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Towards robots able to measure in real-time the Quality
of Interaction in HRI contexts

Amandine Mayima∗ · Aurélie Clodic · Rachid Alami

Abstract When humans interact with each other, col-

laborating on a shared activity or chatting, they are

able to tell whether their interaction is going well or not

and if they observe that its quality is deteriorating, they

can adapt their behavior or invite their partner to act

in order to improve it. A robot endowed with the ability

to evaluate the quality of its interaction with its human

partners, will have the opportunity to perform better

since it will be better informed for its decision mak-

ing processes. We propose metrics to be integrated in a

cognitive and collaborative robot in order to measure in

real-time the quality of an interaction (QoI). This per-

manent evaluation process has been implemented and

tested within the high-level controller of an entertain-

ment robot. A first demonstration shows the ability of

the scheme to compute QoI for a direction-giving task

and exhibit significant differences between its perfor-

mance in interaction with a fully compliant human, a

human confused by the course of action and a non-

cooperative one. This paper is an extension and further

refinement of work originally reported in [30].
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Aurélie Clodic · Rachid Alami
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1 Introduction

Robots dedicated to Human-Robot interactions are not

just machines receiving commands and executing them.

They should be decisional agents with high-level goals,

taking decisions (potentially taking into account so-

cial norms), and acting and reacting to not only their

actions but those of other agents. Cognitive and in-

teractive robots are becoming more and more capable

thanks to the use of human-aware models and algo-

rithms [22, 45], with roboticists endowing them with the

ability to execute their share of the work while adapt-

ing to contingencies, particularly those caused by hu-

man’s behaviours and decisions [17, 2, 27]. The decision-

making process is based on a range of knowledge about

the environment, the interaction, the context... Never-

theless, curiously and interestingly, very little has been

done to allow the robot, while performing its collabo-

rative or assistive activity, to permanently evaluate if

things are going well or not, as humans do. We name

this ability “the measure of the Quality of Interaction

from the robot point of view”. We believe that enrich-

ing the robot knowledge with a good estimation about

how the interaction is going, could enhance its decision-

making process and thus, its social behaviour.

For example, if the robot detects that the QoI starts

to drop, it can take a decision based on this information

and act to try to improve the interaction quality (e.g. it

can choose to change some modalities such as the lan-

guage in which it communicates with the human, the

volume of its speakers, or the parameters of its plan-

ners). On the contrary, when the QoI is high, the robot

can decide to just continue the interaction as planned.

Then, endowed with a QoI Evaluator, a robot becomes

more adaptive and performs better. Also, a very poor

performance all along a task could allow the robot to

assess that the human is not really engaged in the in-
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teraction, or even is trying to play the robot. In such

situation, the robot might perhaps better disengage.

Finally, from a methodological point of view, a robot

deployed in the wild able to assess interactions, has an

asset compared to others as it could reduce the invest-

ment in material and human resources to perform user

studies. And, a developer might use the logs to improve

their design.

In this paper, we only focus on the Quality of In-

teraction evaluation process and not on how to use its

result for decision making. Therefore, we present in the

sequel the methods and tools we developed, allowing

the robot to evaluate in real-time the quality of the

human-robot collaborative activity it is involved in. It

is based on a set of metrics we have defined, focused on

two concepts: the measure of human engagement and

the measure of the effectiveness of collaborative tasks

performance. However, this is by no means exhaustive,

and other metrics and parameters could (and should) be

added later. Our work can be seen as a toolbox among

which it is possible to pick the desired metrics accord-

ing to tasks or contexts. We propose a way to aggre-

gate these metrics, producing the QoI. The evaluation

of the QoI is performed at three different levels of ab-

straction: the interaction session level, the task level

and the action level. In further work, this ability could

provide additional information to the robot and open

the possibility for reconsidering its behaviour in case it

estimates that the quality of the interaction is degrad-

ing (e.g. changing its plan or the way it is achieving it,

informing the human or requesting a change in their

behaviour, or even deciding to disengage).

The paper is organized as follows. In the next sec-

tion, we briefly discuss related work and the main chal-

lenges. In section 3 we present the representation of

human-robot collaborative activity which we use and

its hierarchical decomposition. In sections 4 and 5, we

introduce our concept and proposed set of metrics to

evaluate the Quality of Interaction. Finally, in section 6,

we describe a first implementation and then conclude

and discuss future developments.

2 Related work

Inspired from the evaluation methods used in Human-

Computer Interactions and User Experience fields, the

field of Human-Robot Interaction (HRI) has elaborated

its own methods to evaluate robotic systems when they

interact with humans. There are various ways to evalu-

ate a human-robot interaction from the human perspec-

tive. Bethel et al. [7] divided them into five categories:

(1) self-assessments, (2) interviews, (3) behavioral mea-

sures, (4) psychophysiology measures, and (5) task per-

formance metrics. They reviewed metrics used for each

of the categories. They can be grouped into two types:

(1) and (2) are subjective metrics and, (3), (4) and (5)

are objective ones. Since our aim is to have a robot

able to evaluate interactions by itself, human subjective

metrics are not usable. Then we focused on the study

of existing objective metrics meant to measure how the

interaction goes. Steinfeld et al. [42] proposed a set of

metrics to be used in a wide range of tasks whose goal

is to assess the system performance by measuring the

task effectiveness (i.e., how well the task is completed)

and the task efficiency (i.e., the time required to com-

plete a task). Their work is very thorough and inspir-

ing but does not target the evaluation of the quality

of an on-going interaction. Hoffman [16] defined a type

of quality of interaction, the fluency, pointing out that

the notion is not well defined and somewhat vague but

can still be assessed and recognized when compared to

non-fluent scenario. To measure it, they propose a list

of objective metrics, only based on duration measures,

designed to be quite general: robot idle time, human

idle time, concurrent activity (i.e., active time of both

the robot and the human), functional delay (i.e., time

difference between the end of one agent’s task and the

beginning of the other agent’s task). It is an interest-

ing way to measure the fluency and thus the quality

of the human-robot interaction but it only applies to

shared workspace tasks and is dedicated to an offline

evaluation.

Systems targeting real-time measurements during

human-robot interactions, with the purpose to “close

the loop” and use the information for decision-making,
have been developed. Tanevska et al. [44] proposed a

framework allowing the robot to perceive with face de-

tection and evaluate in real-time the affective state (i.e.

anger, happiness, sadness, surprise, etc) and the en-

gagement state (i.e. whether the person is interested

or bored in the interaction) of the people it is interact-

ing with. However, the human affective state measure

might not be enough to assess an interaction or a task

as an affective state is actually a facial expression which

can be misinterpreted (e.g. a smile can be a sign of hap-

piness or embarrassment) and which might be not visi-

ble when one of the agent perform an action and looks

somewhere else. Moreover, as the notion of engagement

is very task specific, it needs further exploration. Real-

time engagement measurement has also been investi-

gated by Anzalone et al. [1] using metrics such as gaze,

head pose, body pose and response times. Their work

is interesting and could be an element among others

to assess the interaction quality but, it is dedicated to

face-to-face interactions.
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Cameras are not the only sensor used to assess in-

teractions on-the-fly, some use human physiological re-

sponses such as skin conductance and temperature, heart

or brain signals. Itoh et al. [19], Bekele et al. [4] or Kulic

et al. [24] use them to detect human affective states such

as anxiety or liking in real-time. However, physiological

measures often imply a lot of sensors which can be in-

vasive for the human. And, as explained by Kulic and

Croft [23], physiological signals may be difficult to in-

terpret and there is a large variability in physiological

response from person to person. Thus, it can be diffi-

cult for a controller to determine which emotional state

the subject is in, or whether the response was caused

by an action of the system, or by an external stimulus.

