N

N

Anomaly detection using hardware performance
counters on a large scale deployment
Malcolm Bourdon, Eric Alata, Mohamed Kaaniche, Vincent Migliore, Vincent

Nicomette, Youssef Laarouchi

» To cite this version:

Malcolm Bourdon, Eric Alata, Mohamed Ka#niche, Vincent Migliore, Vincent Nicomette, et al..
Anomaly detection using hardware performance counters on a large scale deployment. 10th European
Congress Embedded Real Time Systems (ERTS 2020), Jan 2020, Toulouse, France. hal-03328254

HAL Id: hal-03328254
https://laas.hal.science/hal-03328254
Submitted on 29 Aug 2021

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://laas.hal.science/hal-03328254
https://hal.archives-ouvertes.fr

Anomaly detection using hardware performance counters on a large scale
deployment

Short Paper

Malcolm Bourdon
EDF R&D, LAAS-CNRS
Palaiseau, France

Abstract—The last recent years witnessed a massive and fast
deployment of Internet of Things (IoT) devices. Most of them
have not been designed with a careful analysis of security
requirements, which makes them likely to include multiple
vulnerabilities. Moreover, as these devices include various
communication interfaces, they have become a privileged target
for attackers. As a consequence, large scale attacks, such as
Mirai, must be considered seriously and it is crucial to design
and implement protection and intrusion detection mechanisms
to mitigate the threats associated to the use of IoT devices in
our daily activities as well in critical environments.

This paper proposes an anomaly detection approach, in
the particular context of a large scale deployment of identical
IoT devices. Furthermore, we consider an attacker who can
install and execute malicious software while continuing to
execute legitimate software, in order to stay invisible as much
as possible. The approach is based on the statistical analysis
of Hardware Performance Counters (HPC) collected at a
regular basis from these identical devices, and to highlight the
outliers corresponding to significant deviations with respect
to normal usage scenarios. This idea relies on the intuition
that it is very difficult for the attacker to add some malicious
software in a corrupted device without perturbing the HPCs.
This paper presents this approach and the first experiments
carried out to assess its relevance.

keywords : Cyber security, Anomaly detection, Hardware
performance counters, Internet of Things (IoT).

1. Introduction

The expansion of the Internet Of Things (IoT) in the
market is quite noticeable nowadays. These connected de-
vices improve quality of life and usability by providing
interoperability, remote control, monitoring or alert and noti-
fication services. Such features, coupled with a high level of
connectivity, greatly increase the attack surface. Therefore,
large scale attacks are one of the major threats.

The Mirai malware is one of the most representative
examples. It can provide remote access to devices that have
poor telnet service implementation, and once infected,
such devices can act as malicious botnets and infect other

Eric Alata and Mohamed Kaaniche and
Vincent Migliore and Vincent Nicomette
LAAS-CNRS, Toulouse, France

Youssef Laarouchi
EDF R&D, Palaiseau, France

devices [1]. Furthermore, Mirai source code is now public
which increases the level of threat since many IoT devices
are vulnerable.

In this paper, we consider the particular context of a
large scale deployment of IoT devices running on the same
hardware, executing the same software, with potentially a
different usage profile according to the environment where
the device is deployed. All these identical devices are as-
sumed to communicate with a remote server that is managed
by the service provider. This is the case for example of IoT
devices deployed by energy suppliers to monitor and opti-
mize energy consumption in individual homes, in buildings
or at a larger scale. We present a novel lightweight approach
that is aimed at the efficient detection of compromised
devices by monitoring the behavior of the whole set of
devices and detecting potential deviations with a normal
usage profile. The anomaly detection algorithm, running at
the server, is based on the statistical analysis of Hardware
Performance Counters (HPC) sent by each device to the
server on a regular basis. Such an architecture minimizes
the computation overhead on the devices, that have generally
constrained resources.

Some research works have already investigated the use
of Hardware Performance Counters for security purposes,
but only few of them for constrained devices. To the best
of our knowledge, most of them rely on the development
of a sophisticated behavioral model of the devices at pre-
deployment stage. The approach proposed in this paper is
an alternative that does not require any predictive model
to perform the anomaly detection. It mainly consists in
analyzing the different HPCs data received from all the
devices and identifying outliers.

