
HAL Id: hal-03328251
https://laas.hal.science/hal-03328251

Submitted on 29 Aug 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Hardware-Performance-Counters-based anomaly
detection in massively deployed smart industrial devices
Malcolm Bourdon, Pierre-François Gimenez, Eric Alata, Mohamed Kaâniche,

Vincent Migliore, Vincent Nicomette, Youssef Laarouchi

To cite this version:
Malcolm Bourdon, Pierre-François Gimenez, Eric Alata, Mohamed Kaâniche, Vincent Migliore, et
al.. Hardware-Performance-Counters-based anomaly detection in massively deployed smart industrial
devices. 19th IEEE International Symposium on Network Computing and Applications (NCA 2020),
Nov 2020, Cambridge, MA, United States. �10.1109/NCA51143.2020.9306726�. �hal-03328251�

https://laas.hal.science/hal-03328251
https://hal.archives-ouvertes.fr

Hardware-Performance-Counters-based anomaly
detection in massively deployed smart industrial

devices
Malcolm Bourdon

EDF R&D, LAAS-CNRS
Palaiseau, France

Pierre-François Gimenez and Eric Alata and
Mohamed Kaaniche and Vincent Migliore and

Vincent Nicomette
LAAS-CNRS, Toulouse, France

Youssef Laarouchi
EDF R&D, Palaiseau, France

Abstract—Energy providers are massively deploying devices
to manage distributed resources or equipment. These devices
are used for example to manage the energy of smart factories
efficiently or to monitor the infrastructure of smart-grids. By
design, they typically exhibit homogeneous behavior, with similar
software and hardware architecture. Unfortunately, these devices
are also of interest to attackers aiming to develop botnets or
compromise companies’ security. This paper presents a new
protection approach based on Hardware Performance Counters
(HPC) to detect anomalies in massively deployed devices. These
HPC are processed using outlier detection algorithms. Compared
to existing solutions, we propose a lightweight approach based
on a comparative analysis of devices’ HPC without relying
on the modeling of the software applications running on the
devices. To assess the relevance and the effectiveness of the
approach, a thorough experimental analysis is carried out in
a representative industrial-type environment, sampling the data
from 100 Raspberry Pi to simulate about 10,000 devices deployed
simultaneously. The results show high detection and performance
efficiency under different software profiles and attack payloads.
Moreover, the calibration of the approach depends primarily
on the hardware rather than the application software running
on the devices. It should ease its deployment in an operational
environment.

Keywords—Cybersecurity, Outlier detection, Hardware perfor-
mance counters, Internet of Things (IoT).

I. INTRODUCTION

Today, the deployment of the Internet of Things (IoT)
technologies is growing in all application areas. These tech-
nologies aim to improve quality of life by providing smart
environments. In this kind of environment, the different actors
work together to make better or automated decisions, e.g.,
to optimize energy consumption, improve home protection
against physical intrusion, etc.

Unfortunately, the massive and fast deployment of con-
nected devices raises major security concerns. Many of these
devices are manufactured without seriously tackling security
threats. As a consequence, several vulnerabilities have been
disclosed in commonly used devices that have become an easy
target for attackers [1]. For example, the Mirai attack [2] took
advantage of default settings and poor telnet implementation in

several smart devices to compromise and use them in massive
attacks such as DDoS.

Several research studies are being carried out to develop ef-
ficient security protection solutions adapted to IoT constraints
and requirements [3]. In this paper, we will focus on anomaly
detection in industrial contexts where IoT devices with similar
configurations are massively deployed, connected to their
environment by sensors and actuators and remotely managed
by a service provider via a central server. Such devices usually
include inexpensive hardware offering limited resources and
implement simple functions with a quite stable behavior in
an industrial context, which however may differ from one
deployment to another (due e.g., to user-defined options or
updates). A typical use case is the massive deployment of
devices by energy providers to optimize energy consumption
on a large scale. The connected devices can then be used
to efficiently manage the power grid or to manage homes or
buildings self-consumption.

The corruption of massively deployed connected devices by
a malware could have negative consequences on the service
provider in terms of delivered service and brand image.

Different strategies have been considered for detecting at-
tacks targeting connected devices [4]. A major challenge is
the limited resources of these devices (energy, CPU, memory,
etc.), making the implementation of many common security
approaches inadequate.

An approach to monitor such devices consists in modeling
the legitimate behavior of the application running on it and
detecting at runtime significant deviations from this model.
One major limitation of this approach is the need to rebuild
this model each time the application is updated, which may
be difficult and costly for the service provider.

The approach described in this paper does not rely on the
modeling of the legitimate application software. Instead we
propose a lightweight mechanism to remotely monitor and
compare the behavior of these massively deployed devices in
order to identify outliers. The main assumption is that the
majority of devices are legitimate and only a few of them
exhibit ”abnormal” behavior. To do so, we rely on the analysis
of low level information to detect the anomalous behavior978-1-7281-8326-8/20/$31.00 c©2020 IEEE

of devices. As we envision a scenario with several thousand
of devices, our approach involves minimal additional network
traffic. Also, the additional monitoring software installed on
the devices for intrusion detection must deal with the limited
memory and computing resources of the devices. The low level
information investigated in our study correspond to Hardware
Performance Counters (HPC) stored in the devices’ processor.
These counters record the occurrences of ”low-level” events.
They are available on a large number of different processors,
which means that our solution can be adapted to a large
number of hardware architectures.

