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Towards robots able to measure in real-time the Quality
of Interaction in HRI contexts

Amandine Mayima∗ · Aurélie Clodic · Rachid Alami

Abstract When humans interact with each other, col-

laborating on a shared activity or chatting, they are

able to tell whether their interaction is going well or

not and if they observe that its quality is deteriorating,

they can adapt their behavior or invite their partner to

act in order to improve it. A robot endowed with the

ability to evaluate the quality of its interaction with

its human partners, will have the opportunity to per-

form better since it will be better informed for its de-

cision making processes. We propose metrics to be in-

tegrated in a cognitive and collaborative robot in order

to measure in real-time the quality of an interaction

(QoI). This permanent evaluation process has been im-

plemented and tested within the high-level controller

of an entertainment robot. A first demonstration shows

the ability of the scheme to compute QoI for a guiding

task and exhibit significant differences between its per-

formance in interaction with a fully compliant human,

a human confused by the course of action and a non-

cooperative one. This paper is an extension and further

refinement of work originally reported in [28].
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1 Introduction

Robots dedicated to Human-Robot interactions are not

just machines receiving commands and executing them.

They should be decisional agents with high-level goals,

taking decisions (potentially taking into account so-

cial norms), and acting and reacting to not only their

actions but those of other agents. Cognitive and in-

teractive robots are becoming more and more capable

thanks to the use of human-aware models and algo-

rithms [22, 39], with roboticists endowing them with the

ability to execute their share of the work while adapting

to contingencies, particularly those caused by the hu-

mans behaviours and decisions [18, 2, 27]. The decision-

making process is based on a range of knowledge about

the environment, the interaction, the context... Never-

theless, curiously and interestingly, very little has been

done to allow the robot, while performing its collabo-

rative or assistive activity, to permanently evaluate if

things are going well or not, as humans do. We name

this ability “the measure of the Quality of Interaction

from the robot point of view”. We believe that enrich-

ing the robot knowledge with a good estimation about

how the interaction is going, could enhance its decision-

making process and thus, its social behaviour.

For example, if the robot detects that the QoI starts

to drop, it can take a decision based on this information

and act to try to improve the interaction quality (e.g. it

can choose to change some modalities such as the lan-

guage in which it communicates with the human, the

volume of its speakers, or the parameters of its plan-

ners). On the contrary, when the QoI is high, the robot

can decide to just continue the interaction as planned.

Then, endowed with a QoI Evaluator, a robot becomes

more adaptive and performs better. Also, a very poor

performance all along a task could allow the robot to

assess that the human is not really engaged in the in-
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teraction, or even is trying to play the robot. In such

situation, the robot might perhaps better disengage.

Finally, from a methodological point of view, a robot

deployed in the wild able to assess interactions, has an

asset compared to others as it could reduce the invest-

ment in material and human resources to perform user

studies. And, a developer might use the logs to improve

their design.

In this paper, we only focus on the Quality of In-

teraction evaluation process and not on how to use its

result for decision making. Therefore, we present in the

sequel the methods and tools we developed, allowing

the robot to evaluate in real-time the quality of the

human-robot collaborative activity it is involved in. It

is based on a set of metrics we have defined, focused on

two concepts: the measure of the human engagement

and the measure of the effectiveness of collaborative

tasks performance. However, this is by no means ex-

haustive, and other metrics and parameters could (and

should) be added later. Our work can be seen as a tool-

box among which it is possible to pick the desired met-

rics according to tasks or contexts. We propose a way to

aggregate these metrics, producing the QoI. The evalu-

ation of the QoI is performed at three different levels of

abstraction: the interaction session level, the task level

and the action level. In further work, this ability could

provide additional information to the robot and open

the possibility for reconsidering its behaviour in case it

estimates that the quality of the interaction is degrad-

ing (e.g. changing its plan or the way it is achieving it,

informing the human or requesting a change in their

behaviour, or even deciding to disengage).

The paper is organized as follows. In the next sec-

tion, we briefly discuss related work and the main chal-

lenges. In section 3 we present the representation of

human-robot collaborative activity which we use and

its hierarchical decomposition. In sections 4 and 5, we

introduce our concept and proposed set of metrics to

evaluate the Quality of Interaction. Finally, in section 6,

we describe a first implementation and then conclude

and discuss future developments.

2 Related work

Inspired from the evaluation methods used in Human-

Computer Interactions and User Experience fields, the

field of Human-Robot Interaction (HRI) has elaborated

its own methods to evaluate robotic systems when they

interact with humans. There are various ways to evalu-

ate a human-robot interaction from the human perspec-

tive. Bethel et al. [7] divided them into five categories:

(1) self-assessments, (2) interviews, (3) behavioral mea-

sures, (4) psychophysiology measures, and (5) task per-

formance metrics. They reviewed metrics used for each

of the categories. They can be grouped into two types:

(1) and (2) are subjective metrics and, (3), (4) and (5)

are objective ones. Since our aim is to have a robot

able to evaluate interactions by itself, human subjective

metrics are not usable. Then we focused on the study

of existing objective metrics meant to measure how the

interaction goes. Steinfeld et al. [36] proposed a set of

metrics to be used in a wide range of tasks whose goal

is to assess the system performance by measuring the

task effectiveness (i.e., how well the task is completed)

and the task efficiency (i.e., the time required to com-

plete a task). Their work is very thorough and inspir-

ing but does not target the evaluation of the quality

of an on-going interaction. Hoffman [17] defined a type

of quality of interaction, the fluency, pointing out that

the notion is not well defined and somewhat vague but

can still be assessed and recognized when compared to

non-fluent scenario. To measure it, they propose a list

of objective metrics, only based on duration measures,

designed to be quite general: robot idle time, human

idle time, concurrent activity (i.e., active time of both

the robot and the human), functional delay (i.e., time

difference between the end of one agent’s task and the

beginning of the other agent’s task). It is an interest-

ing way to measure the fluency and thus the quality

of the human-robot interaction but it only applies to

shared workspace tasks and is dedicated to an offline

evaluation.

