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Machine learning as an alternative to thresholding
for space radiation high current event detection

Adrien Dorise, Corinne Alonso, Audine Subias, Louise Travé-Massuyès, Leny Baczkowski and François Vacher

Abstract—The space environment is known to be the seat
of radiation of different kinds to which satellites in orbit are
subjected. These include cosmic rays that come from stars and
radiation belts that come from the Earth magnetic field. The
impact of radiation on electronic components results in anomalies
called ”Single Event Effects” which can lead to the destruction
of equipment. Various protection methods exist, like hardening
of components or satellite shielding, but they are often costly
and/or difficult to implement. This is why space designers try to
circumvent these processes by an efficient software protection
method. This paper reports a set of experiments based on
machine learning tools that will provide the basis to design
and develop an anomaly detection method for Single Event
Effects. The data sets that were used are issued from emulated
radiations obtained by laser tests on a SAM3X microcontroller,
complemented by data obtained by simulation.

Index Terms—Fault detection, Machine learning, Electronic
applications, Aerospace engineering, Satellites, Space Radiations

I. INTRODUCTION

Since the launch of the first satellite Sputnik-1 on the 4th
October 1957, efficiency of electronic components have in-
creased significantly. In consequence, electronic devices have
become smaller. However, coming with these technological
breakthroughs, a new problem has emerged in space appli-
cations. Space electronic became sensitive to space radiation
and thus, new types of faults appeared [1]. These faults are
called Single Event Effects (SEEs) [2]. Single Event Effects
in a micro-electronic device are caused by a single energetic
particle and can take many forms. It can go from a logical
change of state also called single event upset, to the modifi-
cation of the component’s supply current that constitutes the
so-called Single Event Latch-up (SEL). This work focus on
SEL.

SEL occurs when an energetic particle triggers a low-
impedance path leading to a parasitic structure in the substrate
of a micro-component [3] [4]. This leads to a High Current
Effect (HCE) that can be destructive. However, when detected
in time, a power cycling is able to protect the component from
any damage. Therefore, it is a real advantage to detect correctly
single event latch-up. In addition to the destructive high current
event caused by SEL, µlatch-up phenomena, causing small
HCE, have to be considered. These faults are not destructive
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but can paralyse a function of the system or induce long-term
damages. Based on Chandola [5], SEL can be described as
collective anomalies because multiple points are diverging far
from the nominal behaviour. As for µlatch-up, they can be
described as collective and contextual anomalies, as they can
remain hidden in the nominal behaviour of components.

The most common SEL detection method relies on an anti
latch-up system: a threshold is set on the supply current [6].
When the current is higher than the limit, an alarm is raised
and a power cycling is triggered. The main drawback of this
system is that it cannot detect µlatch-up hidden in the supply
current, as the threshold is chosen within a margin to the
supply current maximum peak. It is why extensive researches
are done to improve this method. Specific components are
emerging with the purpose of detecting HCE [7]. One patent
about a self adjusting threshold is filled [6], proposing less
margin between the threshold and the supply current. Another
patent [8] uses a detection method based on two detectors.
The first one monitors the absolute load current and the
second one analyses the current rate of change. Also, Airbus
recently funded Zero-Error Systems to work on radiation-proof
space systems [9]. Researches on space radiation detection
are a challenging issue of prime importance, as they can
significantly improve satellites durability and reduce the costs
due to radiation hardened technology. This paper presents
a preliminary work on a new anti latch-up system based
on machine learning algorithms. We focus on classification
and clustering, in an attempt to see how machine learning
techniques can improve HCE, and more specifically, small
HCE detection.

The paper is divided as in the following. Section 2 reviews
the implementation of a test bench for the creation of data
sets. Section 3 reviews the results of HCE detection, first
using supervised learning, then using a combination of both
unsupervised and supervised learning. Finally, section 4 draws
conclusion and open on the future work.

II. DATA SETS CREATION

In this paper, we are trying to detect the effects of space
radiations on electronic devices. Therefore, The first step is to
select a component that we could use to create our case study.

A. A space case study

The Atmel SAM3X microcontroller has been chosen for our
case study, as this electronic component is used in real-case
space application. For instance, the radiation tolerant version
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(a) Load profile

(b) Software profile

Fig. 1: SAM3X supply current profiles depending on the
activity

was implemented on the ANGEL satellite launched in De-
cember 2019. Moreover, its non radiation-hardened version is
widely commercialized on development boards. The SAM3X
is a 32 bits flash microcontroller based on the Cortex M3
processor. It operates at 84MHz, features 512 Kb of flash
memory and possesses 103 I/O lines.