The threat model corresponds to an attacker who can
install and execute a malware on the device while continu-
ing to execute the legitimate software. Such malware may
be designed to steal confidential data, carry out denial of
service (DoS) attacks, or use the power of the device e.g., to
mine bitcoin. In addition, as the attacker wants to let the user
think that the device operates correctly, he does not modify
or stop the legitimate software. We argue that according
to these assumptions, it is very difficult for an attacker to
perform such attacks without disrupting significantly the
values of the HPCs compared to those captured by non

compromised devices. As we compare the behavior of a
large set of devices, and we assume that an attacker cannot
corrupt a majority of devices at once, it is very likely that the
detected anomaly (or outlier) detection is not due to noise
or to an unsual behavior of the legitimate software.

Such an approach does not require any predictive model
of the behavior of the HPC. The anomaly detection is based
on the raw values regularly sent to the server. We also
assume that there is a secure channel between the device
and the server.

This paper aims at describing this anomaly detection
approach and presenting the results of the first experiments
that we carried out to assess the relevance of our approach.

Section 2 discusses some security related research works
based on hardware performance counters. Section 3 is dedi-
cated to the presentation of hardware performance counters:
how it is possible to use them, which characteristics of the
system they are able to measure. In Section 4 we describe
the experiments we have carried out to assess our anomaly
detection approach, as well as their results. Finally, Section
5 concludes and presents future work.

2. Related Works

Hardware Performance Counters (HPC) were initially
created for debugging purposes. However, some research
works have already proposed to use them for security. The
main idea in most of these works is that the behavior
of the processor’s HPCs during the execution reflects the
behavior of the software executing on the processor. Hence,
it is possible create a model of the software’s execution on
the device from the HPC values. Furthermore, using HPCs
for security purposes presents several advantages: collecting
them have a tiny impact on the performance and they are
hard to simulate for an attacker.

Some research works investigated the use of HPCs in or-
der to detect malware, e.g., [2], HPCMalHunter [3], HLMD
[4]. For that purpose, they model the impact of attacks on
the HPCs and check them during the execution. [2] uses
unsupervised learning techniques to create this model, while
HPCMalHunter [3] uses Single Value Decomposition based
on SVM to classify the observed behavior as corresponding
to benign or malicious program execution. [4] only uses
malicious programs and tries to establish signatures repre-
sentative of the different kinds of attacks performed.

Some other related works focus on specific attacks or
specific type of software. For example, [5] proposes to use
HPCs to detect time-fragmented cache attacks on AES. A
threshold-based anomaly detection approach is developed
for that purpose.

Some papers point out that these counters may not reflect
the actual number of occurrences of the events they should
describe [6]. Our approach should not be affected by this
problem, generally referred to as overcounting, because it
relies on the detection of outliers among a set of hardware
identical devices. The overcounting is likely to affect all
devices in the same way and should not prevent the identi-
fication of outliers.

The closest research work to the approach proposed
in this paper is, to the best of our knowledge, ConFirm
[7]. ConFirm only deals with firmware, is located on the
bootloader and randomly inserts checkpoints into the code
from which the HPCs are retrieved. Some pre-deployments
models are built for each subroutine so that the verifier can
compare the reported values with the expected one. The
main difference with our approach is that we don’t need to
do these pre-deployment tests on each subroutine because
we monitor a large number of devices and compare them.
In addition, our approach must also be adapted to devices
running a real operating system and not just firmware.

3. Hardware Performance Counters

Hardware performance counters (HPCs) are hard-
ware units that provide measurements on certain micro-
architectural or architectural events. They do not necessarily
exist on all processors but tend to be more present in most
modern processors. They can be implemented differently
depending on the processor family, but their main utility
remains the same for all families. More precisely, they
allow to recover certain events such as L1 cache misses,
hits or refills, instructions retired, bus accesses, etc. They
are intended to be used for debugging purposes, but they
can also be used for other purposes, such as optimization,
profiling, tracing, etc.

Some specific processor registers are dedicated to the
storage of these counters. Depending on the processor, there
are two to eight of these registers to store the counter
values of a pool of events that can range from twenty to
more than one hundred events (depending on the different
processors). The configuration of these registers requires
kernel privilege but it is possible to configure them so that
their read mode access is allowed from the user space. HPC
values can be retrieved via specific instructions or by using
certain dedicated interrupts called Performance Monitoring
Interrupt.

Some tools, such as PAPT or perf_event, have been
developed to profile software with HPCs for different pro-
cessors. We took advantage of these existing tools to build
our own code specially adapted for our own experiences.