Systems targeting real-time measurements during

human-robot interactions, with the purpose to “close

the loop” and use the information for decision-making,
have been developed. Tanevska et al. [38] proposed a

framework allowing the robot to perceive with face de-

tection and evaluate in real-time the affective state (i.e.

anger, happiness, sadness, surprise, etc) and the en-

gagement state (i.e. whether the person is interested

or bored in the interaction) of the people it is interact-

ing with. However, the human affective state measure

might not be enough to assess an interaction or a task

as an affective state is actually a facial expression which

can be misinterpreted (e.g. a smile can be a sign of hap-

piness or embarrassment) and which might be not visi-

ble when one of the agent perform an action and looks

somewhere else. Moreover, as the notion of engagement

is very task specific, it needs further exploration. Real-

time engagement measurement has also been investi-

gated by Anzalone et al. [1] using metrics such as gaze,

head pose, body pose and response times. Their work

is interesting and could be an element among others

to assess the interaction quality but, it is dedicated to

face-to-face interactions.
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Cameras are not the only sensor used to assess in-

teractions on-the-fly, some use human physiological re-

sponses such as skin conductance and temperature, heart

or brain signals. Itoh et al. [20], Bekele et al. [4] or Kulic

et al. [24] use them to detect human affective states such

as anxiety or liking in real-time. However, physiological

measures often imply a lot of sensors which can be in-

vasive for the human. And, as explained by Kulic and

Croft [23], physiological signals may be difficult to in-

terpret and there is a large variability in physiological

response from person to person. Thus, it can be diffi-

cult for a controller to determine which emotional state

the subject is in, or whether the response was caused

by an action of the system, or by an external stimulus.

Moreover, we claim that the human affective state only

is not enough to assess the quality of an interaction,

a human could be satisfied of an interaction or a task

result even though they was stressed during it.

Finally, Bensch et al. [6] proposed a formal approach

to compute interaction quality in real-time. Their work

focused on how to combine metrics together which is in

the same line as ours. However, they do not provide im-

plementation examples, remaining at an abstract level.

In summary, while a substantial number of studies

have been devoted to the evaluation of collaborative in-

teractions for analysis purposes once the interaction is

over, there is a lack of methods allowing the robot to

evaluate in real-time the quality of the interaction based

on multiple metrics and not only anxiety or engage-

ment. We claim that such an ability is very important

and should strongly influence the situation assessment

as well as the decisional abilities of interactive and col-

laborative robots.

3 Representation of a H-R collaborative

activity

It is possible to describe and decompose a Human-

Robot collaborative activity in various ways. For all

the following definitions, we place ourselves in the con-

text of one-to-one human-robot interactions, however

we believe that the scheme can be extended to multi-

human multi-robot contexts. We draw our inspiration

from the literature of sociology and robotics to define

a model of interaction with three layered levels: in-

teraction session, tasks and actions; as illustrated in

Fig. 1. We chose to represent collaborative tasks and

their decomposition using the Hierarchical Task Net-

work (HTN) [14] representation which is often used in

cognitive robotics [19, 25] and because it allows to deal

with goal-based and situation-based activities at dif-

ferent levels of hierarchy such as task, subtasks and

actions and consequently to consider different level of

granularity. In the example of a task with an overall

bad QoI, it would be interesting to know that in fact

it is only a particular action or subtask ruining it. In-

deed, the other parts of the task can be ok, or on the

opposite, a particular subtask or action can have per-

formed very well among the others. We need and use

this granularity also on three levels defined (interaction

session, tasks and actions) to finely evaluate the Qual-

ity of Interaction, as a task can be of poor quality but

the session is globally going well.

Body of the interactionGreetings Goodbyes

Collaborative task 1 Collaborative task n Conversation

Interaction
Session

Level

Tasks
Level

Actions
Level Action 1 Action n

Fig. 1: The hierarchical structure of an interaction ses-

sion. The highest level is the interaction session. The

second level is composed of the tasks. They are included

in the body of interaction of the interaction session and,

two types of tasks are considered and may overlap, col-

laborative and conversational tasks. With this repre-

sentation, a task can be recursively refined as subtasks

until reaching the last level, the actions level, which is

considered as atomic. Subtasks are not considered as a

“real” level of the interaction session, specially to eval-

uate the QoI, as it may exist or not according to the

task.

3.1 Representation of a H-R Interaction Session

We define an interaction session as the period dur-

ing which the robot and a human interact together and

are engaged. It is divided in three parts, following the

structure proposed by Sidnell and Tanya [33] and the

engagement model of Sidner and Lee [35]: the greetings,

the body of the interaction and the goodbyes. First,

the greetings corresponds to the period where an agent

starts an interaction by initiating it with another agent.

The interaction session lasts as long as the interactants

are maintaining the interaction through conversation

and collaborative tasks performance which corresponds

to the body of interaction. Finally it ends when at least

one of the interactants is disengaged, either by abruptly

ending the interaction or by closing the interaction as

described by Schegloff and Sacks [34], it corresponds to

the “the goodbyes”. For example, for an entertainment
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robot in a mall, an interaction session starts when a

person signals to the robot that they want to engaged,

by greeting it or by approaching it and looking at it.

The body of interaction is composed of conversation

and eventually guiding tasks and, the session lasts un-

til the person says goodbye or leaves. This is the nom-

inal case and, the duty of the robot is to contribute to

maintain the session alive until the human decide to

close it. However, in some (extreme) cases, the robot

might decide to close the interaction by itself.

Social interactions and collaborative tasks involve

engagement. There is no unique definition of what it

means to be engaged. We chose one that is frequently

used and has been proposed by Sidner and Lee [35]:

“Engagement is the process by which two (or more)

participants establish, maintain and end their perceived

connection during interactions they jointly undertake”.

The robot must be able to exhibit its engagement and

disengagement and also to assess them with respect

to its human partner. We defined three states for the

body of interaction, corresponding to what is happen-

ing during the latter: conversation (i.e. a social chit-

chat or a goal negotiation, without any physical action

performed except communicative gestures), collabora-

tive task (i.e. both agents executing actions in order to

achieve a shared goal) or idle phases (i.e. the agents

are not chatting or performing a collaborative task to-

gether but remain engaged in the interaction session, it

happens in-between active interaction phases). For each

of these three states, the way to exhibit the engage-

ment varies (e.g. in a conversation, an agent looking at

their partner displays their engagement; during a task,

an agent correctly performing their action is a way to

demonstrate their engagement). That is why there is a

need to define what behavior the robot has to exhibit

in each state and what behavior it should expect from

the human in each state, as these behaviors are usually

very specific (e.g. in a guiding task, the robot keeps its

head oriented toward its partner’s face to demonstrate

its engagement in conversation and idle contexts and

when it gives a direction it expects the human to look

at the direction it is showing; in a stack task, when the

robot gives an instruction it expects the human to take

a given cube).

3.2 Collaborative Tasks, Substasks and Actions

Tasks compose the body of the interaction of an inter-

action session as shown in Fig. 1. We distinguish con-

versation (i.e. agents engage in dialogue to exchange

ideas, to ask questions, and to resolve differences) from

collaborative tasks (i.e. agents work as partners, collab-

orating to perform tasks and to achieve common goals).

We will not develop more on conversation since it is not

the main focus of this paper, assessing the QoI of social

dialog being another work.