Moreover, we claim that the human affective state only

is not enough to assess the quality of an interaction, a

human could be satisfied with an interaction or a task

result even though they were stressed during it.

Finally, Bensch et al. [6] proposed a formal approach

to compute interaction quality in real-time. Their work

focused on how to combine metrics together which is in

the same line as ours. However, they do not provide im-

plementation examples, remaining at an abstract level.

In summary, while a substantial number of studies

have been devoted to the evaluation of collaborative in-

teractions for analysis purposes once the interaction is

over, there is a lack of methods allowing the robot to

evaluate in real-time the quality of the interaction based

on multiple metrics and not only anxiety or engage-

ment. We claim that such an ability is very important

and should strongly influence the situation assessment

as well as the decisional abilities of interactive and col-

laborative robots.

3 Representation of a H-R collaborative

activity

It is possible to describe and decompose a Human-

Robot collaborative activity in various ways. For all

the following definitions, we place ourselves in the con-

text of one-to-one human-robot interactions, however

we believe that the scheme can be extended to multi-

human multi-robot contexts. We draw our inspiration

from the literature of sociology and robotics to define

a model of interaction with three layered levels: in-

teraction session, tasks and actions; as illustrated in

Fig. 1. We chose to represent collaborative tasks and

their decomposition using the Hierarchical Task Net-

work (HTN) [13] representation which is often used in

cognitive robotics [18, 25] and because it allows to deal

with goal-based and situation-based activities at dif-

ferent levels of hierarchy such as task, subtasks and

actions and consequently to consider different level of

granularity. In the example of a task with an overall

bad QoI, it would be interesting to know that in fact

it is only a particular action or subtask ruining it. In-

deed, the other parts of the task can be ok, or on the

opposite, a particular subtask or action can have per-

formed very well among the others. We need and use

this granularity also on three levels defined (interaction

session, tasks and actions) to finely evaluate the Qual-

ity of Interaction, as a task can be of poor quality but

the session is globally going well.

Body of the interactionGreetings Goodbyes

Collaborative task 1 Collaborative task n Conversation

Interaction
Session

Level

Tasks
Level

Actions
Level Action 1 Action n

Fig. 1: The hierarchical structure of an interaction ses-

sion. The highest level is the interaction session. The

second level is composed of the tasks. They are included

in the body of interaction of the interaction session and,

two types of tasks are considered and may overlap, col-

laborative and conversational tasks. With this repre-

sentation, a task can be recursively refined as subtasks

until reaching the last level, the actions level, which is

considered as atomic. Subtasks are not considered as a

“real” level of the interaction session, specially to eval-

uate the QoI, as it may exist or not according to the

task.

3.1 Representation of a H-R Interaction Session

We define an interaction session as the period during

which the robot and a human interact together and

are engaged. It is divided in three parts, following the

structure proposed by Sidnell and Tanya [35] and the

engagement model of Sidner and Lee [40]: the greetings,

the body of the interaction and the goodbyes. First,

the greetings corresponds to the period where an agent

starts an interaction by initiating it with another agent.

The interaction session lasts as long as the interactants

are maintaining the interaction through conversation

and collaborative tasks performance which corresponds

to the body of interaction. Finally it ends when at least

one of the interactants is disengaged, either by abruptly

ending the interaction or by closing the interaction as

described by Schegloff and Sacks [39], it corresponds

to “the goodbyes”. For example, for an entertainment
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robot in a mall, an interaction session starts when a

person signals to the robot that they want to engaged,

by greeting it or by approaching it and looking at it.

The body of interaction is composed of conversation

and eventually direction-giving tasks and, the session

lasts until the person says goodbye or leaves. This is the

nominal case and, the duty of the robot is to contribute

to maintain the session alive until the human decide to

close it. However, in some (extreme) cases, the robot

might decide to close the interaction by itself.

Social interactions and collaborative tasks involve

engagement. There is no unique definition of what it

means to be engaged. We chose one that is frequently

used and has been proposed by Sidner and Lee [40]:

“Engagement is the process by which two (or more)

participants establish, maintain and end their perceived

connection during interactions they jointly undertake”.

The robot must be able to exhibit its engagement and

disengagement and also to assess them with respect

to its human partner. We defined three states for the

body of interaction, corresponding to what is happen-

ing during the latter: conversation (i.e. a social chit-

chat or a goal negotiation, without any physical action

performed except communicative gestures), collabora-

tive task (i.e. both agents executing actions in order to

achieve a shared goal) or idle phases (i.e. the agents

are not chatting or performing a collaborative task to-

gether but remain engaged in the interaction session,

it happens in-between active interaction phases). For

each of these three states, the way to exhibit the en-

gagement varies (e.g. in a conversation, an agent look-

ing at their partner displays their engagement; during a

task, an agent correctly performing their action is a way

to demonstrate their engagement). That is why there

is a need to define what behavior the robot has to ex-

hibit in each state and what behavior it should expect

from the human in each state, as these behaviors are

usually very specific (e.g. in a direction-giving task, the

robot keeps its head oriented toward its partner’s face

to demonstrate its engagement in conversation and idle

contexts and when it gives a direction it expects the

human to look at the direction it is showing; in a stack

task, when the robot gives an instruction it expects the

human to take a given cube).

3.2 Collaborative Tasks, Substasks and Actions

Tasks compose the body of the interaction of an inter-

action session as shown in Fig. 1. We distinguish con-

versation (i.e. agents engage in dialogue to exchange

ideas, to ask questions, and to resolve differences) from

collaborative tasks (i.e. agents work as partners, collab-

orating to perform tasks and to achieve common goals).

We will not develop more on conversation since it is not

the main focus of this paper, assessing the QoI of social

dialog being another work.

In collaborative tasks, the robot and the human are

committed to achieve a goal together, involving joint

actions and shared plans [14]. When a human and a

robot perform a task together, as described by Bauer et

al. [3], we could say that the robot has the intent to help

the human, so the human’s intention becomes its own

intention. Then, they have the joint intention to reach a

common goal and, as shown by Michael and Salice [31],

they have a commitment to the joint activity, leading to

perform joint actions. Therefore, during its evaluation

and decision-making processes, the robot has to take

into account that the human and itself should remain

engaged all along an interaction session for the tasks to

be successful and both have to manage and contribute

to maintain expectations about what the other is doing.

The elements composing a task are: a goal, a plan

and involved agents. A plan is needed to realize a goal.

There are many ways to generate a plan. But no mat-

ter the way (using a planner to anticipate execution

or relying on a reactive planning scheme), a plan is a

sequence of subtasks which are sequences of actions

– subtasks are not considered as a “real” level of the

interaction session, specially to evaluate the QoI, as it

may exist or not according to the task.

Actions are the elementary items of tasks manip-

ulated by the high-level robot supervision controller.

They cannot be decomposed further by it (e.g. place-

ment and motion planning are achieved by a lower con-

trol system not described here). It is usual to describe

an action with its preconditions, its effects and, the

agents and entities implied in its execution (e.g. in plans

written in PDDL (Planning Domain Definition Lan-

guage) [12]). We add to this description the notion of

expected reactions (which can themselves be actions)

from the other agents once the action is executed.

In our model, an agent (human or robot) is a con-

tributor to the task and has a mental state as described

by Devin et al. [9]. The mental state is a set of facts

representing, from the agent point of view, the current

world state, the state of the goal and the current task

state. Since we are interested here by the robot situ-

ation assessment and decisional processes, the mental

state of the human is built and managed by the robot

as an estimation of the beliefs of the human [33, 15, 43].