Experiments are made to understand the behaviour of the
chip supply current. Two different supply current profiles have
been highlighted. The first one is directly linked to the I/Os of
the microcontroller. Indeed, a change in an output induces a
modified electrical load, which in turn triggers a modification
in the supply current amplitude. The second profile depends
on the state of the chip: when the SAM3X is performing
a calculation or a memory state modification, the behaviour
of the current is impacted. In this case, the amplitude is
unchanged, but the variance is. An example of these two
profiles is shown in figure 1. These profiles allow a better
understanding of the supply current normal behaviour. They
can be considered as a guide to build and implement real
case scenarios of a satellite operating. With these scenarios
it is possible to generate samples associated to the normal
behaviour.

In supervised learning, both normal and abnormal labels are
required. We now have the first half with normal labels.

B. A laser experiment to generate abnormal data

For anomaly detection purpose, abnormal samples must also
be considered. In our case, it means injecting single event
latch-up faults in the SAM3X. To do so, a laser test bench
was done. Indeed, by pointing a laser on sensitive nodes of a
microcontroller, it is possible to create HCE. Note that it is not
possible to say with certainty that the faults created are indeed
SEL, but they are close enough to be valid in our study.

First, the upper face of the SAM3X is removed using
atmospheric plasma to access the internal components of the
chip. Then, the test bench is designed as shown in Figure 2.
Below is a description of the different equipment used.

• U1: Tenma 72-8690A DC Power supply featured with
two 32V, 3A outputs

• U2: MAX17612CEVKIT evaluation board circuit protec-
tion. This equipment is used as a protection device to
avoid destruction of the device under test. It also send
an alarm when the supply current is higher than a set
threshold.

• U3: Device Under Test (DUT). An Arduino Due devel-
opment board equipped with an ATSAM3X8E microcon-
troller.

• A1/V1: Keithley DAQ6510 to monitor supply current and
voltage.

• PC Laser: Computer linking U2 to the laser software.
This software uses this information to pinpoint sensitive
nodes in the DUT.

• PC Manip: Computer recording the data.
The test campaign was done at CNES in Toulouse, France. The
laser characteristics are: wavelength γ = 1064nm; average
power Pavg = 1250mW and impulsion time t = 125µs.

Two types of faults occurred during the tests: punctual
current variations and high current events. As the HCEs are
pretty similar to fault created by space radiation, it is sufficient
for our study, making possible to create a complete data set
including both normal and abnormal data.

However, even though these data are similar to a real case
scenario, it is impossible to control the abnormal behaviour of
an electronic component. No example of µlatch-up was found,
and only few examples of abnormal data were generated
during the test campaign. Thus, it appears that these laser ex-
periments are not sufficient to provide enough faulty behaviour
samples needed to perform machine learning detection. As a
consequence, a simulation framework is created in order to
access easily a large amount of data sets.

Fig. 2: Laser bench diagram
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C. A simulation framework to generate data sets

Based on the data generated by laser tests, multiple data
sets are simulated in MATLAB. The data gathered from the
experimental testing are used to mimic the behaviour of a
real microcontroller. A simulated data set can be defined as
D(t) = {I(t), y(t)} where I(t) and y(t) are the supply current
and the class labels at time t ∈ <+. The variable I(t) is the
result of multiple functions and can be described as:

I(t) = (fNominal(t, Ī) +
∑
i

fLoadi
(t, li, ti, di)

+
∑
j

fSoftj (t, sj , tj , dj) +
∑
k

fTempk
(t, ak, tk, dk)

+
∑
l

fHCEl
(t, fl, tl, rl)) ∗

∑
m

fResetm(t, tm, dm)

(1)

with i, j, k, l,m ∈ N+ indexing the multiple occurences of
each function. The fNominal function simulates the base
current of a microcontroller. It is done by taking the mean
current of the component Ī and adding normally distributed
noise [10]:

fNominal(t, Ī) = Ī +Noise(t) (2)

The fLoadi function simulates the electrical load created by a
component on the microcontroller. It is defined as a rectangular
function:

fLoadi
(t, li, ti, di) =


0 if t < ti and t > ti + di
li
2 if t = ti or t = ti + di
li if t > ti + di and t < ti + di