To summarize, the contributions of this paper are the
following:

• We develop a lightweight method to detect compromised
devices among a massive population of similar devices.
To do so we analyze then compare the processor’s
Hardware Performance Counters using existing outlier
detection algorithms. This method incurs low computa-
tional and network traffic overhead, without modeling
the behavior of the applications running on the devices.
It can also be easily calibrated and adapted to different
execution platforms.

• We perform thorough experiments based on 100 con-
nected devices with various software profiles, attack
payloads and outlier detection algorithms, for the practi-
cal validation of our approach. These experiments were
calibrated and configured with the knowledge gathered
from real energy provider use-cases. We are not aware of
similar experiments to assess the relevance of HPC for
detecting compromised IoT devices.

• The results obtained show that a high detection efficiency
can be achieved, with a low overhead and execution
time. Three outlier detection algorithms among the eight
commonly used that we evaluated provide comparable
results, significantly outperforming the other algorithms.

• We will make our code, data and results publicly available
to facilitate the reproducibility of our work and to enable
the development of other anomaly detection approaches
for IoT devices based on HPC.

The paper is organized as follows. Section II presents the
context, assumptions and the threat model. Section III dis-
cusses related research works and their limitations considering
our assumptions and threat model. Section IV describes our
anomaly detection approach along with the different steps
that are executed either on the devices or the central server.
Section V presents the set of experiments we carried out to
assess the relevance of the approach and highlights the main
lessons learned. Finally, Section VI concludes the paper and
outlines future work.

II. TARGET ENVIRONMENT AND THREAT MODEL

We describe first the assumptions about the environment,
the devices and the network communications considered in
our study, then we discuss the threat model.

A. Assumptions

In this paper, we consider the context of a massive de-
ployment of connected devices disseminated through a large
geographic area. Such context corresponds for example to a
typical operational environment deployed by an energy service
provider. The devices communicate with a central server to
report relevant information. We assume that all the devices
implement the same hardware architecture with a lightweight
operating system and an application software that implements
simple functions. These simple functions are assumed to
exhibit a stable periodic behavior on average during predefined
time periods, that is comparable from a device to another.

Moreover, as some software updates may occur, we consider
then that few different versions of the software may coexist
among all devices. However, we assume that each version of
the software is executed by a large number of devices, so that
each specific behavior is well represented.

It is assumed that classic security measures have been
deployed by the service provider. For instance, network com-
munications between the central server and the devices are
already secured and the central server is trusted and managed
by the service provider. It is also assumed that traditional
security detection mechanisms are deployed on the server side.
For instance, the service provider is able to detect that the
service is no longer being delivered by the devices.

B. Threat model

The main objective of our approach is to detect significant
changes in the behavior of some connected devices among a
large population, that may result from potential attacks. We
consider that the attacker is not able to modify the probe
deployed on each device to collect the Hardware Performance
Counters (HPC) values and send them to the central server. We
additionally assume that the objective of the attacker is to take
control of the compromised devices in order to carry out some
attacks on third party systems or to serve his own interests.
We also assume that the attacker does not purposely disable
or modify the legitimate software of the device, as this attack
can already be detected through our previous assumptions.
This means that the considered attack consists in installing a
malware on the device, and running it along with the legitimate
software. This assumption is also realistic because we consider
that the attacker wants to hide the malicious activity on the
device. Finally, we assume that the attacker cannot corrupt a
majority of devices between two consecutive executions of the
detection algorithm on the central server.

We argue that an anomaly detection approach based on
the analysis of the processor’s HPC of the devices is well
adapted to the assumptions about the considered environment
and threat model. Our approach is designed to be easily imple-
mented and maintained in an industrial context. As described
in next sections, this solution results in low overhead on the
devices: it only requires minimal modification of the devices’
software and reduced network communications. Moreover,
the detection approach is based on the comparative analysis
of the HPC collected on the devices and does not require

the elaboration of a complex model describing the legitimate
behavior of the devices.

III. RELATED WORKS

This section first provides a description of HPC and then
discusses some related research works that are mainly based
on the analysis of processor’s HPC.

HPC store counts of micro-architectural or architectural
events of the processor, using a set of special-purpose registers.
These registers must be enabled and set up to capture the corre-
sponding events. The number of events that can be monitored
ranges from twenty to more than a few hundreds, depending
on the processor. They may slightly differ depending on the
processor family, but some categories are common to all
processor families. Some examples of events are: L1 cache
miss, hit, refill, instruction retired, bus access, memory access,
branch misprediction, etc. In this paper, we focus on ARM
processors which are commonly used for IoT devices.

HPC are generally used for debugging, optimization or
profiling purposes, but also in security. Several research works
related to malware detection or attack detection using HPC
have been developed, but none of them adequately fits the
assumptions and threat model described in Section II-B. For
example HPCMalHunter [5] uses HPC and Singular Value
Decomposition (SVD) to create a real-time behavioral mal-
ware detection. This approach applies SVD to HPC traces
and then trains an SVM (Support Vector Machine) classifier
using benign and malicious programs. However, this approach
entirely relies on the modeling of the legitimate application,
which we want to avoid in our solution.

The approach presented in [6] consists in modeling legiti-
mate behavior based on HPC using one-class SVM machine
learning algorithm, for anomaly detection. However, the envi-
ronment in which the authors validated the detection algorithm
consists of common computers running desktop applications
such as Adobe and Internet Explorer, and is not representative
of devices with dedicated lightweight operating system and
simple applications.

