in feedback-loop with non-linear, time-varying uncertain operators. It
generalizes quadratic separation results developed by [IH98, IS01]. In [PAHG07] it is shown how descriptor
modeling permitted in IQS framework contributes to building LMI conditions with reduced conservatism by means
of including information on higher derivatives of the state of the system. In [PBG09] a technique is proposed to
deal with information on initial conditions. The contribution of the present paper is to combine these two features.
It provides results for attraction estimation which are for the first time formulated in a non Lyapunov framework.

The paper is organized as follows. First a section is devoted to some mathematical preliminaries and recalls
the main features of IQS. Second, the launcher region of attraction estimation problem is formulated and divided
in two steps. The first step is tackled in section 4. It provides two LMI conditions for estimating sets of initial
conditions for which the control input is bounded. The second step guarantees stability and is described in section
5. Concluding remarks are finally drawn about conservatism of the results and the multiple prospectives for further
conservatism reduction and for robust region of stability evaluation.

2 Preliminaries

2.1 Notation
Rm×p and Cm×p are the sets of m-by-n real and complex matrices respectively. AT is the transpose of the matrix
A and A∗ is the transpose conjugate. 1 and 0 are respectively the identity and the zero matrices of appropriate
dimensions. A > (≥)B means that A − B is Hermitian positive (semi) definite. A⊥ is a full rank matrix
whose columns span the null-space of A: AA⊥ = 0. Let Lm×p2 [0,+∞[ be the set of all measurable functions
f : [0,+∞[→ Cm bounded with respect to the following norm ‖f‖ =

(∫∞
0
f∗(t)f(t)dt

)1/2
. Associated to that

norm, is the inner product < f |g >=
(∫∞

0
f∗(t)g(t)dt

)
. To alleviate notation, in the following Lm2 [0,+∞] is

denoted for simplicity L2, whatever the dimensions. For the ease of notation define as well the truncated inner
product and norm

< f |g >t̄ =
(∫ t̄

0
f∗(t)g(t)dt

)
, ‖f‖t̄ = < f |f >1/2

t̄

Let the following truncation operator x 7→ Tθx:

[Tθx](t) =
{
x(t) if t ∈ [0 , θ]
0 if t > θ

and the square-root delta operator (see [PBG09]) x 7→ ϕθx:

< ϕθ1y|ϕθ2x >t̄ =
{
y∗(θ1)x(θ1) if θ1 = θ2 ≤ t̄,
0 if θ1 6= θ2 or if θ1 > t̄.

Both of these operators are linear and map signals of L2 to L2. In the paper we assume the signals admit a
derivative, almost everywhere, defined by the following integral relation

∫ t̄
0
ẋ(t)dt + x(0) = x(t̄). Based on this

notation, we define the integrator operator on truncated signals as:

IF
(
ϕ0x
Tθẋ

)
=
(
Tθx
ϕθx

)
. (1)
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This formula states that for all time instants t̄ ≤ θ the state results from a mapping from the initial conditions and
its derivative

t̄∫
0

[Tθẋ](t)dt+ x(0) =

t̄∫
0

ẋ(t)dt+ x(0) = x(t̄) = [Tθx](t̄)

and for any t̄ ≥ θ the integral of the truncated derivative maps to the final value
∫ t̄

0
[Tθẋ](t)dt+ x(0) = x(θ).

To make some formulas more concise ‘diag’ defines block diagonal matrices. It is used as follows on a three-
block example

diag
[
A B C

]
= diag

 A
B
C

 =

 A 0 0
0 B 0
0 0 C

 .
2.2 Well-posedness
Let the following interconnected system

Ez(t) = Aw(t) , w(t) = [∇z](t) (2)

where w and z are signals describing the system; E and A are constant matrices, possibly not square, and E is
assumed to be full column rank; ∇ is an operator, that may be non-causal and may be uncertain, it is defined as
belonging to a closed set∇ ∈∇.