In collaborative tasks, the robot and the human are

committed to achieve a goal together, involving joint

actions and shared plans [15]. When a human and a

robot perform a task together, as described by Bauer et

al. [3], we could say that the robot has the intent to help

the human, so the human’s intention becomes its own

intention. Then, they have the joint intention to reach a

common goal and, as shown by Michael and Salice [29],

they have a commitment to the joint activity, leading to

perform joint actions. Therefore, during its evaluation

and decision-making processes, the robot has to take

into account that the human and itself should remain

engaged all along an interaction session for the tasks to

be successful and both have to manage and contribute

to maintain expectations about what the other is doing.

The elements composing a task are: a goal, a plan

and involved agents. A plan is needed to realize a goal.

There are many ways to generate a plan. But no mat-

ter the way (using a planner to anticipate execution

or relying on a reactive planning scheme), a plan is a

sequence of subtasks which are sequences of actions

– subtasks are not considered as a “real” level of the

interaction session, specially to evaluate the QoI, as it

may exist or not according to the task.

Actions are the elementary items of tasks manip-

ulated by the high-level robot supervision controller.

They cannot be decomposed further by it (e.g. place-

ment and motion planning are achieved by a lower con-

trol system not described here). It is usual to describe

an action with its preconditions, its effects and, the

agents and entities implied in its execution (e.g. in plans

written in PDDL [13]). We add to this description the

notion of expected reactions (which can themselves be

actions) from the other agents once the action is exe-

cuted.

In our model, an agent (human or robot) is a con-

tributor to the task and has a mental state as described

by Devin et al. [9]. The mental state is a set of facts

representing, from the agent point of view, the current

world state, the state of the goal and the current task

state. Since we are interested here by the robot situ-

ation assessment and decisional processes, the mental

state of the human is built and managed by the robot

as an estimation of the beliefs of the human [31, 16, 37].

4 The Quality of Interaction (QoI)

We believe the real-time assessment of the Quality of

Interaction (QoI) with a human partner (i.e. what the
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Session QoI

Task1 QoI Taski	QoI Session
metric1

Action1 QoI Actionk QoI Task metric1

Session
metricj

Task metricl

Action metric1 Action metricm

Fig. 2: Representation of the QoI dependencies, with i

the number of performed tasks during the interaction

session, k the number of performed actions during the

task i, j the number of metrics to measure the inter-

action session QoI, l the number of metrics to measure

the task i QoI and m the number of metrics to measure

the action k QoI.

robot “thinks” about how the interaction is going) is a

new knowledge that could enhance the robot decision-

making process. We define the Quality of Interaction

as a measure that indicates how good is the interaction

during human-robot collaborative activities. It is com-

puted in real-time based on a set of metrics, at three

different levels: the interaction session level, the tasks

level and the actions level. The QoI of a given level is

computed from selected metrics but also from the QoIs

of the level below as shown in Fig. 2.

The QoI of each level is computed as a score be-

tween [(1) for a good quality] and [(−1) for a poor one].
Metrics used to compute the QoI are divided in three

categories:

– Mp ∈ [0, 1] if it can only have a positive effect on

the evaluation;

– Mn ∈ [−1, 0] if a metric can only have a negative

effect on the evaluation;

– M ∈ [−1, 1] if a metric can have a positive or a

negative effect.

Defined by the designer according to the needs and

context, a metric can belong to one category or another

depending on the target application. When needed, met-

rics values are scaled with the equations presented in

Appendix A.

The evaluation of the Quality of Interaction at the

level l ∈ {sessionf , taskj , actionk} (with f, j and k re-

spectively the identifiers of a given interaction session,

task and action), QoIl, is computed with:

QoIl =

x∑
i=0

Wi ∗Mi

x∑
i=0

Wi

+A∗

y∑
i=0

Wni ∗Mni +
z∑

i=0

Wpi ∗Mpi

y∑
i=0

Wni +
z∑

i=0

Wpi

(1)

with Wi,Wpi,Wni respectively the corresponding

designer-set weights of Mi,Mpi,Mni, A the designer-

set weight of the right part of the + sign and x, y, z

respectively the number of the metrics Mi,Mpi,Mni.

Equation 1 aggregates the values of the metrics cho-

sen to be indicators of the interaction level quality. As

all metrics do not have the same importance in the

measure of the QoI, each of them is weighted. Values

of these weights are empirically defined. There are two

parts in the equation, the left part of the + sign and

the right part. The left part of the + sign is a weighted

mean of the third category of metrics, the M metrics.

The right part is a weighted mean of the metrics seen

as bonus (i.e. Mp metrics) or penalty (i.e. Mn metrics).

This latter part is weighted with A – whose value is also

empirically1 defined – to be able to adjust its influence

on the left part. In such a way, if there are no Mn met-

rics to compensate for the Mp metrics, it is possible to

limit the positive influence of the Mp metrics on the M

metrics with A. It is the same if there are no Mp met-

rics, A can compensate the impact of the Mn metrics

on the M metrics. Even though M,Mp,Mn ∈ [−1, 1],

the final result of QoIl might be less than −1 or greater

than 1 because of the addition of the M with the Mn

and Mp. If it happens, QoIl minimal value is set to −1

and its maximal value is set to 1.

5 A set of metrics

In this section, we present a few measures to assess

the QoI of an interaction session in Sect. 5.1. Then, we

present metrics for the different levels based on engage-

ment in Sect. 5.2 and effectiveness estimations during

human-robot joint activities in Sect. 5.3. For example,

if the human is engaged and if tasks are performed ef-

fectively, the QoI will tend to be high and vice versa.

Both concepts are difficult to measure, so we do not ex-

actly measure them but we compute their trends from

the set of metrics presented in this section. This set is

not exhaustive and will be extended in future work but

it gave promising results as we show with our imple-

mentation in Sect. 6. All metrics are meant to be used

1 Values are empirically defined given intuition regarding
the importance of a given metrics for a given task and a set
of testing experiments
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for online evaluations of interactions. They are summa-

rized in Table 1.

5.1 Measures to assess the QoI at the interaction

session level

According to the context, the duration of an interaction

session can be an indicator of the human engagement.

Indeed, a human leaving only a few seconds after the

beginning of the interaction is probably less engaged

than a human staying with the robot several minutes.

Also depending on the context, the number of executed

tasks is a measure which can be considered as interest-

ing information with respect to the engagement of the

human, as well as the ratio of successful tasks. The more

the human executes successful tasks with the robot,

the higher the session QoI might be. Finally, it can be

valuable to take into account how the session has been

terminated in the evaluation of the quality of an inter-

action session. For instance, the fact that the human

leaves abruptly in the middle of a task, during an idle

time or a conversation without saying goodbye, or only

at an appropriate time saying farewell to the robot is

significant in terms of social interaction quality.