(3)
with li the added load current, ti the time when the load
begins, di the duration. fSoftj corresponds to the current
modifications induced by the internal processing of the micro-
controller (calculations or memory modification for example).
When active, this function amplifies the noise already present
in the fNominal function:

fSoftj (t, sj , tj , dj) =

{
0 if t < tj and t > tj + dj
−1r(t) ∗ sj if t ≥ tj and t ≤ tj + dj

(4)
with sj the added noise, r(t) a function alternating between
0 and 1, the random function, tj the time when the function
begins, dj the duration. The fTempk

function corresponds to
a modification of the component environment temperature. A
linear function is then applied to the data set:

fTempk
(t, ak, tk, dk) =

 0 if t < tk
ak(t− tk) if t ≥ tk and t ≤ tk + dk
ak(tk + dk) if t > tk + dk

(5)
with ak the linear coefficient of the variation, tk the time when
the variation begins, dk the duration. The Resetm function
simulates a power cycling:

fResetm(t, tm, dm) =

{
1 if t < tm and t > tm + dm
0 if t ≥ tm and t ≤ tm + dm

(6)

with tk the time when the reset begins, dk the duration. Finally,
the fHCEl

function simulates persistent high current events. It

is similar to fLoadi , except that the modification stays active
permanently or until fResetm is performed:

fHCE(t, fl, tl, rl) =

{
0 if t < tl and t ≥ rl
fl if t ≥ tland t < rl

(7)

with fl the fault magnitude, tl the time when the fault begins,
rl the time of the next reset (the end of the data set if no reset
occurs afterwards).

Using equation (1), a complex normal behaviour scenario
can be created. Finally, small HCE are added to the dataset
to get a complete representation of our problem. Figure 3
gives an example of a data set generated with the simulation
principle presented above. For this study, the faults injected are
small so they can be easily misjudge with nominal behaviour.
Indeed, classic threshold detection wouldn’t be able to detect
such faults. This study is done by using ten simulated training
sets of 10,000 samples and twenty simulated test sets of 1,000
samples. The sampling frequency is set to 1 second per sample.

Fig. 3: Simulation of the supply current

The next section presents the different machine learning
algorithms tested on these data sets for anomaly detection
purposes.

III. MACHINE LEARNING ANOMALY DETECTION

In this section, machine learning algorithms are considered
to improve the existing latch-up detection system. The algo-
rithms are expected to learn the normal behaviour of the chip
in order to distinguish a fault when a HCE occurs. For this
purpose, supervised classification algorithms are considered
first as a proof of concept. Then, unsupervised algorithms are
tested. But before, we need to gather more information from
the signal to feed our algorithms.

A. feature extraction

The data used in this study are composed of time series. The
only features currently available are supply current value and
time. However, HCEs caused by SEL are created by energetic
particles colliding with a satellite at random times. In that
case, we consider that time is an irrelevant feature in HCE
detection. The first objective is to extract additional relevant
information from the time series to enable characterizing HCE
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Fig. 4: Statistical features calculated using sliding time win-
dow. The values are normalized

signature. Statistical features are calculated using the Python
package stats from scikit-learn [11]. The minimum, maximum,
geometrical mean, variance, standard deviation of the mean,
median absolute deviation and k-statistic are calculated from
the data set. Still, we cannot just perform statistical calculation
on all samples of the set at once, as we want a statistical value
for each sample of the set. Thus, time windows have to be
defined.

Two methods are tested to define the time windows. The first
method is based on a sliding time-window. The k neighbours
of a particular point are taken to calculate the statistical
features. In consequence, a statistical value for each point of
the data set is collected. The second method uses the Python
package Ruptures [12]. This method calculates the ruptures
occurring in a time series. Indeed, HCE can be defined as a
rupture in the supply current. So we can consider that each
rupture in our data set can hide a HCE. To calculate the
features, the data points between two current ruptures are used
as time windows.

The result of the first time window transformation using
three statistical features is visible on Fig. 4. The two classes
are also visible and a separation is appearing. We now have
to classify these samples using multiple data sets.

B. Supervised anomaly detection

Supervised anomaly detection assume the availability of
both normal and abnormal labels. It builds a model based
on classes to determine whether or not a new sample is an
anomaly [5]. In our case, we distinguish normal behaviour
from HCE classes. The most popular algorithms were tested
to have a good overview of the possibilities given by machine
learning. Each of them is briefly described below.