Definition 1 ([Saf80]) The interconnected systems (2) is said to be well-posed if whatever bounded signals (z̃, w̃)
perturbating the system equations

Ez(t) = A(t)w(t) + z̃(t) , w(t) = [∇z](t) + w̃(t) (3)

and whatever uncertain operator∇ ∈∇, the internal signals (z, w) are unique and bounded in L2 :

∃γ̄ > 0 :
∥∥∥∥ z
w

∥∥∥∥ ≤ γ̄ ∥∥∥∥ z̃
w̃

∥∥∥∥ ,
∀
(

z̃
w̃

)
∈ L2 ,

∀∇ ∈∇
(4)

To illustrate the definition consider the following interconnected system

Eẋ = Ax , x = ∇ẋ

where∇ = I is the integration operator with zero initial conditions: Iẋ = x. The exogenous signal w̃ plays in that
case the role of initial conditions (when non zero) and z̃ is a perturbation on the dynamics. Well-posedness implies
that for zero initial conditions w̃ = 0 and no perturbations z̃ = 0, the only trajectory of the system is w = 0,
z = 0 (i.e. the origin is an equilibrium point). It also implies that for bounded initial conditions and bounded
perturbations, the state remains bounded. In this case well-posedness of the interconnected system is equivalent to
the stability of Eẋ = Ax.

2.3 Integral quadratic separation
Theorem 1 The interconnected system (2) is well-posed if there exists a Hermitian matrix Θ satisfying simultane-
ously the LMI: [

E −A
]⊥∗Θ

[
E −A

]⊥
> 0 (5)

and the IQC: 〈(
z
∇z

) ∣∣∣∣∣Θ
(

z
∇z

)〉
≤ 0 ,

∀z ∈ L2

∀∇ ∈∇ . (6)
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The result is proved in [PAHG07]. It is directly related to topological separation of [Saf80] where the topolog-
ical separator is an integral quadratic form defined by the matrix Θ:

θ(z, w) =

〈(
z
w

) ∣∣∣∣∣Θ
(

z
w

)〉
Topological separation is proved by the fact that the separator is positive on the graph of Ez = Aw and negative on
the inverse graph of w = ∇z. If Θ satisfies both conditions (5) and (6) it is said that it defines an integral quadratic
separator (IQS). Moreover, any Θ that satisfies the IQC (6) is called an IQS-candidate.

Applied to the loop Eẋ = Ax , x = Iẋ the theorem applies with the following choice of IQS-candidate

Θ =
[

0 −P
− P 0

]
, P > 0

which indeed satisfies for zero initial conditions:〈(
ẋ
Iẋ

) ∣∣∣∣∣Θ
(

ẋ
Iẋ

)〉
t̄

= −x(t̄)TPx(t̄) ≤ 0 , ∀t̄ > 0.

The results are coherent with Lyapunov theory and the matrix P used in the separator happens to define a quadratic
Lyapunov function V (x) = xTPx for the system.

3 Launcher stability problem
Our aim is to investigate the usage of the IQS framework for stability analysis of a launcher attitude control in
ballistic phase. As a first approximation (no atmospheric friction, neglected sloshing modes, no external perturba-
tion, no coupling between axes) the launcher dynamics along one axis are those of a double integrator: Iθ̈ = T .
Keeping the problem as simple as possible, the actuator dynamics are neglected, as well as any thresholds on the
control around zero inputs. The only complication considered is that the torque T is saturated at some value T̄ .
This saturation is modeled as the difference between a unitary gain and a dead-zone: T = u − Tdz( 1

T
u), where

the dead-zone is defined by:

dz(ẑ) =

 ẑ + 1 if ẑ ≤ −1
0 if |ẑ| ≤ 1
ẑ − 1 if ẑ ≥ 1

(7)

Sensor dynamics and delays are neglected and the control is assumed to be a state-feedback (proportional-derivative
type): u = −KP θ −KD θ̇.