5.2 Metrics related to human engagement

Michael and al. [30] stated that commitments2 facili-

tates “the planning and coordination of joint actions

involving multiple agents. Moreover, commitment also

facilitates cooperation by making individuals willing to

contribute to joint actions to which they wouldn’t be

willing to contribute if they, and others, were not com-

mitted to doing so”. As it is an important element of

the joint action, we want to provide the robot with a

way to estimate the engagement of its partner during

an interaction.

Metrics allowing to state if an agent is engaged or

not in an interaction are often specific to the type of

interaction. For example, Fan et al. [10] implemented

their measure of the human engagement as a kind of

hysteresis: when the human gaze is on the robot, they

are considered as engaged and when the human gaze is

somewhere else during more than 3 consecutive seconds,

they are considered as not-engaged.

In the same vein, we think that the measure of the

engagement for a collaborative activity can be divided

2 In the robotic domain, it is the word “engagement” and
not “commitment” which is often used, unlike in the psycho-
logical and philosophical fields.

in 2 types of metrics, summed up in Table 1: the Hu-

man contribution to the goal and the Fulfilling robot

expectations about social interaction.

We define in this section examples of metrics of each

types which can be used to estimate the level of engage-

ment of the human partner.

5.2.1 Human contribution to the goal

A good and very promising indicator could be the abil-

ity from the robot to evaluate how well the human ac-

tions help to the goal progression. We call this indica-

tor Human contribution to the goal. To the best of our

knowledge, there is no general method to estimate it.

As a first version of the Human contribution to the

goal, we chose to measure it through the number of

times the robot has to repeat an instruction or a ques-

tion before the human performs correctly, when it ex-

pects the human to answer or to perform the action.

As, if it needs to repeat, it means that the human is

not correctly contributing to the goal, intentionally or

not, as they are not performing their part of the HR

action as they should. The more the robot needs to re-

peat because of the human bad performance, the less

they are contributing to the goal, the more the action

QoI should decrease.

5.2.2 Fulfilling robot expectations about social

interaction

During a social interaction, agents are expected to be-

have in a certain way and so the robot has expectations

about the human. Then, the robot can monitor the hu-

man behavior to check if they are acting as they are

expected to. For example, most of the time, when the

robot speaks to the human, it will expect them to look

at it and so it can monitor if it is the case or not as im-

plemented by Fan et al. [10]. Quite similarly, Lemaignan

et al. [26] developed a way to measure if the human is

with the robot during their interaction, based on atten-

tion assessment, by computing if the human is looking

at the desired attentional target or not. This latter met-

ric will be integrated to our framework in future work.

As the works of Lemaignan et al. and Fan et al., we

estimate the Fulfilling robot expectations about social

interaction with the human head orientation, in the

context of our implementation described in Sect. 6. We

compute an attention ratio i.e., the time during which

the human is attentive to the robot (i.e. staying close

enough and looking at it) when it speaks compared to

the total time of the speech:

Ar =
durationisAttentiveTo(robot)=true

durationrobot speaks
(2)
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Metric names Measures Illustration Session Task Action

E
ff

ec
ti

v
en

es
s

P
ro

g
re

ss
to

w
a
rd

s
g
o
a
l

Distance-to-Goal Geometric distance x x

Time-to-Goal Time x x

Steps-to-Goal Number of executed ac-
tions/substasks

x

Deviation from standard
duration

Time x x

E
n

g
a
g
em

en
t Fulfilling robot expecta-

tions about social inter-
action

e.g. attention ratio, with-
me-ness,...

x x x

Human contribution to
the goal

e.g. number of repeated
instructions, number
of successful human
actions,...

x x

Table 1: The set of metrics presented in Section 5.

5.3 Metrics related to effectiveness

One can elaborate metrics to measure how well a task

or an action is achieved. As discussed by Olsen and

Goodrich [32], there are a variety of metrics such as

time-based metrics which reward the speed of perfor-

mance or the response times; error metrics which are

based on counting retrials, failures, or mistakes; cov-

erage metrics which measure to what extent a goal is

achieved, as well as other possible metrics. We use some

of them such as counting retrials, however these metrics

alone were not enough for our example task as we are

in a HRI context.

One can measure for different kinds of tasks, the

ratio of successful3 executions to the total number of

executions (e.g. R =
Succ

Exec
) or the deviation from the

initial plan (distance, cost, trajectory, etc).

We define four metrics, summed up in Table 1, al-

lowing to measure the current task and action effec-

tiveness. Three of them are means to measure how the

progress towards the goal of a task or an action varies.

Indeed, they are good indicators for the interaction

quality as, when executing a task or an action, if the

agents are not getting closer from the goal or even di-

verged from it, it means that something goes wrong.

There are three different metrics because the one to

use depends on the type of task or action. The fourth

3 Obviously, the success is context and task dependent and
should be defined according to the needs

metric allows to compare the current execution dura-

tion to the standard execution duration of the task or

action, based on durations measured during previous

executions.

5.3.1 Metrics to assess the progress towards the goal

We defined three different metrics to assess the progress

towards the goal. The first one allows to assess the

progress towards the goal of geometric-based actions.

The second estimates the progress by using the remain-

ing time to reach the goal. Finally, the last one measures

the number of remaining steps (actions or substasks)

before achieving the goal of a task.

Distance-to-Goal When an agent is performing a geometric-

based action such as a movement, observing if the agent

is getting closer to the target position over time pro-

vides a useful information about how well the action

is going. Therefore, we introduce the Distance-to-Goal

∆DtG metric:
∆DtG(t = 0) = 0

∆DtG(t) = max(0, ∆DtG(t− 1)− 1)

if path length(t) < path length(t− 1)

∆DtG(t) = ∆DtG(t− 1) + 1, otherwise.

(3)

with path length(t) the length of the path leading the

goal at time t (e.g. which can be given by a reactive

motion planner [21]). The metric lower bound is 0. If
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at time t the agent is closer to its final position than at

t−1, i.e. progressing towards their goal, the metric is set

to decrease or to remain equal to 0. Now, if the agent

has not moved or is even further, the metric increases.

The closer the metric value is to 0, the better it is, as

it means the distance to the goal has decreased over

time. We chose to not directly compute the difference

between path length(t) and path length(t − 1) as the

results would be very different whether it is an action

implying a long path or a short path.