1) Algorithms used:
• K-Nearest Neighbors: K-nn is a non-parametric method

that consists in finding the class of a point based on its
k nearest neighbours in the feature space (Altman [13])

• Naı̈ve Bayes: This method is based on applying Bayes’s
theorem (see equation (8)) with a strong independence
assumption between the features.

P (A\B) =
P (B\A) + P (A)

P (B)
(8)

• Decision Trees: This method uses tree-like models (Quin-
lan [14]) where the target variable can take a value in
a discrete set. In these structures, the leaves represent
class labels and branches represent conjunction of feature
values. This method is very popular because of its easy
to understand principle.

• Random Forests: This method is an ensemble learning
method, meaning that it is based on multiple machine
learning algorithms working together to get a better result.
In this case, a multitude of decision trees are used to build
the prediction.

• Support Vector Machines: SVM models maps training
examples to points in space so as to maximize the
width of the gap between the two classes. To do so, the
algorithm uses support vectors to calculate the maximum
margin between classes and find a linear correlation
between data. For non-linear separation, it is possible to
use the kernel trick, searching for the boundary in a higher
dimension space (Cortes [15]).

2) Results:
To get the global accuracy of the algorithm, the mean accuracy
of a total of 200 combinations of training set and test set
is calculated. All seven statistical features are used. When
the training is completed, boundaries are created, splitting
the different classes. Using these boundaries, it is possible
to predict the class of future points (in our case, the points of
test sets) and therefore evaluate the model.

The accuracy of the different algorithms is obtained using
equation (9).

Accuracy =
Number of correct predictions

Total number of predictions
(9)

The results are available in Fig. 5 for both sliding time
window and rupture window. Detailed results are available in
Table. V. In our case, we consider that a supervised learning
algorithm is satisfactory when its accuracy is between 90%
and 98% (higher would be a sign of overfitting). From the
results, we can conclude that most of the algorithms performed
well. Moreover, SVM has the best performance. The accuracy
of the rupture method is lower compared to sliding window.
However, as this method does not require to calculate the
features for each point in the data set, it enables to optimize
computation time. Thus, we design a protection for a time-
critical system and advantages of both methods have to be
considered before choosing the most suitable.

In the light of the good results given by supervised clas-
sification methods regarding the detection of µlatch-ups, we
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can validate learning algorithm as a possible improvement to
the current anti-latch-up system. The next step is to conclude
about unsupervised learning algorithms.

Fig. 5: Classification algorithms accuracy

C. Unsupervised anomaly detection
We demonstrated that supervised learning prediction is

acceptable enough for the detection of small HCE. However,
supervised learning is difficult to apply in real space appli-
cations as labelling the date is time-consuming and hence
expensive. In that case, unsupervised clustering algorithms are
considered instead of supervised classification, because class
labels are not needed by the algorithm. Unsupervised learning
algorithms determine classes based on similarity criterion. As
before, normal and abnormal data are present in the training
set.

1) Algorithms used:
• K-means clustering: This vector quantization method

aims to partition N observations into K clusters. Each
point is assigned to the cluster with the nearest mean. K
must be chosen by the user. Some methods exist to help
deciding about the K parameter. The one used in this
paper is the Elbow method. It consists in calculating the
Within Cluster Sum of Squares (WCSS) (see equation
(10)) for a multitude of K value and then finding the
elbow on the curve. This break is the optimal number of
clusters K

WCSS =
∑

clustersj

∑
pointsi

distance(Pi, Cj)
2 (10)

where Ci is the centroid for observation Pi.
• Hierarchical Clustering: This method aims to build a

hierarchy of clusters [16]. There are generally two strate-
gies: agglomerative when starting with one cluster for
each observation and merging them until all data form one
unique cluster, and divisive when starting with one single
cluster, and spliting it recursively as one moves down
the hierarchy. As in K-means clustering, the user has to
specify the number of desired clusters. In this paper, we
use the dendrogram method to select K.

• Density-Based Spatial Clustering of Applications with
Noise (DBSCAN): DBSCAN is a density-based clustering
non-parametric algorithm [17]. It aims to group data
points that are closely packed together. It also marks as
outliers points that lie in low-density regions. The main
parameter to set is the radius of a neighbourhood ε. Note
that this algorithm does not need to specify the number
of desired clusters.