Some research works [7] [8] [9] [10] questioned the use of
HPC for security, showing some instability and weak correla-
tions between software execution and the HPCs. For example,
Das et al. [7] highlights some cases where HPC measurements
were inaccurate or not deterministic, due to program execution
environment variations (OS, other processes, probe program)
and some inconsistency between different types of processors.
Zhou et al. [10] explored the use of HPC and machine learning
to detect malware, showing overall low detection efficiency
based on experiments on a large number of programs and
malware. However, these experiments were carried out on
complex architectures.

In our study, all devices implement a simple and identi-
cal architecture, hosting the same OS, processes and probe
programs. We have observed in preliminary experiments that
the behavior of the type of application investigated in our
study is very stable. As we aim to detect remote attacks or
misuse of constrained devices, we believe that the HPC should

exhibit a significant deviation from legitimate behavior when
such attacks are performed. We therefore argue that for such
simple devices, the use of HPC to efficiently monitor the
behavior of the devices and detect potential anomalies should
be more relevant. Our objective is to validate this assumption
experimentally.

Some research works have focused on more constrained
devices. For example, Wang et al. in [11] present a strategy to
detect firmware corruption that consists in randomly inserting
checkpoints in the firmware code and creating a legitimate
signature according to these checkpoints. Such an approach is
not relevant under our assumptions as we want our solution
to be independent from the software running on the device.
Moreover, their approach also needs to create one model per
device, and would not be scalable for the monitoring of a large
number of devices.

Another relevant approach was proposed by [12] to detect
anomalies in real-time multi-threaded cyber-physical systems
and Programmable Logic Controllers (PLC). A one-class
SVM is learned from the traces from legitimate devices. The
anomaly detection algorithm is then run remotely. Two major
differences can be highlighted with our work. First, we aim to
detect attacks among a large population of devices and second,
we do not try to build any prior model of the application
processes to minimize any pre-deployment analysis performed
on the devices.

To summarize, compared to prior work, our approach targets
massively deployed embedded devices sharing the same archi-
tecture, with lightweight application software and OS. Unlike
existing solutions, our detection approach does not rely on
the behavior modeling of the software running on the devices
and is based on the comparative analysis of the HPC values
collected from the devices using outlier detection algorithms.
A thorough experimental analysis is also performed on a
large population of devices to validate the efficiency of our
approach.

IV. ANOMALY DETECTION APPROACH

A. Overview

a , a , a , ..., a
1 2 3 n

b , b , b , ..., b
1 2 3 n

z , z , z , ..., z
1 2 3 n

[, ,]
1 2 3

...

...

① Read

and store

HPCs values

③ Features

extraction

④ Robust

standardization

⑤ Outlier

detection

Fig. 1: An overview of the approach

As illustrated in Figure 1, our approach consists in detecting
outliers among a fleet of deployed devices, based on the

comparative and periodic analysis of the HPC of each device.
It is structured into five steps.

On the client side, a probe is embedded in each device
to regularly capture and store HPC values in the local file
system (step 1). One time series per counter per device is gen-
erated, which are then uploaded periodically by each device to
the server, through a secure communication channel (step 2),
for further processing.

On the server-side, the raw data received from the clients are
first processed to extract relevant features (step 3). The feature
extraction consists in calculating some descriptive statistics
from the data. The next step consists in standardizing the fea-
tures (step 4) obtained previously to avoid some scaling issues
during the execution of the outlier detection algorithm (step 5).

B. Detailed description
In the following, D denotes the set of devices and C the

set of observed counters. For a time series or a vector A, A[i]
denotes its i-th element.

To collect the HPC, a probe software is embedded into
each device and captures the values of each counter every
∆p seconds. These values are stored in a local file (called
trace) and sent to the server every ∆s seconds. This parameter
allows us to accommodate the possible asynchrony between
the devices. This time interval should be calibrated so that the
global (or average) behavior during this period is comparable
from a device to another.

For a device d, the associated trace is noted Td and Tc,d
is the corresponding time series of counter c.Algorithm 1
summarizes the anomaly detection approach.

Algorithm 1: Standardisation

1 for d ∈ D do
2 for c ∈ C do
3 for i from 1 to |Tc,d| − 1 do
4 T ′c,d[i]← (Tc,d[i+ 1]− Tc,d[i])/∆p

5 Uc,d ← (max(T ′c,d),mean(T ′c,d),

std(T ′c,d),median(T ′c,d))

6 for c ∈ C do
7 for i from 1 to 4 do
8 m← median({Fc,e[i] | e ∈ D})
9 d← P95({Fc,e[i] | e ∈ D})− P5({Fc,e[i] | e ∈

D})
10 for d ∈ D do Vc,d[i]← (Fc,d[i]−m)/d

11 return apply outlier detection algorithm on V

Instead of using directly the values of the counters rep-
resented by the time series Tc,d, we consider the temporal
derivative of this time series, which better reflects the evolution
of the activity of the processor. Indeed, the growth rate of the
events associated to the counters is related to the workload of
the processor. This derivative is noted T ′c,d.

From the raw values of T ′c,d, we compute the classical
statistical features: maximum value (max), mean value (mean),

standard deviation (std) and the median value (median). The
features of a time series T ′c,d is noted Fc,d and is defined as:

Fc,d = (max(T ′c,d),mean(T ′c,d), std(T ′c,d),median(T ′c,d))

Depending on the values of ∆p and ∆s, T ′c,d could be
composed of hundreds of values. As we envision a scenario
with thousands of devices deployed, extracting statistical fea-
tures also allows to considerably reduce the size of the data
processed by the detection algorithm.