4 The Quality of Interaction (QoI)

We believe the real-time assessment of the Quality of

Interaction (QoI) with a human partner (i.e. what the
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robot “thinks” about how the interaction is going) is a

new knowledge that could enhance the robot decision-

making process. We define the Quality of Interaction

as a measure that indicates how good is the interaction

during human-robot collaborative activities. It is com-

puted in real-time based on a set of metrics, at three

different levels: the interaction session level, the tasks

level and the actions level. The QoI of a given level is

computed from selected metrics but also from the QoIs

of the level below as shown in Fig. 2.

Session QoI

Task1 QoI Taski	QoI Session
metric1

Action1 QoI Actionk QoI Task metric1

Session
metricj

Task metricl

Action metric1 Action metricm

Fig. 2: Representation of the QoI dependencies, with i

the number of performed tasks during the interaction

session, k the number of performed actions during the

task i, j the number of metrics to measure the inter-

action session QoI, l the number of metrics to measure

the task i QoI and m the number of metrics to measure

the action k QoI.

The QoI of each level is computed as a score be-
tween [(1) for a good quality] and [(−1) for a poor one].

Metrics used to compute the QoI are divided in three

categories:

– Mp ∈ [0, 1] if it can only have a positive effect on

the evaluation;

– Mn ∈ [−1, 0] if a metric can only have a negative

effect on the evaluation;

– M ∈ [−1, 1] if a metric can have a positive or a

negative effect.

Defined by the designer according to the needs and

context, a metric can belong to one category or another

depending on the target application. When needed, met-

rics values are scaled with the equations presented in

Appendix A.

The evaluation of the Quality of Interaction at the

level l ∈ {sessionf , taskj , actionk} (with f, j and k re-

spectively the identifiers of a given interaction session,

task and action), QoIl, is computed with:

QoIl =

x∑
i=0

Wi ∗Mi

x∑
i=0

Wi

+A∗

y∑
i=0

Wni ∗Mni +
z∑

i=0

Wpi ∗Mpi

y∑
i=0

Wni +
z∑

i=0

Wpi

(1)

with Wi,Wpi,Wni respectively the corresponding

designer-set weights of Mi,Mpi,Mni, A the designer-

set weight of the right part of the + sign and x, y, z

respectively the number of the metrics Mi,Mpi,Mni.

Equation 1 aggregates the values of the metrics cho-

sen to be indicators of the interaction level quality. As

all metrics do not have the same importance in the

measure of the QoI, each of them is weighted. Values

of these weights are empirically defined. There are two

parts in the equation, the left part of the + sign and

the right part. The left part of the + sign is a weighted

mean of the third category of metrics, the M metrics.

The right part is a weighted mean of the metrics seen

as bonus (i.e. Mp metrics) or penalty (i.e. Mn metrics).

This latter part is weighted with A – whose value is also

empirically1 defined – to be able to adjust its influence

on the left part. In such a way, if there are no Mn met-

rics to compensate for the Mp metrics, it is possible to

limit the positive influence of the Mp metrics on the M

metrics with A. It is the same if there are no Mp met-

rics, A can compensate the impact of the Mn metrics

on the M metrics. Even though M,Mp,Mn ∈ [−1, 1],

the final result of QoIl might be less than −1 or greater

than 1 because of the addition of the M with the Mn

and Mp. If it happens, QoIl minimal value is set to −1

and its maximal value is set to 1.

5 A set of metrics

In this section, we present a few measures to assess

the QoI of an interaction session in Sect. 5.1. Then, we

present metrics for the different levels based on engage-

ment in Sect. 5.2 and effectiveness estimations during

human-robot joint activities in Sect. 5.3. For example,

if the human is engaged and if tasks are performed ef-

fectively, the QoI will tend to be high and vice versa.

Both concepts are difficult to measure, so we do not ex-

actly measure them but we compute their trends from

the set of metrics presented in this section. This set is

not exhaustive and will be extended in future work but

it gave promising results as we show with our imple-

mentation in Sect. 6. All metrics are meant to be used

1 Values are empirically defined given intuition regarding
the importance of a given metrics for a given task and a set
of testing experiments
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for online evaluations of interactions. They are summa-

rized in Table 1.

5.1 Measures to assess the QoI at the interaction

session level

According to the context, the duration of an interaction

session can be an indicator of the human engagement.

Indeed, a human leaving only a few seconds after the

beginning of the interaction is probably less engaged

than a human staying with the robot several minutes.

Also depending on the context, the number of executed

tasks is a measure which can be considered as interest-

ing information with respect to the engagement of the

human, as well as the ratio of successful tasks. The more

the human executes successful tasks with the robot,

the higher the session QoI might be. Finally, it can be

valuable to take into account how the session has been

terminated in the evaluation of the quality of an inter-

action session. For instance, the fact that the human

leaves abruptly in the middle of a task, during an idle

time or a conversation without saying goodbye, or only

at an appropriate time saying farewell to the robot is

significant in terms of social interaction quality.

5.2 Metrics related to human engagement

Michael et al. [32] stated that commitments2 facilitates

“the planning and coordination of joint actions involv-

ing multiple agents. Moreover, commitment also facili-

tates cooperation by making individuals willing to con-

tribute to joint actions to which they would not be will-

ing to contribute if they, and others, were not commit-

ted to doing so”. As it is an important element of the

joint action, we want to provide the robot with a way

to estimate the engagement of its partner during an

interaction.

Metrics allowing to state if an agent is engaged or

not in an interaction are often specific to the type of

interaction. For example, Fan et al. [10] implemented

their measure of the human engagement as a kind of

hysteresis: when the human gaze is on the robot, they

are considered as engaged and when the human gaze is

somewhere else during more than 3 consecutive seconds,

they are considered as not-engaged.

In the same vein, we think that the measure of the

engagement for a collaborative activity can be divided

2 In the robotic domain, it is the word “engagement” and
not “commitment” which is often used, unlike in the psycho-
logical and philosophical fields.

in 2 types of metrics, summed up in Table 1: the Hu-

man contribution to the goal and the Fulfilling robot

expectations about social interaction.

We define in this section examples of metrics of each

types which can be used to estimate the level of engage-

ment of the human partner.

5.2.1 Human contribution to the goal

A good and very promising indicator could be the abil-

ity from the robot to evaluate how well the human ac-

tions help to the goal progression. We call this indica-

tor Human contribution to the goal. To the best of our

knowledge, there is no general method to estimate it.

As a first version of the Human contribution to the

goal, we chose to measure it through the number of

times the robot has to repeat an instruction or a ques-

tion before the human performs correctly, when it ex-

pects the human to answer or to perform the action.

As, if it needs to repeat, it means that the human is

not correctly contributing to the goal, intentionally or

not, as they are not performing their part of the HR

action as they should. The more the robot needs to re-

peat because of the human’s bad performance, the less

they are contributing to the goal, the more the action

QoI should decrease.

5.2.2 Fulfilling robot expectations about social

interaction

During a social interaction, agents are expected to be-

have in a certain way and so the robot has expectations

about the human. Then, the robot can monitor the hu-

man behavior to check if they are acting as they are

expected to. For example, most of the time, when the

robot speaks to the human, it will expect them to look

at it and so it can monitor if it is the case or not as im-

plemented by Fan et al. [10]. Quite similarly, Lemaignan

et al. [26] developed a way to measure if the human is

with the robot during their interaction, based on atten-

tion assessment, by computing if the human is looking

at the desired attentional target or not. This latter met-

ric will be integrated to our framework in future work.