We had to choose the counters that could best show a
significant difference when malware is running at the same
time as legitimate software. We selected counters that best
cover the different functionalities of a hardware and software
execution platform: cache memories, communication buses,
prediction branches, etc. We also selected these counters
using other research works, such as the ones mentioned
above, which recommend some interesting counters in their
work. More detailed information on the selected counters is
provided in the following section.

4. Experimentation

Our approach is mainly based on comparing HPCs be-
tween a large number of identical devices to expose outliers.

Since it was impossible for us to obtain hundreds of identical
devices, we repeated experiments on a set of 10 identical
hardware devices under the same conditions. All devices
were restarted at the end of each experiment to prevent
any side effects between two consecutive experiments. The
devices we used for the experiment were Raspberry Pi
3B+, with ARM A53 processors. These processors have
6 registers to monitor a pool of 28 different architectural
or micro-architectural events. A 7th register that cannot be
configured stores processor cycles. The counters chosen for
our experiment are as follows: Level 1 data cache refill,
Level 1 data cache access, Instruction architecturally exe-
cuted, Exception taken, mispredicted or not predicted branch
speculatively executed and Bus access.

We have developed three software programs that perform
different simple tasks. Softwarel sends values to a server
via the Internet connection, software2 processes files and
data, and software3 makes intensive use of the processor by
compiling a program. In this experiment, softwarel and soft-
ware2 correspond to the legitimate software and software3
represents the added malware. The idea is then to see if there
are easily noticeable differences in HPC behaviors between
the two sets of software. It should be noted that we designed
the experiments in such a way that it was possible to modify
some of their parameters (task frequency, data size, etc.) and
easily create different workloads.

To perform our experiments, the process is pinned to a
single core and the counters are stored every 5 seconds in
a local file on the device. The experiment takes 30 minutes
and the file containing the counters is sent to the server,
which then performs statistical analyses on the results. We
have had 90 devices run softwarel and software2, and 10
”malicious” devices also run software3. The time between
two consecutive counter storage (5 seconds) and the time
between two consecutive communications with the server
for HPC recovery were empirically chosen for this experi-
ment. They must be adapted to each experiment according
to different constraints: the amount of data to be sent, the
network bandwidth, the time interval at which anomalies are
to be detected, etc.

The anomaly detection algorithm we chose for these
first experiments is the local outlier factor (LOF) algorithm.
This algorithm is based on the comparison of local density
around different points. The local density is calculated with
k neighbors, which was set at 20 in our experiments. This
algorithm also provides a score describing how “normal”
this local density is. We used the LOF code implemented
in the software sklearn with the contamination parameter
(number of suspect outliers) set to ~auto”.

To reduce the number of inputs per device to be
processed by the anomaly detection algorithm, we calcu-
lated descriptive statistics for each counter for each device
throughout the experiment. These statistics are as follows:
mean, standard deviation, minimum, first quartile, median,
third quartile, maximum.

To avoid the so-called curse of dimensionality (indicat-
ing that anomaly detection or the learning algorithm may be
less effective when there are many features) and to perform

simple experiments first, only one descriptive statistic was
selected per counter and used to perform anomaly detection
on a dimensional vector. Another advantage of such a sim-
ple experiment is that it provides graphs that are easy to
interpret.

2.4 le7

221
20}
18}
16}

B I R L L

14}

12 L L L L L L
-20 0 20 40 60 80 100 120

Figure 1. Mean of L1 data cache refill by device

Figure 1 shows the result of the anomaly detection
algorithm for the average number of L1 data cache refills per
device. The red dots correspond to the devices considered as
outliers by the algorithm. The test gives good results. Indeed,
in our figure, the abscissa axis corresponds to the number
given to the device, and the ten first points, which are
detected as outliers, actually correspond to the “malicious”
ones. For each counter we tested, the same successful result
was obtained. However, we can also notice some false
positives, because some legitimate devices are slightly out
of bound compared to the others for this particular graph
and are considered as outliers. Moreover, the edge of the
main cluster is as well labeled as outlier. But this graph only
represents one statistic of one counter, and does not show
the actual score given to the device. So, to aggregate all
our results, we summed the negative outlier factor given by
the LOF algorithm for each counter and statistics in order to
aggregate all the results and obtain a global score per device.
The lower the score, the less “normal” the device is. Figure
2 represents the score per device. In this experiment, green
dots, which have a different score than all other devices,
correspond to devices that execute the malicious software
in addition to the legitimate software.