We aim to develop a solution that can be used without
recalibration on various software with different behaviors.
Thus, we need to “normalize” the data so that the algorithms
are effective at various scales. To this end, we standardize the
data, i.e. we center and scale them. However, as the data is
likely to have a skewed distribution and exhibit outlier values
(because of attacks) corresponding to a significant deviation
compared to legitimate data, we use a robust version of
standardization [13] that replaces using the median and the
difference of two percentiles (here the 95th and the 5th, noted
P5 and P95), leading to the following equation:

Vc,d[i] =
Fc,d[i]−median({Fc,e[i] | e ∈ D})

P95({Fc,e[i] | e ∈ D})− P5({Fc,e[i] | e ∈ D})
Each vector Vc,d characterizes the behavior of a device. To

detect abnormal behaviors, we then use an outlier detection
algorithm. It takes as input the set V and returns a subset of
D as outliers. The list of anomaly detection algorithms we
consider is the focus of the next subsection.

C. Anomaly detection algorithms

There are several algorithms to detect anomalies. We focus
on detection algorithms that consist in identifying outliers
among a population without any model. We have selected
eight unsupervised algorithms for the implementation and
experimental validation of our approach: 4 neighbors-based
algorithms, 2 clustering algorithms and 2 classification-based
algorithms. They are commonly used and are representative of
different families of unsupervised machine learning algorithms
(see e.g., [14]):
• k-NN (k Nearest Neighbors) [15] is a classifier that can

be adapted to outlier detection. In this setting, it classifies
an instance as an outlier if it is significantly far from its
k nearest neighbors. It has two variants: MeanDIST and
KDIST based on the mean distance and the k nearest
neighbor, respectively.

• LOF (Local Outlier Factor) [16] classifies an instance as
outlier if the local density of this instance is significantly
lower than the local density of its k nearest neighbors.

• ODIN (Outlier Detection using Indegree Number) [17]
classifies an instance as outlier if it has a low indegree
in the k-neighborhood graph.

• k-means is clustering algorithm that searches k centroids.
It can be adapted to outlier detection by classifying an
instance as outlier if it is far from the centroids. Due to
our assumption of homogeneous legitimate devices, we
set k = 1.

• HDBSCAN (Hierarchical Density-Based Spatial Cluster-
ing of Applications with Noise) [18] [19] is a clustering
algorithm. It classifies as outliers all the instances that do
not belong to any cluster.

• Isolation Forest [20] is a classification-based algorithm
based on random decision trees. An instance is classified
as an outlier if it is easily separable, i.e. if the depth of
their leaves are small.

• OCSVM (One-Class Support Vector Machine) [21] is a
classification-based algorithm based on a SVM model
modified to learn from unlabeled instances. We use it
in an unsupervised manner: it searches the outliers in a
population without any model.

V. EXPERIMENTS

This section presents the experiments carried out to assess
our approach. We first describe the experimental setup and data
collection process in Subsection V-A. The different software
profiles and the attack payloads used in our experiments are
presented in Subsections V-B and V-C respectively. Subsec-
tion V-D details the experimental protocol. The following
subsections (V-E, V-F and V-G) present the experiments and
associated parameters, and discuss the main results.

A. Set up and data collection

The experimental platform is made of 100 Raspberry Pi 3B
devices with ARM Cortex A53 (ARMv8) processors running
Raspberry Pi OS, with a single core activated. Unnecessary
services and background processes were removed from the
OS. These devices have been chosen and configured to exhibits
similar characteristics of real devices deployed in industry.

The Cortex A53 processor allows the monitoring of 28
events. However, there are only 7 HPCs’ registers. Among
these 7 registers, one is dedicated to record the number of pro-
cessor cycles (CPU CYCLES). The other 6 are configurable
to monitor any of the 28 events.

Our solution is designed to be application-independent. For
this reason, we selected the counters that better reflect the main
characteristics of the processor (memory cache, instructions,
exceptions, prediction branches, bus access) whose measure-
ment could reveal the presence of a malicious software.

The set of six counters chosen measure the number of refill
and the number of accesses on the L1 cache, the number
of instructions architecturally executed on the processor, the
number of exceptions taken, the number of mispredicted or
not predicted branch speculatively executed, and the number
of bus accesses performed.

A kernel module, installed in the devices, saves every ∆p

the selected HPC in a local file. Thus, the local file contains
time series for each HPC. Every ∆s, another background
process sends these files to the server using FTP and clears
the content of the local file. This makes the HPC monitoring
independent of the functionality deployed in the devices. In
this experiment, we set ∆s to 1,800s and ∆p to 5s.

We use the implementations of the scikit-learn library [22]
for LOF, k-NN, OCSVM, Isolation Forest and HDBSCAN

and our own implementation of ODIN and k-means. Source
code is available at https://github.com/PFGimenez/
Outlier-detection-from-HPC.

B. Software application profiles

We developed four software applications with different
profiles, to validate our approach under different conditions
and to evaluate the independence of our detector from the de-
ployed application. The workloads associated to these profiles
are designed to be similar to real applications of industrial
environment. They use the hardware resources in the same
way as an energy management software: they do not overload
the platform, perform computations, input/output operations
and network communications.

Application profile S1 corresponds to a device whose main
purpose is to collect and store information (such as system
logs), and to transmit it periodically. Such a profile corre-
sponds to a regular use of the CPU and network commu-
nication and to an intensive use of input/output operations.
The second profile S2 emulates a device that uses few CPU,
communications and input/output resources, it could for in-
stance correspond to a simple smart sensor. The third profile S3
corresponds to a device that executes a more computationally
intensive application, such as a device that continuously mon-
itors and reports the energy consumption of a smart building.
The last profile S4 corresponds to a more intensive use of
network communications and input/output operations, and may
correspond to a gateway for example.