As the works of Lemaignan et al. and Fan et al., we

estimate the Fulfilling robot expectations about social

interaction with the human head orientation, in the

context of our implementation described in Sect. 6. We

compute an attention ratio i.e., the time during which

the human is attentive to the robot (i.e. staying close

enough and looking at it) when it speaks compared to

the total time of the speech:

Ar =
durationisAttentiveTo(robot)=true

durationrobot speaks
(2)
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Metric names Measures Illustration Session Task Action

E
ff

ec
ti

v
en

es
s

P
ro

g
re

ss
to

w
a
rd

s
g
o
a
l

Distance-to-Goal Geometric distance x x

Time-to-Goal Time x x

Steps-to-Goal Number of executed ac-
tions/substasks

x

Deviation from standard
duration

Time x x

E
n

g
a
g
em

en
t Fulfilling robot expecta-

tions about social inter-
action

e.g. attention ratio, with-
me-ness,...

x x x

Human contribution to
the goal

e.g. number of repeated
instructions, number
of successful human
actions,...

x x

Table 1: The set of metrics presented in Section 5.

5.3 Metrics related to effectiveness

One can elaborate metrics to measure how well a task

or an action is achieved. As discussed by Olsen and

Goodrich [34], there are a variety of metrics such as

time-based metrics which reward the speed of perfor-

mance or the response times; error metrics which are

based on counting retrials, failures, or mistakes; cov-

erage metrics which measure to what extent a goal is

achieved, as well as other possible metrics. We use some

of them such as counting retrials, however these metrics

alone were not enough for our example task as we are

in a HRI context.

One can measure for different kinds of tasks, the

ratio of successful3 executions to the total number of

executions (e.g. R =
Succ

Exec
) or the deviation from the

initial plan (distance, cost, trajectory, etc).

We define four metrics, summed up in Table 1, al-

lowing to measure the current task and action effec-

tiveness. Three of them are means to measure how the

progress towards the goal of a task or an action varies.

Indeed, they are good indicators for the interaction

quality as, when executing a task or an action, if the

agents are not getting closer from the goal or even di-

verged from it, it means that something goes wrong.

There are three different metrics because the one to

use depends on the type of task or action. The fourth

3 Obviously, the success is context and task dependent and
should be defined according to the needs

metric allows to compare the current execution dura-

tion to the standard execution duration of the task or

action, based on durations measured during previous

executions.

5.3.1 Metrics to assess the progress towards the goal

We defined three different metrics to assess the progress

towards the goal. The first one allows to assess the

progress towards the goal of geometric-based actions.

The second estimates the progress by using the remain-

ing time to reach the goal. Finally, the last one measures

the number of remaining steps (actions or substasks)

before achieving the goal of a task.

Distance-to-Goal When an agent is performing a geometric-

based action such as a movement, observing if the agent

is getting closer to the target position over time pro-

vides a useful information about how well the action

is going. Therefore, we introduce the Distance-to-Goal

∆DtG metric:
∆DtG(t = 0) = 0

∆DtG(t) = max(0, ∆DtG(t− 1)− 1)

if path length(t) < path length(t− 1)

∆DtG(t) = ∆DtG(t− 1) + 1, otherwise.

(3)

with path length(t) the length of the path leading the

goal at time t (e.g. which can be given by a reactive

motion planner [20]). The metric lower bound is 0. If
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at time t the agent is closer to its final position than at

t−1, i.e. progressing towards their goal, the metric is set

to decrease or to remain equal to 0. Now, if the agent

has not moved or is even further, the metric increases.

The closer the metric value is to 0, the better it is, as

it means the distance to the goal has decreased over

time. We chose to not directly compute the difference

between path length(t) and path length(t − 1) as the

results would be very different whether it is an action

implying a long path or a short path.

Time-to-Goal This measure is intended to estimate the

progress of a given task or action towards its goal based

on the estimation of the remaining time to reach it. It

compares the current estimated time to goal with the

initial estimated time to goal taking into account the

current task duration. As so, it is possible to measure

the variation compared to the initial plan. We define

the Time-to-Goal ∆TtG as:

∆TtG(t) = max(0, e(t) + TtG(t)− TtG(T0)) (4)

with e(t) = t − T0 the task execution duration (time

elapsed since the beginning of the task), TtG(t) the cur-

rent time to the goal, and TtG(T0) the initial planned

time to goal. In our work, TtG(t) and TtG(T0) are pro-

vided by a reactive motion planner [20] because we used

the metric for navigation but it could be provided by

other kind of planners.

Steps-to-Goal One way to estimate the remaining dis-

tance to the goal for a task is to count the number of

remaining substasks or actions (depending on the rele-

vant scale) to perform. In addition, one can add a factor
which estimates the weight (or effort needed) of each

action or subtask. These weights can be determined by

the designer, provided by the planner, etc. Then, the

Steps-to-Goal D of a task can be computed as time t:

D(t) =

c∑
i=1

Wi

n∑
i=1

Wi

(5)

withWi the weight of a subtask/action i, c the number

of completed subtasks/actions and n the total number

of planned subtasks/actions.

5.3.2 Deviation from standard duration

We introduce here a metric to measure the deviation

from standard execution duration, the Deviation from

standard duration φ for subtasks/actions and the Devi-

ation from standard duration Φ for a whole task. This

measure is intended to represent the degradation of the

(a) Plot of φ(t)X of the sub-
task X lasting 60 seconds,
with SDX = 10sec, VX = 0.5
and α = 1

(b) Plot of φ(t)Y of the sub-
task Y lasting 15 seconds,
with SDY = 5sec, VY = 1 and
α = 0.5

(c) Plot of Φ(t)Ta for a task composed of
a sequence of three subtasks X,Y, Z: the
duration of X exceeded SDX = 10s and
reached 20s, the duration of Y exceeded
SDY = 5s and reached 10s, finally the du-
ration of Z was less than SDZ = 10s

Fig. 3: Examples of plots of the φ and Φ functions

quality of execution of a HR task when its duration

exceeds a certain time.

To each subtask/action ai, we associate two attributes

whose values are defined by the designer: a soft dead-

line SDi and a decreasing quality speed Vi. If, at time

t, the execution duration e(t) = t − T0 of a substask

or action ai which has started at T0 exceeds SDi, the

quality will decrease over time at speed Vi:

φ(t)i = max

(
Vi ∗
−max(e(t)− SDi, 0)

SDi
+ α,−1

)
(6)

where α is the value initial value and the upper bound

(as at t = 0, max(e(t) − SDi, 0) = 0) of φi, when the

subtask/action ai starts.

Then, we define a metric Φ for a task. It is an ag-

gregation of the φi computed for each performed sub-

task/action ai of the task. At any moment, Φ can be

seen as a memory of the previous steps, so the initial

value α of ai is equal to the final value of φi−1 of the

previous subtask/action ai−1, α = φ(Tfinal)i−1.

We can notice that it is not possible for this metric

to increase over time since it memorizes the values of

the previous actions. However, the total computed QoI

can get higher thanks to the other metrics. Moreover,

φ can be used independently of Φ. In such a case, the

initial of value α of φ can be set to 1.
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(a) 3D model of the Ideapark mall in Finland. The pink
elements are storefronts.

(b) 3D model of the copy of the Ideapark mall in our lab.The
red elements are the signs of fake storefronts.

Fig. 4: We have built a mockup of the Finnish mall environment in our lab in order to be able to test and

debug the direction-giving task in our lab. This environment comprises a two-level area with corridors, “shops” ,

passages, stairs, open central space and consequently allowed us to run realistic guiding scenarios and finalize the

QoI Evaluator proof-of-concept.