Numerical values for this problem are provided by the partners from ASTRIUM-ST: I = 20 000, KP = 1 800,
KD = 14 400 et T̄ = 240. The resulting closed-loop system reads:(

ẋ
ẑ

)
=

 0 1 0
− 0.09 −0.72 0.012

7.5 60 0

( x
ŵ

)
=
[
A B
C 0

](
x
ŵ

)

where ŵ = dz(ẑ). In the zone where the input does not saturate (when dz(ẑ) = 0) the associated linear system is
trivially stable. Unfortunately, as |ẑ| goes to infinity the dynamics of the system become asymptotically identical
to the open-loop unstable double integrator. It is well known that under some open-loop assumptions [SSY94], the
global stabilization of linear systems subject to input saturation can be carried out. The double integrator enters
in the kind of systems, which can be globally stabilized by a linear saturated control law. Nevertheless, since, in
the current case, the double integrator system results from some approximation of the real system, there is no real
sense to study the global stability/stabilization of the approximated system. It is furthermore important to note that
it is impossible to assess global stability by simply embedding the non-linearity in the sector ŵ/ẑ ∈ [0 , 1].

Our goal is to build LMI conditions for proving local stability and this will be done in two steps:
- The first step is to build setsX0 of initial conditions x(0) such that |ẑ(t)| ≤ z̄ is guaranteed along the trajectories,
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where z̄ is some given upper bound.
- The second one is to prove stability assuming that |ẑ(t)| ≤ z̄ holds along the trajectories.
The combination of the two steps implies that for all initial conditions x(0) ∈ X0 the origin is stable (local
stability). The strategy is intrinsically conservative since it relies on an intermediate constraint on the trajectories.

4 Building sets of initial conditions
Following the reasoning developed in [PBG09] for studying impulse-to-peak performance (which has interpreta-
tions in terms of peak response for given initial conditions), let us introduce the following model involving initial
and final conditions over some time interval [0 , θ]:

ϕ0x
Tθẋ
Tθ ẑ
ϕθ ẑ


︸ ︷︷ ︸

z

=


0 0 0 1
A 0 B 0
C 0 0 0
0 C 0 0


︸ ︷︷ ︸

A


Tθx
ϕθx
Tθŵ
ϕ0x


︸ ︷︷ ︸

w

(8)

In this model, the initial conditions are described by the signal ϕ0x. Ellipsoidal sets of initial conditions are
described by a symmetric positive definite matrix Q > 0:

< ϕ0x|Qϕ0x >= xT (0)Qx(0) ≤ 1.

It is assumed that the initial conditions enforce the ouptut z to be bounded over the time interval [0 , θ]:

|ẑ(t)| = |[Tθ ẑ](t)| ≤ z̄ ∀t ∈ [0 , θ].

Since Tθŵ = dz(Tθ ẑ) the boundedness of ẑ implies that the pair ([Tθ ẑ](t), [Tθŵ](t)) is inside the sector [0 , z̄−1
z̄ ]

(see Figure 1). Mathematically this property reads as the following quadratic constraint: for all t ∈ [0 , θ](
[Tθ ẑ](t)
[Tθŵ](t)

)T [ 0 1−z̄
z̄

1−z̄
z̄ 2

](
[Tθ ẑ](t)
[Tθŵ](t)

)
≤ 0. (9)

1−z

−1

w

z

z1

Figure 1: Sector constraint for bounded |ẑ| ≤ z̄

This assumption being made, our aim is at proving that the final condition is strictly bounded by that same
bound:

|ẑ(θ)| = ||ϕθ ẑ|| < z̄.

If this property holds whatever θ ≥ 0 it proves that the initial conditions enforce |ẑ(t)| ≤ z̄ for all t.
Our aim is therefore formulated in terms of assessing that

< ϕ0x|Qϕ0x >= xT (0)Qx(0) ≤ 1

implies ||ϕθ ẑ|| = |ẑ(θ)| < z̄. Equivalently (see [PBG09]), it corresponds to assessing that the only admissible
solution to z̄2 < ϕ0x|Qϕ0x >≤ ||ϕθ ẑ||2 is the trivial solution (ϕθ ẑ, ϕ0x) = 0. It is a well-posedness issue where
ϕ0x is expressed as dependent on ϕθ ẑ and the signals are constrained by the IQC:〈(

ϕθ ẑ
ϕ0x

) ∣∣∣∣∣
[
−1 0
0 z̄2Q

](
ϕθ ẑ
ϕ0x

)〉
≤ 0. (10)
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The upper reasoning concludes in formulating a well-posedness problem defined by E = 1, A given in (8) and
the block diagonal operator∇ = diag

[
IF ∇1∇2

]
where the notation Tθŵ = ∇1Tθ ẑ means that the constraint

(9) holds and where ϕ0x = ∇2ϕθ ẑ means that the constraint (10) holds. Well-posedness of this feedback system
implies that for all initial conditions satisfying xT (0)Qx(0) ≤ 1 the signal ẑ is bounded by |ẑ(t)| ≤ z̄ along the
trajectories.