C. Attack profiles

To assess the relevance of our approach, we need to evaluate
its detection efficiency in the presence of attacks that are
representative of actual malicious activities that could be
performed on such devices. In our experiments, we have
defined different attack profiles that correspond to different
attackers’ objectives.

Our attacks are either representative of the behavior of some
known attacks, such as Mirai [2], or performed by means of
real attack tools, such as Hydra1 or are replays of actual attacks
observed on honeypots [23].

Accordingly, we considered eight malicious payloads:
• P1: simulates a DDoS attack from the device;
• P2: a more intensive version of P1;
• P3: simulates a light cryptocurrency mining;
• P4: executes commands drawn from honeypots analysis;
• P5: a more intensive version of P4;
• P6: real attack tool executing a bruteforce SSH;
• P7: the victim of the bruteforce SSH attack;
• P8: payload stressing the CPU.

D. Experimental protocol

Our goal is to evaluate the algorithms with a massive
amount of deployed devices. To this end, our experiments
use populations of 10,000 devices. As we do not own so

1Available at https://github.com/vanhauser-thc/thc-hydra

https://github.com/PFGimenez/Outlier-detection-from-HPC
https://github.com/PFGimenez/Outlier-detection-from-HPC
https://github.com/vanhauser-thc/thc-hydra

many devices, we sampled traces from 100 devices. Since the
devices behave independently, our sampled populations behave
like a real population of 10,000 devices.

The sampling is based on two parameters: the population
fraction µ that is compromised and the population size n,
leading to (1−µ)|D| legitimate traces and µ|D| attack traces.
Each attack type is drawn equiprobably.

To evaluate the effectiveness of each algorithm described
in Section IV-C, we rely on two metrics: False Positive
Rate (FPR, the fraction of legitimate devices detected as
compromised) and the True Positive Rate (TPR, the proportion
of attacks detected).

We then address the following research questions:
• Which algorithms are the most effective, independently

of their parameters?
• How the fraction of compromised devices impacts the

detection efficiency?
• How well an algorithm calibrated with one software

profile performs with data from another profile?
• What is the scalability of these algorithms?

E. Experiments without parameter learning

For each software profile, the experimental protocol is
applied considering heterogeneous attacks with 1% compro-
mised devices. Besides the threshold of each outlier detection
algorithm, the parameter to set up is the neighborhood size (k)
of neighborhood-based algorithms. It is empirically set to 100
for LOF, k-NN KDIST and MeanDIST and 1,000 for ODIN.

We compare the detectors by comparing their ROC (Re-
ceiver Operating Characteristic) curves that plot the True Pos-
itive Rate against the False Positive Rate). More specifically,
we compare their AUC (Area Under ROC Curve), summarized
in Table I. All the detectors have high AUC but we can outline
some performance differences. LOF, k-NN KDIST and k-
NN MeanDIST provide the best results for the four software
profiles while HDBSCAN exhibits the worst performance. k-
NN MeanDIST and k-NN KDIST generally exhibit similar
results and are very similar, so we decided to keep one of
them. For these reasons, HDBSCAN and k-NN KDIST are
not included in the following results.

TABLE I: AUC of the different algorithms with 1% compro-
mised devices.

ODIN LOF MeanDIST KDIST
0.979 0.991 0.990 0.989

Isolation Forest k-means OCSVM HDBSCAN
0.973 0.981 0.984 0.945

In the next subsection, we analyze the sensitivity of the
performance of these algorithms to different parameters.

F. Sensitivity analysis

1) Outlier detection algorithm calibration: Each algorithm
assigns a score to each instance: generally, the higher the score,
the more likely the instance to be an outlier. Accordingly, one
needs to choose a threshold to make a decision.

While this threshold can be constant, one can also use an
heuristic to estimate it from the population. The only heuristic
we are aware of is for k-NN, described in [17]. This heuristic
we call HKF yields poor results in our context because it
uses the max function which is very sensitive to outliers.
We slightly modified the heuristic (named HKF+) to use
the 95th percentile instead of max. We also propose another
heuristic, called α-med. Given a set of distances d (one for
each instance) and a parameter α > 1, the threshold is defined
as τα(d) = αmedian(d).

The calibration aims to find optimal values for the parameter
of each algorithm. It is carried out with the data of one
software profile (legitimate and compromised traces). The
parameter is chosen so that FPR is lower than 0.05% and
the TPR is as high as possible.

2) Impact of compromised device fraction: We carried out
a second experiment with heterogeneous attacks, varying the
fraction of compromised devices: 0%, 0.1%, 0.5%, 1%, 2%
and 5%. The algorithm parameters have been tuned with 1%
compromised devices. Table II reports the average detection
efficiency results for each software, when calibrated with one
of the three other software. Using another software to calibrate
allows us to analyze the robustness of the detection for the
calibration process.

First, we can notice that the FPR is generally below 1% and
the TPR is around 80%, even though both are highly dependent
of the algorithm and the compromised devices fraction. These
results show that, with our assumptions and without modelling,
outlier detection based on HPC is effective: an algorithm tuned
with one software can be successfully applied to another one.

The TPR of all the algorithms is lower with 5% com-
promised devices. This can be explained by the underlying
outliers assumption: they are few and far from each other.
However, 5% compromised devices (500 devices here) is a
rather large proportion that should not happen instantaneously,
so one should expect to detect such attack earlier, when this
fraction is lower.