Time-to-Goal This measure is intended to estimate the

progress of a given task or action towards its goal based

on the estimation of the remaining time to reach it. It

compares the current estimated time to goal with the

initial estimated time to goal taking into account the

current task duration. As so, it is possible to measure

the variation compared to the initial plan. We define

the Time-to-Goal ∆TtG as:

∆TtG(t) = max(0, e(t) + TtG(t)− TtG(T0)) (4)

with e(t) = t − T0 the task execution duration (time

elapsed since the beginning of the task), TtG(t) the cur-

rent time to the goal, and TtG(T0) the initial planned

time to goal. In our work, TtG(t) and TtG(T0) are pro-

vided by a reactive motion planner [21] because we used

the metric for navigation but it could be provided by

other kind of planners.

Steps-to-Goal One way to estimate the remaining dis-

tance to the goal for a task is to count the number of

remaining substasks or actions (depending on the rele-

vant scale) to perform. In addition, one can add a factor
which estimates the weight (or effort needed) of each

action or subtask. These weights can be determined by

the designer, provided by the planner, etc. Then, the

Steps-to-Goal D of a task can be computed as time t:

D(t) =

c∑
i=1

Wi

n∑
i=1

Wi

(5)

withWi the weight of a subtask/action i, c the number

of completed subtasks/actions and n the total number

of planned subtasks/actions.

5.3.2 Deviation from standard duration

We introduce here a metric to measure the deviation

from standard execution duration, the Deviation from

standard duration φ for subtasks/actions and the Devi-

ation from standard duration Φ for a whole task. This

measure is intended to represent the degradation of the

quality of execution of a HR task when its duration

exceeds a certain time.

To each subtask/action ai, we associate two attributes

whose values are defined by the designer: a soft dead-

line SDi and a decreasing quality speed Vi. If, at time

t, the execution duration e(t) = t − T0 of a substask

or action ai which has started at T0 exceeds SDi, the

quality will decrease over time at speed Vi:

φ(t)i = max

(
Vi ∗
−max(e(t)− SDi, 0)

SDi
+ α,−1

)
(6)

where α is the value initial value and the upper bound

(as at t = 0, max(e(t) − SDi, 0) = 0) of φi, when the

subtask/action ai starts.

Then, we define a metric Φ for a task. It is an ag-

gregation of the φi computed for each performed sub-

task/action ai of the task. At any moment, Φ can be

seen as a memory of the previous steps, so the initial

value α of ai is equal to the final value of φi−1 of the

previous subtask/action ai−1, α = φ(Tfinal)i−1.

We can notice that it is not possible for this metric

to increase over time since it memorizes the values of

the previous actions. However, the total computed QoI

can get higher thanks to the other metrics. Moreover,

φ can be used independently of Φ. In such a case, the

initial of value α of φ can be set to 1.

Three examples are given in Fig. 3. Fig.s 3a and 3b

represent φ(t)X and φ(t)Y for two independent subtasks

X and Y . Fig. 3c is a plot of Φ(t)Ta for the task Ta

composed of the subtasks X,Y, Z with SDX = 10s,

VX = 0.5, SDY = 5s, VY = 1, SDZ = 10s and VZ = 1.

6 Implementation of the QoI Evaluator for a

guiding task

As a proof-of-concept, we have implemented the Qual-

ity of Interaction Evaluator as part of a robotic sys-

tem [12] developed in the context of the MuMMER

European project4. The project led to the deployment

of a Pepper robot in a mall [11]. The experiments we

performed in the mall on the QoI were used to gather

data to set the various metrics parameters. The metrics

were measured in real-time and tested only during lab

experiments.

One of the core tasks for the robot consists in giv-

ing guidance to the customers to reach locations in the

mall, by pointing at places and explaining the route to

the desired location. In order to do this, the robot is al-

lowed to move in a limited area in order to place itself

4 http://mummer-project.eu/
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(a) Plot of φ(t)X of the sub-
task X lasting 60 seconds,
with SDX = 10sec, VX = 0.5
and α = 1

(b) Plot of φ(t)Y of the sub-
task Y lasting 15 seconds,
with SDY = 5sec, VY = 1 and
α = 0.5

(c) Plot of Φ(t)Ta for a task composed of
a sequence of three subtasks X,Y, Z: the
duration of X exceeded SDX = 10s and
reached 20s, the duration of Y exceeded
SDY = 5s and reached 10s, finally the du-
ration of Z was less than SDZ = 10s

Fig. 3: Examples of plots of the φ and Φ functions

in a configuration where the landmarks it decides to in-

dicate are visible to the human. The MuMMER robot

starts an interaction session with any person willing to

interact with it. The person has the possibility to have

a conversation on multiple topics with the robot and/or

to ask how to reach a shop or location in the mall.

In this first implementation of the Quality of Inter-

action Evaluator, we measured the interaction quality

at the guiding task level and at the elementary actions

level, omitting the interaction session level as this lat-

ter was not our focus in the MuMMER project. The

Evaluator is integrated into a supervision system pro-

grammed in Jason [8], an agent-oriented framework.

The supervision system handles the HR collaborative

task execution through Jason reactive plans5. Through-

out the task, the robot supervises the execution and

adapts its responses to contingencies. The Quality of

Interaction Evaluator is integrated into a Jason func-

tion (the reasoning cycle) which is invoked periodically.

After multiple testings, we chose to have the Evaluator

computing the QoI for both levels every second. There-

fore, every second, the system computes the value of

5 We first implemented the task with hierarchical state ma-
chines but they were limited for contingencies handling and
to tune the robot behavior.

(a) A customer listening to
Pepper after re-positioning

(b) A customer listening and
Pepper pointing to a corridor

(c) A customer answering to
Pepper

(d) A customer listening and
Pepper pointing to a shop

Fig. 4: MuMMER robot engaged in Route guiding task.

Around 350 trials with customers in the mall allowed

to gather empirical data to select the metrics and tune

the measuring functions.

each metric and then outputs a value for QoItask and

QoIaction.

We ran the guiding task system for one month in the

mall where it interacted in the wild with dozens of usual

customers as illustrated in Fig. 4, executing around 350

guiding tasks. This allowed us to improve the execution

of the guiding task, to gather standard durations of the

subtasks executions, to tune parameters and to draw

lessons about metric definitions and choices (e.g. a given

metric was not relevant to measure the QoI of a given

action). Unfortunately, the context of the project did

not offer us the possibility to ran the QoI Evaluator in

the mall with the customers so, we only ran it in our

lab as shown in Sect. 6.3. We provide and discuss in the

latter, a comparison of the QoI computed by the robot

when it is dealing with an “ideal” human, a confused

human and a non-compliant human. Before, we present

in Sect. 6.1 and Sect. 6.2 how the QoI is evaluated at

both task and action levels for the guiding task.