Corollary 1 Assume A given in (8), if there exist two symmetric matrices P and Q > 0 and a scalar τ > 0 such
that the following LMI holds

[
A
1

]T


diag


[
−P 0
0 0

]
0
−1

 diag


[

0 0
−P 0

]
τ 1−z̄

z̄
0


diag


[

0 −P
0 0

]
τ 1−z̄

z̄
0

 diag


[

0 0
0 P

]
2τ
z̄2Q




︸ ︷︷ ︸

Θ

[
A
1

]
> 0 (11)

then for any initial condition in
X0 = {x(0) : xT (0)Qx(0) ≤ 1}

the trajectories of ẋ = Ax+Bdz(Cx) are such that |Cx| ≤ z̄.

Proof The result is a direct corollary of Theorem 1 applied to the well-posedness problem defined by E = 1,
A given in (8) and the block diagonal operator∇ = diag

[
IF ∇1∇2

]
. The inequality (11) is exactly (5) where[

E −A
]⊥ =

[
1 −A

]⊥ =
[
A
1

]
.

The structure given to Θ makes it an IQS-candidate with respect to the operator ∇. Indeed for the signal z and w
defined in (8), the IQC (6) holds: all the terms involving P cancel since 2 < Tθẋ|PTθx >=< ϕθx|Pϕθx > − <
ϕ0x|Pϕ0x >; terms involving τ > 0 give a negative contribution due to (9); and the remaining term is exactly
(10). �

When developing (11), the LMI also reads as:[
ATP + PA PB + τ z̄−1

z̄ CT

BTP + τ z̄−1
z̄ C −2τ

]
< 0,

CTC < P
P < z̄2Q

(12)

which are exactly the classical conditions for proving invariance of the set xTPx ≤ z̄2 for initial conditions
xT (0)Qx(0) ≤ 1 as proposed in [PTB97], [HB98], [PTGC02] using the Lyapunov framework and classical sector
conditions. The link between IQS results and Lyapunov-type results is that the matrix P defining the separator
with respect to the integrator operator IF defines a Lyapunov function.

Conditions (12) are known to be conservative. One way to understand this conservatism is that the structure
given to Θ to make it an IQS-candidate is sufficient but may not be necessary. In particular, it performs the
separation with respect to all operators∇1 with bounded gain in the sector [0 , z̄−1

z̄ ] which includes the dead-zone
as well as many other non-linear operators.

To reduce the conservatism we suggest to include informations on the derivatives of ŵ. Indeed, since the
considered non-linearity is a dead-zone, one gets that ˙̂w is equal either to 0 or to ˙̂z depending whether if |ẑ| ≤
1 holds or not. This added information reduces the class of operators from the original set of sector bounded
operators. It is thus expected that results build with this added information may be less conservative.

The way to add the information on derivatives in the IQS framework is as simple as augmenting the modeling
(8) with the information on derivatives. The result is given in equation (13).

The problem of finding initial conditions such that |ẑ| is bounded is included in the well-posedness problem de-
fined with these matrices E andA together with the block diagonal operator∇ = diag

[
IF ∇1 ∇1 ∇3 ∇2

]
where the notation Tθ ˙̂w = ∇3Tθ ˙̂z means that either Tθ ˙̂w = 0 or Tθ ˙̂w = Tθ ˙̂z.
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E︷ ︸︸ ︷

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 −C 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0



z︷ ︸︸ ︷

ϕ0x
ϕ0ŵ
Tθẋ
Tθ ˙̂w
Tθ ẑ
ϕθ ẑ

Tθ ˙̂z
ϕθ ẑ



=



0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1
A B 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0
C 0 0 0 0 0 0 0 0
0 0 C 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 C 0 0 0 0 0 0
0 1 0 0 −1 0 0 0 0
0 0 0 1 0 −1 0 0 0