In the following, we only consider the best algorithms:
ODIN, LOF, MeanDIST α-med and MeanDIST HKF+.

3) Calibration stability: To study the calibration stability,
we reproduce the same experiment, but the parameter learning
is performed with the same software profile as the detection.
This allows us to compare the FPR and the TPR in the two
cases. This experiment was conducted with 1% of compro-
mised devices.

For all four algorithms, the difference in FPR is very
small, at most 0.12%. The mean absolute difference of the
TPR is below 4% for LOF and MeanDIST α-med and it
is 8.00% for ODIN and 16.71% for MeanDIST HKF+. It
should be compared to the 80% TPR generally obtained by
these algorithms. We can conclude that MeanDIST α-med and
LOF are the most suitable algorithms for this problem as their
detection capability is very stable on various applications with
the same parameter. MeanDIST HKF+ has however a large
variability. For this reason, MeanDIST HKF+ is not included
in the following experiments.

TABLE II: Detection sensitivity to % compromised devices. Red: TPR ≤50%. Orange: TPR ≤80% or FPR ≥1%.

0% 0.1% 0.5% 1% 2% 5%
Software Algorithm FPR FPR TPR FPR TPR FPR TPR FPR TPR FPR TPR

S1

ODIN 0.23% 0.18% 72.08% 0.15% 79.82% 0.10% 81.05% 0.06% 45.00% 0.03% 8.54%
LOF 0.18% 0.09% 78.13% 0.18% 89.43% 0.18% 88.78% 0.19% 86.33% 0.18% 33.37%

MeanDIST α-med 0.07% 0.07% 77.08% 0.07% 90.32% 0.07% 89.78% 0.07% 89.42% 0.06% 60.81%
MeanDIST HKF+ 0.23% 0.22% 75.42% 0.20% 90.92% 0.15% 88.46% 0.13% 86.56% 0.02% 34.66%

Isolation Forest 0.79% 0.72% 40.0% 0.34% 53.38% 0.10% 58.18% 0.00% 55.81% 0.00% 28.72%
k-means 1.61% 0.07% 77.08% 1.58% 64.27% 1.55% 64.94% 1.50% 64.95% 1.50% 65.34%
OCSVM 0.06% 0.00% 40.63% 0.00% 44.21% 0.00% 36.15% 0.00% 7.80% 0.00% 1.82%

S2

ODIN 0.10% 0.08% 79.38% 0.02% 89.03% 0.01% 77.48% 0.01% 44.01% 0.01% 8.46%
LOF 0.07% 0.07% 87.50% 0.07% 96.07% 0.07% 94.28% 0.07% 93.05% 0.08% 49.45%

MeanDIST α-med 0.06% 0.06% 87.08% 0.05% 98.64% 0.05% 98.98% 0.05% 98.59% 0.06% 78.28%
MeanDIST HKF+ 0.10% 0.10% 87.71% 0.10% 97.78% 0.09% 96.79% 0.08% 88.27% 0.00% 55.29%

Isolation Forest 1.16% 1.01% 39.38% 0.73% 52.72% 0.18% 56.09% 0.01% 53.02% 0.00% 37.33%
k-means 1.63% 1.64% 42.92% 1.56% 76.39% 1.52% 76.06% 1.46% 75.70% 1.42% 75.79%
OCSVM 0.03% 0.36% 42.92% 0.00% 41.15% 0.00% 7.35% 0.00% 6.32% 0.00% 1.72%

S3

ODIN 0.03% 0.09% 81.67% 0.02% 93.69% 0.01% 83.64% 0.01% 45.81% 0.00% 14.37%
LOF 0.04% 0.03% 84.17% 0.02% 94.24% 0.02% 90.64% 0.01% 70.22% 0.01% 42.33%

MeanDIST α-med 1.02% 0.89% 72.71% 0.50% 100% 0.43% 98.90% 0.28% 98.71% 0.27% 79.81%
MeanDIST HKF+ 0.00% 0.01% 74.79% 0.00% 83.38% 0.00% 77.49% 0.00% 75.49% 0.00% 45.21%

Isolation Forest 0.42% 0.31% 23.30% 0.09% 73.23% 0.02% 74.98% 0.00% 75.00% 0.00% 56.20%
k-means 1.60% 1.51% 70.24% 1.22% 78.56% 1.08% 78.04% 0.94% 76.62% 0.91% 75.58%
OCSVM 0.00% no alert no alert no alert no alert no alert

S4

ODIN 0.07% 0.07% 80.83% 0.06% 87.88% 0.07% 86.86% 0.06% 49.92% 0.04% 6.30%
LOF 0.10% 0.10% 80.63% 0.10% 89.18% 0.10% 90.62% 0.10% 89.91% 0.09% 49.44%

MeanDIST α-med 0.03% 0.03% 68.33% 0.03% 77.60% 0.03% 78.19% 0.03% 76.32% 0.03% 45.97%
MeanDIST HKF+ 0.09% 0.08% 72.50% 0.06% 79.30% 0.05% 75.77% 0.04% 73.91% 0.01% 33.31%

Isolation Forest 0.08% 0.04% 23.96% 0.02% 49.16% 0.00% 51.33% 0.00% 52.73% 0.00% 43.05%
k-means 0.00% 0.00% 47.08% 0.00% 53.81% 0.00% 53.60% 0.00% 53.76% 0.00% 53.54%
OCSVM 0.03% 0.63% 49.17% 0.00% 46.77% 0.00% 35.38% 0.00% 6.25% 0.00% 1.16%

TABLE III: Detection efficiency with 1% compromised devices. Red: TPR ≤50%. Orange: TPR ≤80%.