Three examples are given in Fig. 3. Fig. 3a and 3b

represent φ(t)X and φ(t)Y for two independent subtasks

X and Y . Fig. 3c is a plot of Φ(t)Ta for the task Ta

composed of the subtasks X,Y, Z with SDX = 10s,

VX = 0.5, SDY = 5s, VY = 1, SDZ = 10s and VZ = 1.

6 Implementation of the QoI Evaluator for a

direction-giving task

As a proof-of-concept, we have implemented the Qual-

ity of Interaction Evaluator as part of a fully integrated

robotic system [11] developed in the context of the

MuMMER European project4. This project led to the

deployment in a mall of an autonomous robot based on

a Pepper platform. There, the robot reacted by starting

an interaction session with any person willing to inter-

act with it. The person had the possibility to have a

conversation on several topics with the robot and/or to

ask how to reach a shop or location in the mall or where

to buy a given item. This latter possibility is one of the

robot core tasks. It consists in giving guidance to the

customers to reach locations in the mall, by pointing at

places and explaining the route to the desired location.

In order to guide as best as possible, the robot was al-

lowed to move in a limited area to place itself and to

invite the customer to move in order to reach a config-

uration where the landmarks it has chosen to indicate

are visible to the human and to itself.

The direction-giving task is run by a robotic ar-

chitecture presented in Fig. 5 which has been inspired

from [28]. The architecture by itself is not a contri-

bution to this paper but it is necessary to briefly de-

scribe it to understand how the direction-giving task

is achieved. Thus, we give hereafter a rapid overview

4 http://mummer-project.eu/

of the role of the different components and their ar-

ticulation within the architecture. Two of them were

not developed in our lab and are described in [11]:

the Dialog and the Visual Perception, identifying and

tracking humans the robot is interacting with. Based

on the data provided continuously by the Visual Per-

ception and on a pre-defined 3D model of the mall

(Fig. 4a), a Situation Assessment module, based on

Underworlds [36], computes continuously symbolic re-

lations between agents, and between agents and objects

in the environment such as [isSpeakingTo(X,Y )] when

X speaks and looks at Y or [isLookingAt(X,Y )]. The

Route Handler [38], based on a semantic spatial repre-

sentation, handles the search for the best route to get

to the destination – based on criteria such as acces-

sibility or ease of explanation - and the verbalization

of the chosen route. The Human-Aware Navigation of

the robot is implemented using a reactive navigation

planner inspired from [21]. This algorithm is able to

plan and continuously adapt robot motion close to hu-

mans while respecting social constraints [41]. It is the

role of the Shared Visual Perspective Planner [46] to

try to find a position where the human will have to

be in order to see an element of the environment such

as a passage, a staircase or a store. It computes a new

position for the robot as well, to form a triangle whose

vertices are the planned robot position, the planned hu-

man position and the targeted landmark. Finally, the

Supervisor handles the direction-giving task execution

through reactive plans, coordinating all the components

described above. Throughout the task, it supervises the

execution, adapts the robot’s responses to human ac-

tions and to contingencies and computes the Quality

of Interaction thanks to a process which we coined the

Quality of Interaction Evaluator.
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                                 Supervisor

Route Handler

SVP Planner

Human-aware
Navigation

Dialogue

Situation
Assessment

Visual
perception

Semantic
description

Robot

Geometric
description Physical

Resources
Manager

QoI
Evaluator

Fig. 5: The general architecture of the system running

the direction-giving task.

For clarity purposes, we summarize here below the

chronicle of the various development and deployment

steps that have been followed to run the direction-giving

task and to refine the QoI Evaluator:

1. March 2018: beginning of the design and implemen-

tation of the direction-giving task

2. September 2018: First tests of the task on the field,

i.e., in a Finnish mall

3. June 2019 and September 2019: New tests of the

direction-giving task on the field

4. From September to December 2019 (project formal

end): The robot autonomously ran three days a week

in the mall (with only remote monitoring of the

robot performance by our team for debugging and

tuning)

(a) November 2019: Integration in the Supervisor of

a preliminary version of Quality of Interaction

Evaluator implementing the model described in [29]

=⇒ version 1 of the QoI Evaluator

(b) From November 2019 to December 2019: Around

350 direction-giving tasks were performed with

usual mall customers. Bug corrections and tun-

ing of the direction-giving task. This allowed us

to improve the QoI Evaluator thanks to: (i) data

collection of task failures and standard durations

of the subtasks executions (ii) lessons drawn about

metric definitions and choices.

=⇒ version 2 of the QoI Evaluator

5. March 2020: Refinement of the QoI Evaluator, i.e.,

improvement of the metric functions and tuning of

their parameters. In the lab, with the same direction-

giving task than the one used in the mall, compar-

ison of the QoI computed by the robot when it is

dealing with an “ideal” human, a “confused” human

and a “non-compliant” human.

=⇒ version 3 of the QoI Evaluator

(a) A customer listening to
Pepper after re-positioning

(b) A customer listening and
Pepper pointing to a corridor

(c) A customer answering to
Pepper

(d) A customer listening and
Pepper pointing to a shop

Fig. 6: MuMMER robot engaged in direction-giving

tasks. Around 350 trials with customers in the mall al-

lowed us to gather empirical data to select the metrics

and tune the measuring functions parameters.

More specifically, this implementation of the Qual-

ity of Interaction Evaluator measured the interaction

quality at the direction-giving task level and at the

elementary actions level, omitting the interaction ses-

sion level as this latter was not our focus in the MuM-

MER project. The QoI Evaluator was integrated into

the Supervisor which is programmed using Jason [8],

an agent-oriented framework. The supervision system

handles the HR collaborative task execution through

Jason reactive plans. The QoI Evaluator is implemented

into a Jason function (the reasoning cycle) which is in-

voked periodically. After multiple testings, we reached

the conclusion that it was pertinent, at least in the con-

text of the direction-giving task, to have the Evaluator

computing the QoI every second for both levels. There-

fore, every second, the system computes the value of

each metric and then outputs a value for QoItask and

QoIaction.

As mentioned in the step 4b of the chronicle, the

robot interacted in the wild with dozens of usual cus-

tomers (Fig. 6), executing around 350 direction-giving

tasks. This allowed us to improve the performance of

the direction-giving task, to gather standard durations

of the subtasks executions and to draw lessons about

metric definitions and choices (e.g. we realized it was

not relevant to measure the human visual attention to-
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wards the robot when it was giving the route explana-

tion as humans look around at this moment). Unfor-

tunately, the practical conditions of the project deploy-

ments did not offer us the possibility to evaluate the QoI

Evaluator based on a study in the mall with real cus-

tomers. So, we demonstrated – after improvements of

the metrics equations such as the Distance-to-Goal one,

and manual tuning of their parameters based on the

experience in the mall – our finalized concept through

tests in our lab (step 5). This is shown in Sect. 6.3 where

we present and discuss, a comparison of the QoI com-

puted by the robot when it is dealing with an “ideal”

human, a “confused” human and a “non-compliant” hu-

man during a direction-giving task, performed in the

lab. Before that, we present in Sect. 6.1 and Sect. 6.2

how the QoI is evaluated at both task and action levels

for the direction-giving task.

(a) Initial positions of the human and the robot. The human
asked the robot direction to reach a place behind him.

(b) The robot and the human are in their final positions as
planned by the robot. The blue spheres are the computed
position for the human by the robot. The robot is pointing
at the place direction.