6.1 QoI Evaluation at the task level

The guiding task is triggered when a human asks for

a location. To guide, the robot will point and give the

explanation to go to the desired location. Specifically, it

first computes two positions: one for itself and one for
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(a) Initial positions of the human and the robot. The human
asked the robot direction to reach a place behind him.

(b) The robot and the human are in their final positions as
planned by the robot. The blue spheres are the computed
position for the human by the robot. The robot is pointing
at the place direction.

Fig. 5: Initial and final positions of a guiding task in the

lab context. On the left are pictures and on the right

screenshots of Rviz.

the human. These planned positions, once reached, will

allow the human to properly see what the robot will be

pointing [40]. Then, the robot navigates to its planned

position and waits for the human to move in front. As

the human may not be exactly at the expected posi-

tion, the robot checks again the visibility of the place

it wants to point. In case the visibility is too low, the

robot verbally asks them to adjust their position (i.e.,

come closer, move back). Fig. 5 illustrates the initial

and final positions of both agents, in the lab context.

Finally, it explains them how to reach their destina-

tion, in accordance with human conventions based on

a human-human guidance study conducted in the same

environment [5].

This task can be represented as a succession of sub-

tasks, as shown in Fig. 6. This figure also exhibits the

incremental refinement of the task into a sequence of

HR interactive actions which are described in Sect. 6.2.

In the context of the guiding, we selected two met-

rics to evaluate the QoI at the task level: one of the

metric we defined in the Sect. 5, the Deviation from

standard duration and, the aggregation over time of the

actions QoIs. Put another way, referring to Fig. 2, we

measure the QoI of the Taski = guiding task, with all

the QoI of all task actions and Task metric1 = Devia-

tion from standard duration.

The Deviation from standard duration is used to

measure the QoI at the task level as the task is a se-

quence of subtasks. Indeed, if the subtask lasts longer

than expected, the QoI should decrease. Then, as needed

for the metric computation we determined the values

of the soft deadlines SDi for each subtask ai, i ∈ [0, 4],

using the empirical data we gathered as explained in in-

troduction of the Sect. 6. Specifically, we computed the

average time execution of each subtask, after removing

the cases for which the execution of the subtask was

annotated as not smooth. These soft deadlines are pre-

sented in table 2. Finally, we chose Vi = 0.5 for all the

subtasks.

Subtasks soft deadline (s)
Target refinement process 30
Ensuring Correct HR Placement 30
Ensuring target seen 20
Direction explanation and pointing 30
Ensuring Direction Seen 20

Table 2: Soft deadlines SDi for each subtask of the

guiding task

The task QoI is also dependent on the actions QoI

values (their computation is described in the next Sect. 6.2).

Indeed, the actions QoIs should be reflected on the task

QoI as, if a majority of the actions have a low QoI, the

task QoI cannot remain high. That is why, besides the

Deviation from standard duration, we take into account

the average of the actions QoIs of the actions already

executed or still running.

Then, the task QoI is computed with the Equa-

tion (1) presented in Sect. 4. Trials allowed us to choose

the weights Wi for each metric Mi, i ∈ [0, 1]. The final

equation to compute the task QoI is:

QoIguiding task(t) =
Φguiding task(t) + 3 ∗QoIactions

4

6.2 QoI Evaluation at the action level

As mentioned earlier, each subtask of the guiding task

can be decomposed into actions. These actions involve

several turn-taking steps, the robot asking complemen-

tary information, informing the human or expecting an

action or reaction from them. We need to measure the

QoI during the execution of each action. In order to do

this, we chose one or more metrics for each action.
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Human-
Robot Q/A

process

Target
refinement

process

Human-
aware robot
navigation

Ensuring
correct
human

placement
for verbal
interaction

Ensuring
Correct HR
Placement

Ensuring
correct
human

placement
for route

explanation

Robot-
Human

information
sharing
& points
target

Robot-
Human

information
sharing

Robot-
Human

information
sharing
& points
direction

Human-
Robot Q/A

process

Robot-
Human

information
sharing

Pointing
to target

Direction
explanation
& pointing

Ensuring 
Direction

seen

Guiding
taskTask

Subtasks

Actions

Fig. 6: The representation of the direction-giving task as a hierarchical task network with task, substasks and

actions levels. All the horizontal arrows are sequential links and the rest are decomposition ones.

Metric id Metric
name

Metric equation – with Equations of Section 5 Scaled metric – with functions of Appendix A

MH contrib Human
contribu-
tion to the
goal

nb R repet n1(nb R repet) = 2 ∗
nb R repet− 3

−3
− 1

MExp SI Fulfilling
robot ex-
pectations
about
social
interaction

Ar =
durationisAttentiveTo(robot)=true

durationrobot speaks
n1(Ar) = 2 ∗Ar − 1

MDtG Distance-
to-Goal


∆DtG(t = 0) = 0
∆DtG(t) = max(0,∆DtG(t− 1)− 1)

if path length(t) < path length(t− 1)
∆DtG(t) = ∆DtG(t− 1) + 1, otherwise.

−s1(DtG(t)) = −1 + 2 exp

(
− ln (2)

(
DtG(t)

5

)1.5
)

MTtG Time-To-
Goal

∆TtG(t) = max(0, e(t) + TtG(t)− TtG(T0)) −s1(TtG(t)) = −1 + 2 exp

(
− ln (2)

(
TtG(t)

5

)1.5
)

Table 3: Metrics used in the implementation presented in Section 6.

For each action of the following list, we explained

which metrics M of Table 3 we used and scaling func-

tions of Appendix A and then, how we computed the

action QoI.

(a) Robot-Human information sharing: The robot speaks

to the human, shares information such as the route

direction and announces the next steps of the plan.

The robot expects that they are paying attention

to it. Therefore, we use the Fulfilling robot expecta-

tions about social interaction MExp SI based on the

attention ratio. Two parameters need to be defined

for the scaling function, the bounds b1 and b2. As

the minimum value for the metric, a ratio, is 0 and

the maximum value is 1, then b1 = 0 and b2 = 1.

The QoI of the action is computed with this only

metric.

(b) Human-Robot Q/A process: The robot asks a ques-

tion to the human. As for the previous action, the

robot expects the human to pay attention to it so

we compute the QoI with MExp SI . It also expects

the human to give an appropriate answer. If it does

not happen, it will ask the human to repeat, speci-

fying that the answer has not been understood. We

have limited the possible number of attempts to 3.

After 3 attempts, the robot ends the task, as it can-

not carry on with the task without an answer. So,

we use Human contribution to the goal MH contrib,

the number of times the robot repeats. Because the

maximal number of repetitions is 3, we set for the

scaling function b1 = 3 and b2 = 0.