︸ ︷︷ ︸

A



Tθx
Tθŵ
ϕθx
ϕθŵ
Tθŵ
ϕθŵ

Tθ ˙̂w
ϕ0x
ϕ0ŵ


︸ ︷︷ ︸

w

(13)

Corollary 2 Assume E and A are given in (13), if there exist two symmetric matrices P1 and Q1 > 0, five scalars
τ1 > 0, τ2 > 0, µ1 ≤ 0, µ1 + 2µ2 + µ3 ≤ 0, such that the LMI (5) holds with

Θ =



diag



[
−P1 0
0 0

]
0
0
µ1

−1

 diag



[
0 0
−P1 0

]
τ1

1−z̄
z̄

τ2
1−z̄
z̄

µ2

0



diag



[
0 −P1

0 0

]
τ1

1−z̄
z̄

τ2
1−z̄
z̄

µ2

0

 diag



[
0 0
0 P1

]
2τ1
2τ2
µ3

z̄2Q1





(14)

then for any initial condition in

X1 =

{
x(0) :

(
x(0)

dz(Cx(0))

)T
Q1

(
x(0)

dz(Cx(0))

)
≤ 1

}

the trajectories of ẋ = Ax+Bdz(Cx) are such that |Cx| ≤ z̄.

Proof The result is obtained by assessing that the matrices structured as in (14) are IQS-candidates for ∇ =
diag

[
IF ∇1 ∇1 ∇3 ∇2

]
. Indeed, for the signal z and w defined in (13), the IQC (6) holds: all the terms

involving P cancel as for the case of Corollary 1; terms involving τ1 and τ2 give a negative contributions due to (9);
terms involving µ1,2,3 are negative because µ1 ≤ 0 which is needed when Tθ ˙̂w = 0 and because µ1 +2µ2 +µ3 ≤ 0
which is needed when Tθ ˙̂w = Tθ ˙̂z; and the remaining term is exactly (10). �
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The initial conditions of Corollary 2 are described in terms of the state and the signal exiting the dead-zone.
The border of the set of initial conditions is piecewise quadratic and continuous. Similar types of initial condition
sets can be found in [Joh99]. The difference is that here the sets are computed using one single LMI condition and
not separately in each region with continuity constraints on the border.

Proposition 1 If there exists a solution to Corollary 1 then there exists a positive scalar ε such that Corollary 2
holds as well with

P1 =
[
P 0
0 ε

]
,
τ1 = τ,
τ2 = 0,

µ2 = 0,
µ3 = −µ1 = ε,

Q1 =
[
Q 0
0 ε 1+ε

z̄2

]
.

Proof Omitted for space limitation reasons. It needs to build by hand the matrix
[
E −A

]⊥
for matrices of

Corollary 2 and develop the LMI (5). It is then trivial to see that for a small enough ε > 0 the LMIs (12) implies
those issued from Corollary 2. �

Proposition 1 demonstrates that including the information about derivatives in the well-posedness problem
indeed contributes to build an LMI condition with reduced (at least not increased) conservatism. To test this
conservatism reduction, both corollaries are applied to the launcher example.

In order to maximize the sets of initial conditions we minimize Tr(Q) when solving the LMI of Corollary
1. In the case of Corollary 2 a tradeoff of the two pieces of the piecewise quadratic function is considered. The
minimization criterion is:

Tr

([
1n
0

]T
Q1

[
1n
0

])
+

1
20

Tr

([
1n
C

]T
Q1

[
1n
C

])
.

These objective functions have the advantage of being linear. They correspond to maximizing the sum of the
lengths of the semi-axes of the ellipsoids. This is one way to maximize the sets. Another possibility is to maximize
the volume (minimize the determinant of Q).

Up to z̄ = 4 the two corollaries give almost the same sets of initial conditions. For z̄ = 4 Figure 2 shows in
blue the set found by Corollary 1 and in red the one found by Corollary 2. The solid straight lines are the limits of
the region of linearity |Cx| ≤ 1. The dotted lines are the limits of |ẑ| ≤ z̄ = 4.