Fig. 7: Initial and final positions of a direction-giving

task in the lab context. On the left are pictures and on

the right screenshots of Rviz.

6.1 QoI Evaluation at the task level

The direction-giving task is triggered when a human

asks for a location. In order to guide, the robot will

choose and then point and give an explanation to reach

the desired location. Specifically, it first computes two

positions: one for itself and one for the human. These

planned positions, once reached, will allow the human

to properly see what the robot will be pointing [46].

Then, the robot navigates to its planned position and

waits for the human to move in front. Since the hu-

man may not reach exactly the position expected by the

planner, the robot checks again the visibility by the hu-

man after she/he has moved of the landmark it wants to

point. In case the visibility is too low, the robot verbally

asks them to adjust their position (i.e., “come closer”,

“move back”). Fig. 7 illustrates the initial and final po-

sitions of both agents, in the lab context. Finally, it pro-

vides verbal explanation about how to reach their des-

tination, in accordance with protocols identified thanks

to a human-human guidance study conducted in the

very same environment [5].

This task can be represented as a succession of sub-

tasks, as shown in Fig. 8. This figure also exhibits the

incremental refinement of the task into a sequence of

HR interactive actions which are described in Sect. 6.2.

In the context of the direction-giving, we have se-

lected two metrics to evaluate the QoI at the task level:

a metric defined in the Sect. 5, the Deviation from stan-

dard duration and, the aggregation over time of the ac-

tions QoIs. Following the process of Fig. 2, we measure

the QoI of the Taski = direction-giving task, based on

the QoI of all task actions and Task metric1 = Devia-

tion from standard duration.

The Deviation from standard duration is used to

measure the QoI at the task level as the task is a se-

quence of subtasks. Indeed, if the subtask lasts longer

than expected, the QoI should decrease. Then, as needed

for the metric computation we have determined the val-

ues of the soft deadlines SDi for each subtask ai, i ∈
[0, 4], using the empirical data we gathered as explained

in the introduction of the Sect. 6. Specifically, we have

computed the average time execution of each subtask,

after removing the cases for which the execution of the

subtask was annotated as not smooth. These soft dead-

lines are presented in table 2. Finally, we chose Vi = 0.5

for all the subtasks.

The task QoI is also dependent on the actions QoI

values (their computation is described in Sect. 6.2). In-

deed, the actions QoIs should be reflected on the task

QoI as, if a majority of the actions have a low QoI, the

task QoI cannot remain high. That is why, besides the

Deviation from standard duration, we take into account
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Fig. 8: The representation of the direction-giving task as a hierarchical task network with task, substasks and

actions levels. All the horizontal arrows are sequential links and the rest are decomposition ones.

Subtasks soft deadline (s)
Target refinement process 30
Ensuring Correct HR Placement 30
Ensuring target seen 20
Direction explanation and pointing 30
Ensuring Direction Seen 20

Table 2: Soft deadlines SDi for each subtask of the

direction-giving task

the average of the action QoIs of the actions already ex-

ecuted or still running.

Then, the task QoI is computed using Equation (1)

presented in Sect. 4. After various trials we have em-

pirically chosen the weights Wi for each metric Mi, i ∈
[0, 1]. The final equation to compute the task QoI is:

QoIdir−giv task(t) =
Φdir−giv task(t) + 3 ∗QoIactions

4

6.2 QoI Evaluation at the action level

As mentioned earlier, each subtask of the direction-

giving task can be decomposed into actions. These ac-

tions involve several turn-taking steps, the robot ask-

ing complementary information, informing the human

or expecting an action or reaction from them. We need

to measure the QoI during the execution of each action.

To do so, we have chosen one or more metrics for each

action.

For each action of the following list, we explain which

metrics M of Table 3 we have used and scaling func-

tions of Appendix A and then, how we compute the

action QoI.

(a) Robot-Human information sharing: The robot speaks

to the human, shares information such as the route

direction and announces the next steps of the plan.

The robot expects that they are paying attention

to it. Therefore, we use the Fulfilling robot expecta-

tions about social interaction MExp SI based on the

attention ratio. Two parameters need to be defined

for the scaling function, the bounds b1 and b2. As

the minimum value for the metric, a ratio, is 0 and

the maximum value is 1, then b1 = 0 and b2 = 1.

The QoI of the action is computed with this only

metric.

(b) Human-Robot Q/A process: The robot asks a ques-

tion to the human. As for the previous action, the

robot expects the human to pay attention to it so

we compute the QoI with MExp SI . It also expects

the human to give an appropriate answer. If it does

not happen, it will ask the human to repeat, speci-

fying that the answer has not been understood. We

have limited the possible number of attempts to 3.

After 3 attempts, the robot ends the task, as it can-

not carry on with the task without an answer. So,

we use Human contribution to the goal MH contrib,

the number of times the robot repeats. Because the

maximal number of repetitions is 3, we set for the

scaling function b1 = 3 and b2 = 0.

The QoI is computed with the two metrics: Fulfill-

ing robot expectations about social interaction and

Human contribution to the goal. The trials showed

that the action QoI results were satisfying with the

weights Wi = 1, i ∈ [0, 1] as applying the Equa-

tion (1).

(c) Ensuring that Human moves aside: This action is

used if, for pointing, the robot decides to place it-

self in a position which is very close to where the

human is currently standing. In this case, the robot

asks the human to step aside to the right or left, de-

pending on the human’s future position. Then, we

want to measure the progress of the human going

further from the planned robot position. In order

to do this, we use the Distance-to-Goal MDtG but

with the condition of the ∆DtG equation adapted,
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Metric id Metric
name

Metric equation – with Equations of Section 5 Scaled metric – with functions of Appendix A

MH contrib Human
contribu-
tion to the
goal

nb R repet n1(nb R repet) = 2 ∗
nb R repet− 3

−3
− 1

MExp SI Fulfilling
robot ex-
pectations
about
social
interaction

Ar =
durationisAttentiveTo(robot)=true

durationrobot speaks
n1(Ar) = 2 ∗Ar − 1

MDtG Distance-
to-Goal


∆DtG(t = 0) = 0
∆DtG(t) = max(0,∆DtG(t− 1)− 1)

if path length(t) < path length(t− 1)
∆DtG(t) = ∆DtG(t− 1) + 1, otherwise.

−s1(DtG(t)) = −1 + 2 exp

(
− ln (2)

(
DtG(t)

5

)1.5
)

MTtG Time-To-
Goal

∆TtG(t) = max(0, e(t) + TtG(t)− TtG(T0)) −s1(TtG(t)) = −1 + 2 exp

(
− ln (2)

(
TtG(t)

5

)1.5
)

Table 3: Metrics used in the implementation presented in Section 6.

being if path length(t) > path length(t−1) instead

of if path length(t) < path length(t − 1). We scale

the metric with −s1, the additive inverse of the scal-

ing function and not directly s1 as the closer to 0

∆DtG is, the better it is in terms of goal comple-

tion. From trials, we set −s1 parameters values with

th = 5 and k = 1.5.

If the human does not move or does not go far

enough from the robot position, the robot will ask

again with a limit of 3 trials (if the robot cannot

move, it will carry on the task from their current

positions). So, we use MH contrib as for the previous

action.

(d) Human-aware robot navigation: The robot has to

move from its initial position to its computed one. It
navigates while respecting social constraints and its

path may change as it adapts according to what the

human is doing. At execution time, to measure the

robot progress towards its goal, we use the Time-

to-goal MTtG, with the same scaling function than

MDtG. The QoI of the action is computed with this

only metric.