The QoI is computed with the two metrics: Fulfill-

ing robot expectations about social interaction and

Human contribution to the goal. The trials showed

that the action QoI results were satisfying with the

weights Wi = 1, i ∈ [0, 1] as applying the Equa-

tion (1).

(c) Ensuring that Human moves aside: This action is

used if, for pointing, the robot decides to place it-
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self in a position which is very close to where the

human is currently standing. In this case, the robot

asks the human to step aside to the right or left, de-

pending on the human’s future position. Then, we

want to measure the progress of the human going

further from the planned robot position. In order

to do this, we use the Distance-to-Goal MDtG but

with the condition of the ∆DtG equation adapted,

being if path length(t) > path length(t−1) instead

of if path length(t) < path length(t − 1). We scale

the metric with −s1, the additive inverse of the scal-

ing function and not directly s1 as the closer to 0

∆DtG is, the better it is in terms of goal comple-

tion. From trials, we set −s1 parameters values with

th = 5 and k = 1.5.

If the human does not move or does not go far

enough from the robot position, the robot will ask

again with a limit of 3 trials (if the robot cannot

move, it will carry on the task from their current

positions). So, we use MH contrib as for the previous

action.

(d) Human-aware robot navigation: The robot has to

move from its initial position to its computed one. It

navigates while respecting social constraints and its

path may change as it adapts according to what the

human is doing. At execution time, to measure the

robot progress towards its goal, we use the Time-

to-goal MTtG, with the same scaling function than

MDtG. The QoI of the action is computed with this

only metric.

(e) Ensuring correct human placement for verbal inter-

action: After it has moved, the robot asks the hu-

man to come in front of it. If the human is not per-

ceived after a few seconds, the robot will ask again

and so on in a maximum of 3 trials. If after these

3 times the human is still not perceived, the robot

ends the task.

The QoI of this action is computed with MH contrib

– we do not use MExp SI as the human is not in the

field of view when the robot is calling them.

(f) Ensuring correct human placement for route expla-

nation: Once the human is in the robot field of

view after the HR motion, they may not be at the

right place to properly see what the robot has to

point at. In this case, the robot will ask the human

to move forward or backward according to what it

has computed about the human perspective (e.g.

this is to avoid that an object occludes the view

for the human). Then, we want to measure the hu-

man progress towards the position the robot has

computed for them. In order to do this, we use the

Distance-to-Goal MDtG.

Action QoI formula (metric aggregation)

Robot-Human informa-
tion sharing

MExp SI(t)

Human-Robot Q/A pro-
cess

MExp SI(t) +MH contrib(t)

2

Ensuring that Human
moves aside

MDtG(t) +MH contrib(t)

2

Human-aware robot nav-
igation

MTtG(t)

Ensuring correct human
placement for verbal in-
teraction

MH contrib(t)

Ensuring correct human
placement for route ex-
planation

MDtG(t) +MH contrib(t)

2

Table 4: QoI computation for each action as an aggre-

gation of metrics

The robot stops giving instructions if it computes

that the position of the human allows them to see

the target, or after 3 trials, so we use MH contrib.

After 3 trials, if the human cannot see the target,

still, the robot will carry on the task taking this into

account.

6.3 A first proof of concept

This section reports on an effective implementation of

the approach as an illustrative proof of concept. We

show the ability of the robot to conduct an interactive

task, to assess in real-time the QoI and to track its

evolution during three guiding task executions where

the human displayed a different way of behaving. In

the three cases, the task was conducted until its end,

in a lab context. The computed QoI for each way is

presented in Fig. 7. The three different ways of behaving

are described in the following list:

– A human executed perfectly the expected actions

and was not disturbing the robot when it navigated

(i.e. the ’ideal’ human from the robot point of view).

– A bit confused human tried to contribute to the task

success but did not execute everything well. The

human was, from time to time, not very attentive,

as looking around. Also, they gave an answer to the

first question that the robot did not understand, and
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(a) Evolution over time of the measured QoI for the ’ideal’ human. Both action and task QoIs remain at 1 as the task is
proceeding smoothly.

(b) Evolution over time of the measured QoI for the confused human. They took time to answer the first robot question and
to move forward but the task QoI does not drop too much because the robot was able to give the route explanation without
any issue even though the human was not very attentive.

(c) Evolution over time of the measured QoI for the annoying human. Several times the human did not give the expected
answer to the robot during the target refinement process. Then, they blocked the robot path. After that, the robot had to ask
twice the human to come in front of it. Finally, the robot repeated the route direction three times but still the human kept
saying that they did not understand. Therefore, the task QoI decreases all along the task.

Fig. 7: Evolution over time of the measured QoI for the route guidance task with three different human behaviors.

The QoI for the task is drawn in blue, and the QoI for the actions is drawn in orange.
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then they took their time before answering again.

Then, they prevented a bit the robot to move as it

had planned and once the robot reached its position,

they took time to come as close as the robot wanted.

– A human wanted to disturb the robot during the

task. They gave three incomprehensible answers to

the first question, blocked multiple times the robot

in its move, waited for the robot to ask twice to

come in front of it and finally asked the robot to

point and explain the route three times.

Now, if we take a look at the QoI outputs of Fig. 7,

we can see that their three shapes are very different. In

Fig. 7a, we can observe that the task and actions QoIs

remain with the highest value 1 all along. A graph as

this one allows us to infer that everything went very

smoothly during this guiding task. Then, we can guess

that it corresponds to the execution performed with the

’ideal’ human.

In Fig. 7b, we note that each subtask was executed

in respect of the standard duration. If the QoI of Target

refinement process drops it is because of the action QoI

as the QoI of the H-R Q/A process drops because the

robot had to repeat the question and the human was not

looking at it. From 21 seconds to 40 seconds, we can see

the task QoI getting higher as the QoIs of Human-aware

robot navigation, Ensuring correct human placement for

verbal interaction and the beginning of Ensuring cor-

rect human placement for route explanation are quite

high. Next, seeing the shape of the computed QoI of

the action Ensuring human placement for route expla-

nation, we can infer that the human was not moving

as the robot wanted. Indeed, they took 10 seconds to

make one step forward (they had 1 meter to cross). Be-

cause of that, the task QoI started to decrease again.

In the final part of the task, the human was time to

time attentive to the robot answered quickly to the last

question, so the task QoI remained rather equal with

its final value being 0.34 which is above 0 so meaning

a correct interaction.