This first experiment is promising and it should be
interesting to use multi-dimensional vectors to confirm the
results. However, the choice of these dimensions is not
straightforward. Principal Components Analysis (PCA) is a
statistical method generally used to select the most relevant
dimensions. But it was impossible in our experiments to
use PCA because this analysis requires that we have access
to representative samples of attacks. We carried out an
experiment with empirically chosen vectors of two dimen-
sions. These vectors contain the same descriptive statistics

500 T T T T T T

of ey i 1

-500} 1
-1000} 1
~1500} 1
-2000} |
-2500} 1
-3000} .. 1

e
-3500} : 1
-4000 .
-20 0 20 40 60 80 100 120

Figure 2. sum of the LOF algorithm scores for one dimension vectors by
device

1000

of N ———————————
—1000 B
—2000} B
-3000} 4

—4000L ’]

—5000
=20 0 20 40 60 80 100 120

Figure 3. sum of the LOF algorithm scores for two dimensions vectors by
device

of two following counters (for example the mean of the
first counter and the mean of the second one). Hence we
processed the algorithm on the same amount of vectors as
previously but with two dimension vectors. The idea here
was to correlate different device’s counters in our analysis
without adding much complexity and computation. Figure
3 represents the score obtained for these two dimensional
vectors. It can be seen that the Figure 3 and the Figure 2
are quite similar and give good results. Other experiments
need to be carried out to better parametrize and optimize
the techniques used to detect the anomalies, but these first
experiments give positive results, which confirm that the
approach we propose, based on the comparison of HPCs
and detection of outliers, is promising.

5. Conclusion and future work

This paper has proposed an anomaly detection approach
based on the analysis of HPCs for massively deployed
identical devices. The preliminary experiments we carried
out provide promising results and highlight that it is possible
to distinguish different software executions on devices using
these HPCs. For future work, we plan to continue our
experiments and optimize the anomaly detection process,
for example by changing the way we transform the raw
HPC values, and by choosing more suitable vectors to be
processed by the anomaly detection algorithm. We also plan
to add more dimensions to our vectors and explore other
statistical techniques to process the data. Another idea is
to experiment with different sets of hardware performance
counters and thus create a guide to help to choose the best
events to take regarding our method. Finally, we need to
measure the precision and accuracy with which we detect
anomalies thanks to these HPCs, and determine the differ-
ences we can detect in software behavior when using HPCs.

References

[1] C. Kolias, G. Kambourakis, A. Stavrou, and J. Voas, “Ddos in the iot:
Mirai and other botnets,” Computer, vol. 50, no. 7, pp. 80-84, 2017.

[2] A. Tang, S. Sethumadhavan, and S. J. Stolfo, “Unsupervised anomaly-
based malware detection using hardware features,” in International
Workshop on Recent Advances in Intrusion Detection. Springer, 2014,
pp. 109-129.

[3] M. B. Bahador, M. Abadi, and A. Tajoddin, “Hpcmalhunter: Behavioral
malware detection using hardware performance counters and singular
value decomposition,” in 2014 4th International Conference on Com-
puter and Knowledge Engineering (ICCKE). 1EEE, 2014, pp. 703—
708.

[4] ——, “Hlmd: a signature-based approach to hardware-level behavioral
malware detection and classification,” The Journal of Supercomputing,
pp. 1-32, 2019.

[5] I. Prada, F. D. Igual, and K. Olcoz, “Detecting time-fragmented cache
attacks against aes using performance monitoring counters,” arXiv
preprint arXiv:1904.11268, 2019.

[6] S. Das, J. Werner, M. Antonakakis, M. Polychronakis, and F. Monrose,
“Sok: The challenges, pitfalls, and perils of using hardware perfor-
mance counters for security,” in Proceedings of 40th IEEE Symposium
on Security and Privacy (S&P19), 2019.

[71 X. Wang, C. Konstantinou, M. Maniatakos, R. Karri, S. Lee, P. Ro-
bison, P. Stergiou, and S. Kim, “Malicious firmware detection with
hardware performance counters,” IEEE Transactions on Multi-Scale
Computing Systems, vol. 2, no. 3, pp. 160-173, 2016.