(e) Ensuring correct human placement for verbal inter-

action: After it has moved, the robot asks the hu-

man to come in front of it. If the human is not per-

ceived after a few seconds, the robot will ask again

and so on in a maximum of 3 trials. If after these

3 times the human is still not perceived, the robot

ends the task.

The QoI of this action is computed with MH contrib

– we do not use MExp SI as the human is not in the

field of view when the robot is calling them.

(f) Ensuring correct human placement for route expla-

nation: Once the human is in the robot field of

view after the HR motion, they may not be at the

right place to properly see what the robot has to

point at. In this case, the robot will ask the human

to move forward or backward according to what it

has computed about the human perspective (e.g.

this is to avoid that an object occludes the view

for the human). Then, we want to measure the hu-

man progress towards the position the robot has

computed for them. In order to do this, we use the

Distance-to-Goal MDtG.

The robot stops giving instructions if it computes

that the position of the human allows them to see

the target, or after 3 trials, so we use MH contrib.

After 3 trials, if the human cannot see the target,

still, the robot will carry on the task taking this into

account.

Mall elements Mockup mall Real mall

Shops 19 140
Doors, stairs, elevators 10 50

Corridors 11 41
Levels 2 2

Table 4: Number of elements described in the mockup

and real malls (geometric, topologic and semantic mod-

els in Fig. 4).

6.3 A first proof of concept

This section reports on an effective implementation of

the approach as an illustrative proof of concept. We
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(a) Evolution over time of the measured QoI for the ’ideal’ human. Both action and task QoIs remain at 1 as the task is
proceeding smoothly.

(b) Evolution over time of the measured QoI for the “confused” human. They took time to answer the first robot question and
to move forward but the task QoI does not drop too much because the robot was able to give the route explanation without
any issue even though the human was not very attentive.

(c) Evolution over time of the measured QoI for the non-compliant human. Several times the human did not give the expected
answer to the robot during the target refinement process. Then, they blocked the robot path. After that, the robot had to ask
twice the human to come in front of it. Finally, the robot repeated the route direction three times but still the human kept
saying that they did not understand. Therefore, the task QoI decreases all along the task.

Fig. 9: Evolution over time of the measured QoI for the route guidance task with three different human behaviors.

The QoI for the task is drawn in blue, and the QoI for the actions is drawn in orange.
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Action QoI formula (metric aggregation)

Robot-Human informa-
tion sharing

MExp SI(t)

Human-Robot Q/A pro-
cess

MExp SI(t) +MH contrib(t)

2

Ensuring that Human
moves aside

MDtG(t) +MH contrib(t)

2

Human-aware robot nav-
igation

MTtG(t)

Ensuring correct human
placement for verbal in-
teraction

MH contrib(t)

Ensuring correct human
placement for route ex-
planation

MDtG(t) +MH contrib(t)

2

Table 5: QoI computation for each action as an aggre-

gation of metrics

show the ability of the robot to conduct an interactive

task, to assess in real-time the QoI and to track its

evolution during three direction-giving task executions

where the same human displayed a different way of be-

having. In the three cases, the task was conducted until

its end, in our lab where we reproduces the mall envi-

ronment (Fig. 4b, Table 4). The computed QoI for each

way is presented in Fig. 9. The three different ways of

behaving are described in the following list:

– A human executed perfectly the expected actions

and was not disturbing the robot when it navigated

(i.e. the “ideal” human from the robot point of view).

– A bit “confused” human tried to contribute to the

task success but did not execute everything well.

The human was, from time to time, not very atten-

tive, as looking around. Also, they gave an answer

to the first question that the robot did not under-

stand, and then they took their time before answer-

ing again. Then, they prevented a bit the robot to

move as it had planned and once the robot reached

its position, they took time to come as close as the

robot wanted.

– A human wanted to disturb the robot during the

task. They gave three incomprehensible answers to

the first question, blocked multiple times the robot

in its move, waited for the robot to ask twice to

come in front of it and finally asked the robot to

point and explain the route three times.

(a) Human who
put themselves on
the robot path,
preventing the
robot to navigate
towards its goal
position

(b) Human who
put themselves on
the robot path af-
ter it computed a
new path to reach
its goal position

(c) Human finally
getting outside of
the robot path, al-
lowing it to reach
its goal position

Fig. 10: A human disturbing the robot during Human-

aware navigation, preventing it to reach its goal position

as planned.

Now, if we take a look at the QoI outputs of Fig. 9,

we can see that their three shapes are very different. In

Fig. 9a, we can observe that the task and actions QoIs

remain with the highest value 1 all along. A graph as

this one allows us to infer that everything went very

smoothly during this direction-giving task. Then, we

can guess that it corresponds to the execution per-

formed with the ’ideal’ human.

In Fig. 9b, we note that each subtask was executed

in respect of the standard duration. If the QoI of Target

refinement process drops it is because of the action QoI

as the QoI of the H-R Q/A process drops because the

robot had to repeat the question and the human was not

looking at it. From 21 seconds to 40 seconds, we can see

the task QoI getting higher as the QoIs of Human-aware

robot navigation, Ensuring correct human placement for

verbal interaction and the beginning of Ensuring cor-

rect human placement for route explanation are quite

high. Next, seeing the shape of the computed QoI of

the action Ensuring human placement for route expla-

nation, we can infer that the human was not moving

as the robot wanted. Indeed, they took 10 seconds to

make one step forward (they had 1 meter to cross). Be-

cause of that, the task QoI started to decrease again.

In the final part of the task, the human was time to

time attentive to the robot answered quickly to the last

question, so the task QoI remained rather equal with

its final value being 0.34 which is above 0 so meaning

a correct interaction.

Finally, we can see in Fig. 9c that the final QoI of the

task is −0.44 which allows us to infer that the task was

not executed smoothly. And indeed, when we look at

the shape of the task QoI, it only went down (or almost)

all along the task. It is explained by some subtasks that

took more time than they should have and also by some

actions QoIs that are very low, especially the one of
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Human-aware robot navigation. At the beginning of the

robot navigation, the estimated time to goal returned

by the planner was 6 seconds but the robot actually

took 50 seconds to reach its goal then the action QoI

computed with = MTtG(t) was −1 for 40 seconds. And

indeed, all along its navigation, the human was blocking

the robot until they got tired of this game, as visible

on Fig. 10.

In this example, we showed the QoI evaluation pro-

cess integrated to a complete robotic architecture. The

robot was able to assess the QoI in real-time while in-

teracting with a human.

7 Discussion

While a number of evaluation methods has been pro-

posed to evaluate a human-robot interaction from the

human perspective and often for analysis after perfor-

mance, our choice to let the robot evaluate, on its own

and in real-time the quality of its interaction with a hu-

man is quite new and original. To endow the robot with

such an ability, we designed, implemented and tested a

number of metrics and a method to aggregate them.

The work of Steinfeld et al. [42] was very helpful to

design a first set of metrics and as an inspiration about

what could be used. From there, we have elaborated and

proposed a set of metrics which are meant to estimate

of the quality of an ongoing interaction and not once it

is over. The work of Hoffman [16] regarding the fluency

definition and how to measure it was also inspiring. In

a way, we extended his work by giving a meaning to the

fluency measurement on the robot side, and in real-time

– while their work applies to offline evaluation of shared

workspace tasks. In Sect. 2, we mentioned systems mea-

suring human affective states in real-time such as the

framework developed by Tanevaska et al [44]. Although

we think such metric could be an interesting additional

information to assess if an interaction is going well, we

believe that these measurements do not offer an accu-

racy that would lead to objective measurement of the

quality of interaction, thus, we did not introduce them

in our set for now. However, this could be done since our

framework is designed to be open to new metrics. As

for contributions, like the one proposed by Anzalone et

al. [1], based on metrics such as gaze, head pose, body

pose and response times to measure real-time engage-

ment, we took them into account to some extent. How-

ever, the measure of the engagement that we propose

should be refined depending on the inputs available on-

line to the robot . Moreover, we will investigate how

their work could be used in a more general way (e.g.

depending on the action that should be done and its

context, human head pose and body posture could be

a good indicator of effectiveness and not only engage-

ment).