Software Algorithm FPR TPR P1 TPR P2 TPR P3 TPR P4 TPR P5 TPR P6 TPR P7 TPR P8

S1
ODIN 0.10% 100% 100% 100% 14.50% 100% 100% 33.93% 100%
LOF 0.18% 100% 100% 100% 79.14% 100% 100% 31.06% 100%

MeanDIST α-med 0.07% 100% 100% 100% 87.28% 100% 100% 30.92% 100%

S2
ODIN 0.01% 99.80% 99.74% 100% 10.52% 100% 99.09% 100% 99.70%
LOF 0.07% 100% 100% 100% 54.21% 100% 100% 100% 100%

MeanDIST α-med 0.05% 100% 100% 100% 91.83% 100% 100% 100% 100%

S3
ODIN 0.01% 99.29% 66.67% 100% 63.09% 66.67% 99.27% 92.63% 81.53%
LOF 0.02% 99.29% 100% 100% 25.85% 100% 100% 100% 100%

MeanDIST α-med 0.43% 99.33% 100% 100% 91.83% 100% 100% 100% 100%

S4
ODIN 0.07% 98.61% 100% 100% 53.61% 93.75% 100% 48.88% 100%
LOF 0.10% 100% 100% 100% 96.18% 100% 100% 28.78% 100%

MeanDIST α-med 0.03% 100% 100% 100% 36.58% 63.09% 100% 25.87% 100%

4) Impact of attack type: Table III shows the result for
1% compromised devices and specifically the TPR of each
attack for the most effective algorithms: ODIN, LOF and
MeanDIST α-med. Overall, the attacks are very well detected:
P1, P2, P3, P5, P6 and P8 are always successfully detected
by MeanDIST α-med. Only two attacks are harder to detect:
P4 (command lines drawn from honeypots) on all software
profiles and P7 (victim of bruteforce SSH attack) on S1 and
S4. The difference concerning P4 and P7 can be explained
by the software profile: since S4 involves intensive legitimate
network communications, it is harder to notice the commands
or SSH bruteforce as they are merged with the legitimate
communications. Note that P5, a more intense version of P4,
is adequately detected on all software profiles.

G. Performance overhead and scalability

Each file sent to the server contains ∆s/∆p values per
counter for a total of |C|(∆s/∆p) values. Assuming each
counter uses 64 bits, a binary encoding would lead to a file
size of 8|C|(∆s/∆p) bytes. For a population composed of
|D| devices, the server receives and processes about 8|C| ·
|D|(∆s/∆p) bytes every ∆s. In the context of our experiment
(32 bits counters), |C| = 7,|D| = 10000, ∆p = 5 and
∆s = 1800, so about 200MB are processed (i.e. 20kB are
sent by each device) every 30 minutes.

All the anomaly detection algorithms we experimented with
could process the population of 10,000 devices in less than
15s on a personal computer with an Intel Core i7-3687U
CPU @ 3.3GHz processor and 8 gigabytes of RAM. We can
estimate the scalability of these algorithms based on their
temporal complexity, reported in Table IV. One would expect

most of these algorithms (except OCSVM) to be able to
process a population of 100,000 devices in less than 5 minutes.
Isolation Forest and k-means provided the best execution time
performance (about 1s to process the population) and could
probably handle 10,000,000 devices in less than 30 minutes.
These results show the practical applicability of our approach
in a realistic industrial set up.

TABLE IV: Temporal complexity of detection algorithms. n =
|D| (number of devices), k is the neighborhood size.

ODIN LOF MeanDIST KDIST
O(kn log(n)) O(kn log(n)) O(kn log(n)) O(kn log(n))

Isolation Forest k-means OCSVM HDBSCAN
O(n) O(kn) O(n3) O(n log(n))

VI. CONCLUSION AND PERSPECTIVES

In this paper, we explored the relevance of Hardware Per-
formance Counters to support anomaly detection in industrial
IoT devices. Then we proposed a lightweight approach based
on outlier detection algorithms, well adapted to operational
contexts with a massive deployment of devices sharing the
same architecture. We have conducted extensive experiments
with a large number of devices, various software profiles and
attack payloads as well as several outlier detection algorithms.
We are not aware of similar experiments in the literature.
Our experiments show high detection efficiency as well as
high scalability, and our extensive results show that HPC
can be successfully used with simple devices in industrial
IoT environments. In addition, the calibration of the outlier
detection algorithms is not highly dependent on the software
program running on the devices, which should facilitate the
practical application of the approach when several software
updates are performed. For all these reasons, our approach
should have an high potential to be successfully deployed in
an industrial operational set up. These conclusions need to
be validated by other experiments, considering other software
workloads and attack payloads, as well as in an industrial
environment. To further facilitate the reproducibility of our
results, we will make our code and data publicly available.

For future work, more features can be extracted from the
counters time series. However we need to keep in mind that we
have to compute them regularly for thousands of devices. The
detection of network attacks also needs to be improved, either
by using complementary existing low level information or by
defining new mechanisms more adapted to the monitoring of
network communications.

Another perspective consists in taking into account in our
anomaly detection approach the evolution of the behavior of
the devices over time, instead of comparing their behavior only
during the time period when a new measurement is performed.