• Dynamic clustering for tracking evolving environments
(DyClee): DyClee is a two-stages distance-based and
density-based clustering algorithm [18]. Data samples
are fed as input to the distance based clustering stage
in an incremental, online fashion, and they are then
clustered to form µclusters. The density-based algorithm
analyses the micro-clusters to provide the final clusters.
Thanks to a forgetting process, clusters may emerge, drift,
merge, split or disappear, hence following the evolution
of the environment. Like DBSCAN, DyClee does not
require the number of desired clusters, instead the main
parameter to be set is g size that defines the size of the
µclusters.

2) Parameter selection:
As clustering does not use class labels, it is important

to fine-tune the algorithms. Results are heavily sensitive to
parameters selection, it is hence important to find the best
combination.

Unlike classification, results now show multiple clusters
without any label. To cope with this, the expert opinion method
is used on the data set. Every cluster created by the algorithms
is assigned to a ”normal” or ”abnormal” label depending on
the true class (assuming that it is known) of the majority of
samples in the cluster. This method allows the creation of
labelled data based on clusters found by the algorithm.

Even though Kmeans and Hierarchical clustering generate
an a priori specified number of clusters, it is not the case for
DBSCAN and DyClee. In our case study, the optimal number
of classes would be two classes, so the best possible accuracy
should be achieved with the least number of clusters. To eval-
uate this, a Score function is implemented (see equation. 11)
that gives a penalty when the number of clusters is too high.

Score =


Accuracy if C

N <= R

Accuracy
P
√

e(
C
N

−R)
if C

N > R
(11)

with P the penalty, C the clusters created, N the true classes
and R the ratio. The values to be selected by the user are the
Penalty P and the ratio R. P influences the weight of the
penalty when there is a big number of clusters. R establishes
the clusters ratio threshold when the penalty is applied. Using
this score, we are able to select more efficiently the parameters
of DBSCAN and DyClee to limit the amount of clusters.

During these tests, the size of the simulated training sets was
too important, and results were inconclusive. This is why we
chose to perform our study using only the simulated test sets of
1,000 samples. Ten data sets are used. The mean accuracy and
score is then calculated to find out the optimal combination
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(see tables I, II, III). R = 10 and P = 25 are used as
parameters for the score function.

TABLE I: Hierarchical clustering parameters testing

Hierarchical clustering
Param value Mean accuracy

Euclidean 75.93%
Metric Cosine 94.25%

Manhattan 74.84%

TABLE II: DBSCAN parameters testing

DBSCAN
Param value Average accuracy Average score

0.0005 67.89% 67.04%
0.001 68.72% 68.65%

Epsilon 0.005 77.19% 71.03%
ε 0.008 71.85% 71.59%

0.01 69.73% 69.73%
0.03 59.90% 59.90%

Euclidean 66.56% 66.56%
Metric Cosine 66.34% 66.34%

Manhattan 66.39%% 66.39%

TABLE III: DyClee parameters testing

DyClee
Param value Average accuracy Average score

0.07 93.14% 28.13%
0.08 95.10% 42.56%

g size 0.10 94.31% 69.79%
µclusters 0.12 92.12% 89.46%

0.14 74.30% 74.30%
0.16 77.66% 77.66%

Considering hierarchical clustering, Cosine metric largely
outscore the other metrics. However, the results are not as
obvious for the metric of DBSCAN. Looking at the epsilon
ε parameter of DBSCAN, ε=0.005 had the best accuracy, but
the score of ε=0.008 is greater. Therefore, even if ε=0.005 is
better in predicting classes, the number of clusters created is
significantly higher, meaning that it is better to use ε=0.005
as our epsilon parameter. The same case occurs for DyClee,
where the final choice for g size is 0.12. As a matter of fact,
the defined score worked pretty well to indicate when too
many clusters are created and it helped to select the best
parameters. It is important to note that the score indicator
should only be used for parameter tuning. Indeed, parameter
values determine how many clusters will be created, so using
the score function afterwards would be superfluous.

Considering the number of clusters K for Kmeans and
hierarchical clustering, both WCSS and dendogram methods
explained above showed an optimal number of clusters of
K=3.

3) Combination of unsupervised and supervised learning:
After parameters tuning, let us consider prediction using

clustering algorithms. The methods consist in training the
algorithm on a training set. Then the expert opinion is used
to assign the different clusters to either normal or abnormal
labels. After that, the newly created classes are used to train a
classification algorithm on the same train set. The result is the
creation of boundaries between classes, providing the model
to be used on new data sets and giving us an accuracy score

as in the classification section. The algorithm is summarized
in table IV.