Our intention, when we developed the idea of the

Quality of Interaction Evaluation, was to use such com-

putation to feed the decision-making process of the robot

and this is what we intend to do in the future. However,

such framework can also be used to compare interac-

tions between different humans and/or robots, eventu-

ally as a benchmark similarly to the work of Sanchez-

Matilla [37] or as a way for developers to detect repeti-

tive interaction issues with an unsupervised robot in a

real-world environment.

As a proof-of-concept, we implemented and deployed

a first version of a QoI Evaluator assessing task and

actions QoIs. We tested it on an interactive robot dedi-

cated to provide route guidance to customers in a large

mall. The approach gave satisfactory results. It showed

the potential ability of a robot to detect momentary

decreases of the Quality of Interaction and also more

serious degradation of it which may need drastic change

of behavior for the robot. This is only a first step and

it should be validated with a study where we will ask

humans to evaluate the quality of their interaction with

the robot in a similar manner. The goal will be to anal-

yse and compare this to the evaluation of the interac-

tion quality estimated by our robot and, based on that,

investigate potential improvements.

Finally, we do not claim to have a perfect measure of

the Quality of Interaction. However, although the con-

cept of Quality of Interaction is quite abstract, Movel-

lan et al. showed that when it is measured by human

observers, the inter-observer reliability of the concept

is quite high. Therefore, we believe we can endow the

robot with an effective and pertinent ability aiming at

measuring the quality of an interaction. We are aware

that the set of metrics we proposed to do so is not

exhaustive but the framework is designed to be easily

extended with new metrics.

8 Conclusion and future work

We claim that the robot could enhance its decision-

making process by estimating if an interaction is go-

ing well or not. To endow it with this ability, we have

proposed an original framework where the Quality of

Interaction is measured from the robot point of view

in real-time during its collaborative activities. We pro-

posed in this paper a set of metrics and a method to

aggregate them.

The evaluation of the QoI relies on the model of

interaction, considered at three levels: the interaction

session level, the tasks level and the actions level. In
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future work, this granularity will allow the robot to

know precisely on what level it needs to act when a low

QoI is computed. Indeed, for instance, a task can be

of poor quality while the session can be considered as

going well.

Therefore, we intend to exploit this QoI evaluation

process in order to allow the robot to “close the loop”

and smoothly adapt its decisions and execution modal-

ities and also to detect if the human partner is trying

to “pull the robot strings”. Then, our next step will be

to refine our set of metrics and to expand it. For exam-

ple, we plan to investigate the possibility to elaborate

plan-based algorithms in order to track the evolution

of such the Human contribution to the goal over time.

Finally, we will test and improve the metrics dedicated

to the interaction session level.

A Appendix: Scaling functions for the metrics

As the metrics are aggregated to compute the QoI, their val-
ues need to be on the same scale. In order to do this, we use
scaling functions rescaling metrics into a range of [−1, 1], as
the QoI bounds. As all the metrics does not have the same
properties, they have to be scaled by using different func-
tions. The two properties to check to choose which function
to apply to which metric are the following ones:

– does the metric already have a bounded value ?
– what value of the metric should make the QoI decrease,

increase or remain the same ?

Therefore, we designed three functions to be used with met-
rics having bounded values and three functions for metrics
that do not have upper bounds. Then, among these two sets
of functions, it is possible to choose the one to use accord-
ing to the positive, neutral or negative impact a value should
have on the QoI.

A.1 Scaling of bounded metrics: Min-Max

Normalization

We defined three min-max normalization functions, illustrated
in Fig. 11. They were designed to be used for metrics whose
values belong to a bounded set, i.e., metrics for which the
minimum and maximum values are known. The first func-
tion is to apply in cases for which a measure approaching the
bound value b1 has a negative impact on the quality evalua-
tion whereas a measure approaching b2 has a positive one. It
allows to scale a measure x between -1 and 1:

n1(x) = 2 ∗
x− b1
b2 − b1

− 1 (7)

The second function is intended to be applied in cases for
which a measure approaching the bound value b1 has a neu-
tral impact on the quality evaluation whereas a measure ap-
proaching b2 has a positive one. It allows to scale a measure
x between 0 and 1:

n2(x) =
x− b1
b2 − b1

(8)

Finally, the last function is to apply in cases for which a mea-
sure approaching the bound value b1 has an negative impact
on the quality evaluation whereas a measure approaching b2
has a neutral one. It allows to scale a measure x between -1
and 0:

n3(x) =
x− b2
b2 − b1

(9)

0

1

b2b1

0

1

b2b1

0

-1

b2b1

-1

n n

n

x

x

x

(a) (b) (c)

Fig. 11: (a), (b) and (c) respectively represent the min-

max normalization functions (7), (8) and (9)

A.2 Scaling of unbounded metrics: Sigmoid

Normalization

We defined three sigmoid-like functions to scale and squash
values of metrics without an upper bound. As for the min-
max normalization, there is one function to scale the metrics
values between -1 and 1, another one to scale between 0 and
1 and the last one to scale between -1 and 0.

The first function allows to scale between -1 and 1 the
values of a metric, for a metric whose values are between 0
and +∞ (e.g. a duration whose final value is unknown during
the execution). The function is defined as:

s1(x) = 1− 2 exp

(
− ln (2)

( x
th

)k)
, x > 0 (10)

with s1(x) ∈ [−1, 1], th the value of the sigmoid’s midpoint
(i.e., s1(th) = 0) and, k setting the shape of the function
curve. k and th values are set off-line by the designer and
they allow to define the shape of the metric scaling.

The second function is designed for metric which cannot
have a negative impact on the QoI as it scales the value be-
tween 0 and 1 (and with x ∈ [0,+∞] as well):

s2(x) = 1− exp

(
− ln (2)

( x
th

)k)
, x > 0 (11)

with s2(x) ∈ [0, 1], th the value of the sigmoid’s midpoint (i.e.,
s2(th) = 0.5) and, k setting the shape of the function curve.

The third function is designed for metric which cannot
have a positive impact on the QoI as it scales the value be-
tween -1 and 0 (and with x ∈ [0,+∞] as well):

s3(x) = −1 + exp

(
− ln (2)

( x
th

)k)
, x > 0 (12)

with s3(x) ∈ [−1, 0], th the value of the sigmoid’s midpoint
(i.e., s3(th) = −0.5) and, k setting the shape of the function
curve.

The functions s1(x) and s2(x) are illustrated in Fig. 12
with four examples.
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(d) Plot of s2(x) with
th = 0.5 and k = 2

Fig. 12: Plots of the sigmoid-like functions s1(x) and

s2(x) with different parameters values
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6. Bensch S, Jevtić A, Hellström T (2017) On interac-
tion quality in human-robot interaction. In: Proceedings
of the 9th International Conference on Agents and Ar-
tificial Intelligence (ICAART), pp pp. 182–189, DOI
10.5220/0006191601820189

7. Bethel CL, Murphy RR (2010) Review of human stud-
ies methods in hri and recommendations. International
Journal of Social Robotics vol. 2(4):pp. 347–359, DOI
10.1007/s12369-010-0064-9
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