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Abstract

Loops are key components of protein structures, involved in many biological
functions. Due to their conformational variability, the structural investigation
of loops is a difficult topic, requiring a combination of experimental and compu-
tational methods. This paper provides a brief overview of current computational
approaches to flexible loop modeling, and presents the main ingredients of the
most standard protocols. Despite great progress in recent years, accurately mod-
eling the conformational variability of long flexible loops remains a challenging
problem. Future advances in this field will likely come from a tight coupling of
experimental and computational techniques, which would enable a better un-
derstanding of the relationships between loop sequence, structural flexibility,
and functional roles. In fine, accurate loop modeling will open the road to loop
design problems of interest for applications in biomedicine and biotechnology.
Keywords: Loop modeling, Protein flexibility, Conformational sampling,

Structure prediction, Energy landscapes

Loops are protein fragments with an irregular structure connecting two sec-
ondary structure elements (typically a-helices and S-strands) and are main ac-
tors in many biological functions. They are often located at the surface of glob-

ular proteins, and their conformational versatility plays key roles in processes
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such as molecular recognition, allosteric regulation or signaling. On average,
loops correspond to about one third of a protein sequence, and up to one half
of the residues of enzyme active sites are located in loops (Bartlett et al., 2002).

Protein loops can have very different dynamic behaviors. In some cases,
loops adopt a relatively stable conformation in the folded state of the protein,
being part of the overall protein scaffold. Based on this static perspective, some
efforts have been made for the classification of loop structures (Oliva et al.|
1997). However, conformational changes in loop regions are frequently observed
to drive enzyme function or regulation (Malabanan et al. 2010). For example,
flexible loops (P-loop and T-loop) modulate protein kinases activity. Loops
are also essential in many protein-ligand/cofactor interactions. For instance,
extracellular loops of G-Protein-Coupled Receptors (GPCRs) are crucial for
ligand recognition and binding (Hilger et al.l 2018). Note that GPCRs and
protein kinases are by far the major drug targets for pharmaceutical industry.
Together with their variable motion amplitude, loop conformational transitions
can take place in a broad range of timescales. A comprehensive list of cases
demonstrating the functional importance of protein loops can be found in a
recent review (Papaleo et al |2016). Figure 1 is an illustrative summary of loop
functions and of the interplay between their structural properties and functional
roles.

To better understand the dynamic nature of loops, a suitable representa-
tion of their conformational space is based on the concept of energy landscape
(Wales, [2003). Although one loop can exist in multiple conformations, they are
not equally likely to be adopted. More precisely, the probability of each possi-
ble state depends on its associated free energy. The energy landscape provides
an overall view by displaying the energy at each point of the conformational
space. The topology of this landscape gives insight into the main conforma-
tional and dynamic properties of the loop: the basins constitute meta-stable
conformations, while saddle regions are associated with transition states. A vi-
sual representation can then be obtained by projecting this landscape along two

meaningful coordinates, but other representations based on stationary points of



40

45

50

55

60

65

the landscape can also be utilized. This is illustrated in Figure 2.

The structural investigation and characterization of flexible loops is chal-
lenging. X-ray crystallography, which is the most widely used experimental
method to determine high-resolution protein structures, only provides static
snapshots in particular experimental conditions (e.g. presence/absence of a lig-
and). Furthermore, flexible regions are often missing in X-ray structures, or even
in electron microscopy maps, because of lacking electron density. According to
Djinovic-Carugo and Carugo| (2015), 69% of the structures deposited in the Pro-
tein Data Bank (PDB) have missing fragments, and this percentage increases
up to 80% for structures solved with a resolution above 2.0 A. In more than 90%
of the cases, these missing fragments are located in loops or unstructured ter-
minal regions. Other experimental techniques, such as X-ray solution scattering
(Petoukhov et al., 2002) or nuclear magnetic resonance (NMR) (Boehr et al.,
2006)), can provide very relevant but limited structural and kinetic information
regarding these flexible regions. . Therefore, since an accurate atomistic repre-
sentation of the diverse conformations adopted by the loop from experimental
measurements is extremely difficult, computational methods are an essential
complement to study flexible protein loops.

From a practical point of view, loop modeling techniques usually implement
a multi-stage protocol, which varies depending on the underlying modeling ap-
proach. Figure 3 aims to provide a general scheme in which most of the existing
loop modeling techniques can fit. In brief, modeling can be divided into three
major stages: (1) conformational sampling or search, (2) scoring and clustering,
and (3) a final post-processing or refinement stage.

The core of loop modeling is the exploration of the vast conformational space
to be performed at the sampling/search step. Note that the volume of the
conformational space grows exponentially with loop length. Very different ap-
proaches to protein loop modeling have been proposed over the years depending
on the sampling/search protocol (Shehu and Kavraki, [2012; Papaleo et al. 2016;
Kundert and Kortemme, |2019)). Overall, they can be divided into three main

classes: knowledge-based, ab initio and hybrid approaches. Knowledge-based
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approaches, also called template-based or homology-based, exploit structural

repositories to retrieve observed loop conformations for a given set of sequence

and geometric descriptors about the anchoring points (Choi and Deane, [2010;
Messih et al) 2015; [Shirvanizadeh et al., 2018; [Karami et al) 2018). These

methods are in general computationally fast since they do not rely on expensive
simulations, but they are limited by the availability of suitable loop conforma-
tions from known protein structures, and only provide a small set of solutions.
Especially for long loops, there is not enough structural data currently to cover
the whole conformational space.

On the other end of the spectrum, ab initio approaches can perform a wider

sampling of the conformational space, for example by exhaustively varying the

torsional angles of the loop (Jacobson et al., |2004; Lépez-Blanco et al., [2016).