TABLE IV: Clustering with classification methodology

1) Get train set traini

2) Apply clustering on traini, giving C clusters
3) Expert opinion reducing C clusters in N classes

The number of cluster is now Cn
4) Apply classification with Cn labels on traini

5) Test classification on multiple test sets testj
6) Calculate Accuracy

The main drawback of this method is that it multiplies
prediction errors of both classification and clustering algo-
rithms. However, the benefits are that the accuracy results
are a relevant estimation of the performance of unsupervised
learning techniques in the detection of HCE. In addition, as we
have seen in the supervised detection section, the performance
of classification are good enough to have only a small impact
on clustering predictions. For our tests, SVM classification
algorithm is used, as it had the best results among the other
algorithms.

4) Results:
The results are shown in Fig. 6 and detailed results are

available in Table. V. They show great results for Kmeans,
Hierarchical clustering and DyClee. The under performance
of DBSCAN is probably due to its density based calculation.
Indeed, our case study implies that we work with unbalanced
data (normal data are prominent compared to abnormal data)
and weights are not applied to counterbalance it. Even though
DyClee also uses a density method, it employs both distance
and density, which can explain its good performance. Once
again, the overall results are encouraging as most of the
algorithms shows an accuracy around 90% for the sliding time
window method. Seeing this, it is clear that machine learning
is able to approve overall performance of threshold detection
method. As a reminder, threshold detection wouldn’t be able
to detect any HCE in the data sets presented to the machine
learning algorithms.

Fig. 6: Clustering algorithms accuracy
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TABLE V: Detailed results of machine learning algorithms
for HCE detection (TP: True Positive, FP: False Positive, FN:
False Negative, TN: True Negative)

TP FP FN TN

KNN Sliding window 33.42% 1.46% 1.18% 63.95%
Rupture window 24.72% 1.53% 4.44% 69.31%

Naive Sliding window 34.17% 2.49% 0.42% 62.92%
Bayès Rupture window 26.53% 3.10% 2.64% 67.73%

Decision Sliding window 30.46% 1.11% 4.13% 64.30%
tree Rupture window 23.76% 2.16% 5.51% 69.18%

Random Sliding window 31.28% 0.95% 3.31% 64.46%
forest Rupture window 24.31% 1.11% 4.86% 69.72%

SVM Sliding window 33.26% 1.36% 1.33% 64.04%
Rupture window 24.78% 1.57% 4.40% 69.26%

K-means Sliding window 27.85% 3.87% 6.74% 61.53%
Rupture window 10.23% 1.20% 18.93% 69.63%

HC Sliding window 29.64% 3.73% 4.95% 61.67%
Rupture window 15.83% 2.08% 13.33% 68.75%

DBSCAN Sliding window 0% 0% 34.60% 65.40%
Rupture window 0% 0% 29.17% 70.83%

DyClee Sliding window 25.03% 1.15% 9.56% 64.25%
Rupture window 17.41% 1.16% 11.76% 69.68%

IV. CONCLUSION

In this paper machine learning algorithms were investigated
as an alternative to classical methods for space radiation
faults detection. First, a case study of a radiation sensible
device was developed and laser tests were performed for a
better understanding of high current event. From this case
study, a database was generated on which several machine
learning algorithms were used for anomaly detection purposes.
Second, multiple supervised classification algorithms were
tested in order to detect high current event. Results showed
good performance for most algorithms. In particular, µlatch-
up can now be detected with acceptable accuracy, which anti
latch-up system don’t achieve. Third, unsupervised clustering
was tested in combination of the previously tested supervised
technics. Again, results were promising in the use of this
method to enhance high current event detection.

Several points need to be investigated in the future. One
would be to propose a machine learning method only based on
normal data, as it can be difficult to get an exhaustive data set
of all possible latch-up. The result of unsupervised learning
being satisfactory, we intend to extend this work by testing
semi-supervised methods on data sets excluding high current
events. Furthermore, satellites are subject to ageing through
time: the supply current of the equipment might vary, leading
to an outdated and ineffective learning detection. We also plan
to address this problem using the online feature of DyClee.
Indeed, its ability to use a loss function, make possible to
take in consideration the ageing of the components.
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