Enhanced reactivity of copper complex-based reactive materials via mechanical milling - LAAS - Laboratoire d'Analyse et d'Architecture des Systèmes
Journal Articles Combustion and Flame Year : 2021

Enhanced reactivity of copper complex-based reactive materials via mechanical milling

Abstract

A prior investigation by the authors demonstrated that incorporating 25% of copper complex (Cu(NH3)4(NO3)2) into Al/CuO nanothermite enables to produce highly-reactive gasgenerating energetic composites for emerging micro-airbag applications. To further improve the decomposition of the copper complex into gaseous species (N2, O2, N2O), during the thermite reaction, we employed ball milling technique to diminish its grain size down to the nanoscale. Results show that premilling the copper complex i.e. refining its grains without much modifying their structures, increases the pressure generation and burn rate by a factor 1.5 and 2, respectively. It also maintains a high degree of performances along a wider range of thermite to copper complex mass ratio.
Fichier principal
Vignette du fichier
final manuscript_hal.pdf (296.81 Ko) Télécharger le fichier
Origin Files produced by the author(s)

Dates and versions

hal-03312787 , version 1 (02-08-2021)

Identifiers

Cite

Tao Wu, Florent Sevely, Sylvain Pelloquin, Sandrine Assié-Souleille, Alain Estève, et al.. Enhanced reactivity of copper complex-based reactive materials via mechanical milling. Combustion and Flame, 2021, 233, pp.111598. ⟨10.1016/j.combustflame.2021.111598⟩. ⟨hal-03312787⟩

Relations

55 View
45 Download

Altmetric

Share

More