Finally, we can see in Fig. 7c that the final QoI of the

task is −0.44 which allows us to infer that the task was

not executed smoothly. And indeed, when we look at

the shape of the task QoI, it only went down (or almost)

all along the task. It is explained by some subtasks that

took more time than they should have and also by some

actions QoIs that are very low, especially the one of

Human-aware robot navigation. At the beginning of the

robot navigation, the estimated time to goal returned

by the planner was 6 seconds but the robot actually

took 50 seconds to reach its goal then the action QoI

computed with = MTtG(t) was −1 for 40 seconds. And

indeed, all along its navigation, the human was blocking

(a) Human who
put themselves on
the robot path,
preventing the
robot to navigate
towards its goal
position

(b) Human who
put themselves on
the robot path af-
ter it computed a
new path to reach
its goal position

(c) Human finally
getting outside of
the robot path, al-
lowing it to reach
its goal position

Fig. 8: A human disturbing the robot during Human-

aware navigation, preventing it to reach its goal position

as planned.

the robot until they got tired of this game, as visible

on Fig. 8.

In this example, we showed the QoI evaluation pro-

cess integrated to a complete robotic architecture. The

robot was able to assess the QoI in real-time while in-

teracting with a human.

7 Conclusion and future work

As we believe the robot could enhance its decision-

making process by estimating if an interaction was go-

ing well or not, we developed a new concept: the Quality

of Interaction measured from the robot point of view in

real-time during collaborative activities. We proposed

here, for this purpose, a set of metrics and a method to

aggregate them.

The evaluation of the QoI relies on the model of in-

teraction, divided into three levels: the interaction ses-

sion level, the tasks level and the actions level. In future

work, this granularity will allow the robot to know pre-

cisely on what level it needs to act when a low QoI is

computed. Indeed, a task can be of poor quality but

the session can be going well.

As of proof-of-concept, we implemented a first ver-

sion of a QoI Evaluator assessing task and actions QoIs.

We tested it on an interactive robot dedicated to pro-

vide route guidance to customers in a large mall. The

approach gave satisfactory results. It showed the po-

tential ability of the robot to detect momentary de-

creases of the Quality of Interaction and also more se-

rious degradation of it which may need drastic change

of behavior for the robot.

Therefore, we intend to exploit soon this QoI eval-

uation process in order to allow the robot to “close the

loop” and smoothly adapt its decisions and execution

modalities and also to detect if the human is trying to
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pull the robot strings. Then, our next step will be to

refine our set of metrics and to expand it. For exam-

ple, we plan to investigate the possibility to elaborate

plan-based algorithms in order to track the evolution

of such the Human contribution to the goal over time.

Also, we will test and improve the metrics dedicated to

the interaction session level.

Finally, we plan to conduct users studies where we

will ask humans to evaluate the quality of their interac-

tion with the robot in a similar manner. The goal will

be to analyse and compare this to the evaluation of the

interaction quality estimated by our robot – with the

computation of the interaction session QoI in addition –

and, based on that, investigate potential improvements.

A Appendix: Scaling functions for the metrics

As the metrics are aggregated to compute the QoI, their val-
ues need to be on the same scale. In order to do this, we use
scaling functions rescaling metrics into a range of [−1, 1], as
the QoI bounds. As all the metrics does not have the same
properties, they have to be scaled by using different func-
tions. The two properties to check to choose which function
to apply to which metric are the following ones:

– does the metric already have a bounded value ?
– what value of the metric should make the QoI decrease,

increase or remain the same ?

Therefore, we designed three functions to be used with met-
rics having bounded values and three functions for metrics
that do not have upper bounds. Then, among these two sets
of functions, it is possible to choose the one to use accord-
ing to the positive, neutral or negative impact a value should
have on the QoI.

A.1 Scaling of bounded metrics: Min-Max
Normalization

We defined three min-max normalization functions, illustrated
in Fig. 9. They were designed to be used for metrics whose
values belong to a bounded set, i.e., metrics for which the
minimum and maximum values are known. The first func-
tion is to apply in cases for which a measure approaching the
bound value b1 has a negative impact on the quality evalua-
tion whereas a measure approaching b2 has a positive one. It
allows to scale a measure x between -1 and 1:

n1(x) = 2 ∗
x− b1
b2 − b1

− 1 (7)

The second function is intended to be applied in cases for
which a measure approaching the bound value b1 has a neu-
tral impact on the quality evaluation whereas a measure ap-
proaching b2 has a positive one. It allows to scale a measure
x between 0 and 1:

n2(x) =
x− b1
b2 − b1

(8)

Finally, the last function is to apply in cases for which a mea-
sure approaching the bound value b1 has an negative impact
on the quality evaluation whereas a measure approaching b2

has a neutral one. It allows to scale a measure x between -1
and 0:

n3(x) =
x− b2
b2 − b1

(9)

0

1

b2b1

0

1

b2b1

0

-1

b2b1

-1

n n

n

x

x

x

(a) (b) (c)

Fig. 9: (a), (b) and (c) respectively represent the min-

max normalization functions (7), (8) and (9)

A.2 Scaling of unbounded metrics: Sigmoid

Normalization

We defined three sigmoid-like functions to scale and squash
values of metrics without an upper bound. As for the min-
max normalization, there is one function to scale the metrics
values between -1 and 1, another one to scale between 0 and
1 and the last one to scale between -1 and 0.

The first function allows to scale between -1 and 1 the
values of a metric, for a metric whose values are between 0
and +∞ (e.g. a duration whose final value is unknown during
the execution). The function is defined as:

s1(x) = 1− 2 exp

(
− ln (2)

( x
th

)k)
, x > 0 (10)

with s1(x) ∈ [−1, 1], th the value of the sigmoid’s midpoint
(i.e., s1(th) = 0) and, k setting the shape of the function
curve. k and th values are set off-line by the designer and
they allow to define the shape of the metric scaling.

The second function is designed for metric which cannot
have a negative impact on the QoI as it scales the value be-
tween 0 and 1 (and with x ∈ [0,+∞] as well):

s2(x) = 1− exp

(
− ln (2)

( x
th

)k)
, x > 0 (11)

with s2(x) ∈ [0, 1], th the value of the sigmoid’s midpoint (i.e.,
s2(th) = 0.5) and, k setting the shape of the function curve.

The third function is designed for metric which cannot
have a positive impact on the QoI as it scales the value be-
tween -1 and 0 (and with x ∈ [0,+∞] as well):

s3(x) = −1 + exp

(
− ln (2)

( x
th

)k)
, x > 0 (12)

with s3(x) ∈ [−1, 0], th the value of the sigmoid’s midpoint
(i.e., s3(th) = −0.5) and, k setting the shape of the function
curve.

The functions s1(x) and s2(x) are illustrated in Fig. 10
with four examples.
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(d) Plot of s2(x) with
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Fig. 10: Plots of the sigmoid-like functions s1(x) and

s2(x) with different parameters values
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