REFERENCES

[1] A. Mosenia and N. K. Jha, “A comprehensive study of security of
internet-of-things,” IEEE Transactions on Emerging Topics in Comput-
ing, vol. 5, no. 4, pp. 586–602, 2016.

[2] C. Kolias, G. Kambourakis, A. Stavrou, and J. Voas, “DDoS in the IoT:
Mirai and other botnets,” Computer, vol. 50, no. 7, pp. 80–84, 2017.

[3] K. Khan, A. Mehmood, S. Khan, M. A. Khan, Z. Iqbal, and W. K.
Mashwani, “A survey on intrusion detection and prevention in wireless
ad-hoc networks,” Journal of Systems Architecture, vol. 105, p. 101701,
2020.

[4] V. Hassija, V. Chamola, V. Saxena, D. Jain, P. Goyal, and B. Sikdar, “A
survey on iot security: application areas, security threats, and solution
architectures,” IEEE Access, vol. 7, pp. 82 721–82 743, 2019.

[5] M. B. Bahador, M. Abadi, and A. Tajoddin, “HPCMalHunter: Behavioral
malware detection using hardware performance counters and singular
value decomposition,” in 2014 4th International Conference on Com-
puter and Knowledge Engineering (ICCKE). IEEE, 2014, pp. 703–708.

[6] A. Tang, S. Sethumadhavan, and S. J. Stolfo, “Unsupervised anomaly-
based malware detection using hardware features,” in International
Workshop on Recent Advances in Intrusion Detection. Springer, 2014,
pp. 109–129.

[7] S. Das, J. Werner, M. Antonakakis, M. Polychronakis, and F. Monrose,
“Sok: The challenges, pitfalls, and perils of using hardware performance
counters for security,” in Proceedings of 40th IEEE Symposium on
Security and Privacy, 2019.

[8] V. M. Weaver and S. A. McKee, “Can hardware performance counters
be trusted?” in 2008 IEEE International Symposium on Workload
Characterization. IEEE, 2008, pp. 141–150.

[9] V. M. Weaver, D. Terpstra, and S. Moore, “Non-determinism and
overcount on modern hardware performance counter implementations,”
in 2013 IEEE International Symposium on Performance Analysis of
Systems and Software (ISPASS). IEEE, 2013, pp. 215–224.

[10] B. Zhou, A. Gupta, R. Jahanshahi, M. Egele, and A. Joshi, “Hardware
performance counters can detect malware: Myth or fact?” in Proceedings
of the 2018 on Asia Conference on Computer and Communications
Security. ACM, 2018, pp. 457–468.

[11] X. Wang, C. Konstantinou, M. Maniatakos, R. Karri, S. Lee, P. Robison,
P. Stergiou, and S. Kim, “Malicious firmware detection with hardware
performance counters,” IEEE Transactions on Multi-Scale Computing
Systems, vol. 2, no. 3, pp. 160–173, 2016.

[12] P. Krishnamurthy, R. Karri, and F. Khorrami, “Anomaly detection in real-
time multi-threaded processes using hardware performance counters,”
IEEE Transactions on Information Forensics and Security, vol. 15, pp.
666–680, 2019.

[13] P. J. Rousseeuw and C. Croux, “Alternatives to the median absolute
deviation,” Journal of the American Statistical association, vol. 88, no.
424, pp. 1273–1283, 1993.

[14] V. Chandola and V. K. A. Banerjee, “Anomaly detection: a survey,”
Computing Surveys (CSUR), vol. 41, no. 3, p. 15, 2009.

[15] S. Ramaswamy, R. Rastogi, and K. Shim, “Efficient algorithms for
mining outliers from large data sets,” in Proceedings of the 2000 ACM
SIGMOD international conference on Management of data, 2000, pp.
427–438.

[16] M. M. Breunig, H.-P. Kriegel, R. T. Ng, and J. Sander, “LOF: Identifying
density-based local outliers,” SIGMOD Rec., vol. 29, no. 2, p. 93–104,
May 2000.

[17] V. Hautamaki, I. Karkkainen, and P. Franti, “Outlier detection using
k-nearest neighbour graph,” in Proceedings of the 17th International
Conference on Pattern Recognition, 2004. ICPR 2004., vol. 3. IEEE,
2004, pp. 430–433.

[18] L. McInnes, J. Healy, and S. Astels, “hdbscan: Hierarchical density
based clustering,” Journal of Open Source Software, vol. 2, no. 11, p.
205, 2017.

[19] L. McInnes and J. Healy, “Accelerated hierarchical density based cluster-
ing,” in 2017 IEEE International Conference on Data Mining Workshops
(ICDMW). IEEE, 2017, pp. 33–42.

[20] F. T. Liu, K. M. Ting, and Z.-H. Zhou, “Isolation forest,” in 2008 Eighth
IEEE International Conference on Data Mining. IEEE, 2008, pp. 413–
422.

[21] M. Amer, M. Goldstein, and S. Abdennadher, “Enhancing one-class
support vector machines for unsupervised anomaly detection,” in Pro-
ceedings of the ACM SIGKDD workshop on outlier detection and
description, 2013, pp. 8–15.

[22] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg et al.,
“Scikit-learn: Machine learning in python,” the Journal of machine
Learning research, vol. 12, pp. 2825–2830, 2011.

[23] V. Nicomette, M. Kaaniche, E. Alata, and M. Herrb, “Set-up and
deployment of a high-interaction honeypot: experiment and lessons
learned,” Journal in computer virology, vol. 7, no. 2, p. 143, 2011.