!!"# !!"$ !!"% !!"& ! !"& !"% !"$ !"# '

!!"'

!!"!(

!

!"!(

!"'

Figure 2: Sets of initial conditions for z̄ = 4 in the x = (θ, θ̇) phase plane

For values of z̄ ≥ 4 the two corollaries give noticeably different results. For z̄ = 8 the corresponding sets are
plotted in Figure 3. It can be clearly seen that the red curve is continuous, piecewise quadratic.
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Figure 3: Sets of initial conditions for z̄ = 8 in the x = (θ, θ̇) phase plane

Up to z̄ = 11.5 the LMIs of both corollaries are feasible. For z̄ = 12 (are greater values) both corollaries
give infeasible LMIs. Since the system is known to be stable whatever bounded set of initial conditions, this
result indicates that both corollaries are conservative. Following the proposed strategy conservatism may be further
reduced by introducing information on the second derivative of the signal ŵ. The methodology is not quite identical
to the one described for the introduction of the first derivative because ˙̂w is discontinuous. The authors are currently
exploring ways to cope with this issue.

Reduction of conservatism from Corollary 1 to Corollary 2 goes along with increased numerical burden. For
n the number of states of the system, the size of the LMI problems are given in Table 1 where nb.var. stand for the
number of decision variables and nb.rows. the total number of rows of the constraints.

nb.var. nb.rows.
Corollary 1 n(n+ 1) + 1 3n+ 1
Corollary 2 (n+ 1)(n+ 2) + 5 3n+ 4

Table 1: Size of the LMI problems

All LMIs were coded in Matlab c© using YALMIP [L0̈1] and solved using LMIlab from the Robust Control
toolbox.

5 Proving stability
The second step of the study is to prove that for all trajectories such that |z(t)| ≤ z̄, the system is stable. This issue
amounts to the well-posedness problem of the following loop:(

ẋ
ẑ

)
︸ ︷︷ ︸

z

=
[
A B
C 0

]
︸ ︷︷ ︸

A

(
x
ŵ

)
︸ ︷︷ ︸

w

, ∇ =
[
I 0
0 ∇1

]
. (15)

Theorem 1 applies and gives the following result.
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Corollary 3 Assume A is given in (15), if there exist a symmetric positive definite matrix P > 0 and a scalar
τ > 0 such that the following LMI holds

[
A
1

]T 
0 0 −P 0
0 0 0 τ 1−z̄

z̄

−P 0 0 0
0 τ 1−z̄

z̄ 0 2τ


︸ ︷︷ ︸

Θ

[
A
1

]
> 0 (16)

then for any initial condition guaranteeing |Cx(t)| ≤ z̄ along the trajectories of ẋ = Ax+ Bdz(Cx), the state x
converges asymptotically to the origin.

In the case of the launcher example, the LMI condition of the corollary holds whatever bounded 1 ≤ z̄ <∞
Combination of this result with the one of the former section is as follows: for all initial conditions in X0 or

X1, the trajectories of the system are such that |Cx(t)| ≤ z̄ and are therefore stable thanks to Corollary 3. The
result is intrinsically conservative since it relies on an intermediate constraint on the trajectories.

6 Concluding remarks
The study shows the applicability of the integral quadratic separation framework for estimating regions of attraction
of saturated systems. The results presented in the paper are preliminary as they are based on very basic sector
conditions. Improvements are however expected to be achievable in a near future by considering generalized
sector conditions such as in [TGGQ11] or the advanced IQCs proposed in [Meg01].

In previous publications, integral quadratic separation was shown to be efficient to deal with robustness is-
sues with respect to parametric uncertainties, for systems with delays and for input/output performance evaluation.
Combining such features, and saturations, amounts to augmenting the operator ∇ in the feedback well-posedness
problem. IQS can thus potentially provide new conditions for robust performance analysis of delayed and satu-
rated systems. This will be tested on the launcher example which actually exhibits delays in measurements and
uncertainties in parameters such as inertia.
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