Their computational cost is highly variable, mainly depending on the underlying
sampling method, but overall they are more demanding than knowledge-based
approaches. To a lesser extent, they are also limited when dealing with long
loops, as sampling coverage decreases with loop length.

Numerous loop modeling methods combine ideas from knowledge-based and
ab initio approaches. Hybridization is performed at different levels: some meth-

ods apply a consensus between results obtained from different types of ap-

proaches (Deane and Blundell, [2001)), while other methods apply a more in-

tricate combination of strategies to explore the conformational space. In par-

ticular, many hybrid approaches use small fragments from structural databases

within an ab initio sampling technique (Stein and Kortemmel 2013} Tang et al.,

2014; [Park et all 2014} Marks et al.l [2017; Barozet et all [2019). The interest

of one type of approach over the others may depend on the specific application
and on the nature of the loop. For instance, knowledge-based approaches can
be a suitable choice to predict the most probable conformations of more struc-
turally conserved L1, L2, L3, H1, and H2 antibody CDR loops, whereas the
more exhaustive sampling performed by ab initio and hybrid approaches will be
more adequate to the highly variable H3 loop.

One of the main ingredients of ab initio and hybrid sampling approaches
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are loop-closure methods. They are required to ensure that N-terminal and C-
terminal ends of the loop keep bonded to the anchoring points in the protein,
while correct bond geometry is preserved. They are usually based on the concept
of inverse kinematics, very common in robotics. Two classes of loop-closure
methods have been proposed: those based on numerical optimization techniques
(Canutescu and Dunbrack, [2003; |Chys and Chacénl, [2013]), and those based
on analytical solutions (Coutsias et al. 2004; |Cortés et al. 2004). Numerical

methods are conceptually simpler and directly applicable to long loops, but
analytical methods are successfully used within iterative algorithms for the same
purpose.

Scoring methods are another key ingredient, required to evaluate the qual-
ity of the sampled loop states. Scoring methods can also be classified into

knowledge-based (Lépez-Blanco and Chacdnl [2019; [Dong et al.l [2013)), physics-

based (generally based on molecular mechanics approaches, not quantum physics

models) and hybrid methods (Park et al., 2014; |Alford et all [2017). As before,

knowledge-based scoring functions, typically linked to a coarse-grain represen-
tation of the loop, are the most computationally efficient alternative. However,
their implicit simplifications prevent a faithful representation of the rugged en-
ergy surface of the all-atom conformational space. Conversely, the computa-
tional cost of detailed physics-based energy function prevents a thorough ex-
ploration of the space. Hybrid approaches try to balance the best of these two
worlds. A common practice is to use less accurate scoring functions in an initial
search, and an atomistic detailed potential to refine only the high-scoring loop
states. A suitable combination of sampling protocols and scoring functions is
the major burden for loop modeling, and the key for future progress in the field.

In addition to the aforementioned loop modeling methods, Monte Carlo
(MC) and molecular dynamics (MD) simulations can be used to investigate
thermodynamic and kinetic properties of loops. Note however that in this con-

text, MC-derived approaches are mainly employed as a sampling engine within

more sophisticated loop prediction techniques, e.g. (Stein and Kortemmel 2013}

Tang et al., 2014). Enhanced MD methods (Bernardi et al., 2015) are suitable
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tools to study loop dynamics (Papaleo et al., 2016|). For example, MD simu-
lations coupled with a higher-level representation such as Markov state models
are a relevant approach to investigate the role of loop conformational changes
in enzyme catalysis (Liao et al., |2018)). Nevertheless, due to their very high
computational cost, MD simulations are often only applied in a post-processing
stage to refine solutions provided by much faster loop sampling methods (Lee
et al.l [2016]).

Figure 4 provides a (non-exhaustive) list of loop modeling protocols, related
techniques for sampling and scoring, and structural repositories. Note also
that other methods (in addition to MD) have been proposed to model loop
conformational transitions rather that loop conformations, but they are not
covered by this review.

Despite huge progress over the last two decades, flexible loop modeling re-
mains an open problem (Marks et al., 2018; [Barozet et al.l |2020). State-of-the-
art methods are able to predict stable conformations of relatively short loops
(up to 12 residues). However, accurately sampling, scoring and representing the
great diversity of loop conformations and transitions between them is still a com-
putational challenge, in particular for long loops. Nowadays, Machine/Deep-
Learning (ML/DL) approaches are showing huge potential in many areas, in-
cluding structural bioinformatics (Gao et al.| [2020; |Gkeka et al., [2020; [Pakhrin
et al. 2021). In the context of loop modeling, ML/DL-based approaches have
already provided good results as scoring methods (Ruffolo et al.l [2020). To the
best of our knowledge, the ability of ML/DL methods to generate meaningful
conformational ensemble models of flexible loops remains to be demonstrated,
but it is undoubtedly a promising research direction.

The main limitation for the development of more accurate and general loop
modeling methods is the lack of experimental data. As mentioned before, loop
flexibility is a challenge for biophysical methods: X-ray crystallography provides
only static and possibly biased snapshots, NMR methods have difficulties deal-
ing with large proteins, other methods (such as small-angle X-ray scattering or

Forster resonance energy transfer) only provide coarse-grained constraints to
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build models. Therefore, new integrated approaches, tightly coupling several
experimental and computational methods, are necessary for advances in this
field.

Future improvements in loop modeling will help us to better understand
the relationships between loop sequence, structural flexibility and biological
function. Meanwhile, current approaches, with their limitations, are ready to
use in challenging problems such as loop design in enzymes and antibodies
(Kundert and Kortemme, 2019). Encouraging results in these fields bring us
closer to the ultimate goal of designing loops able to recognize partner molecules
with high specificity and affinity, or to enhance the catalytic activity of enzymes

thanks to optimized dynamic properties.
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