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Model-based diagnosis of time shift failures in discrete event systems: a (max,+) observer-based approach
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This paper addresses the problem of diagnosing the occurrence of time shift failures in systems like automated production lines. The model of the system is represented as a Timed Event Graph (TEG) that is characterized as a (max,+)-linear system. The proposed method aims at detecting and localizing the source of time shift failures by the design of a set of indicators. These indicators rely on the residuation theory on (max,+)-linear systems and a (max,+) observer that estimates the internal state of the observed system.

Introduction

Discrete Event Systems (DES) can be used to model and solve fault diagnosis problems in automated production lines. In systems like production lines, failures can be not only caused by complete equipment breakdowns but also by the occurrence of time shifts so that the production line can dramatically slow down and not be able to comply with the specified production objectives. This paper addresses the problem of how to automatically detect and localize the source of such time shifts based on a subclass of time Petri Nets, called Timed Event Graph (TEG). In TEGs, places are associated with a punctual duration and they can be modeled by (max,+) algebra as introduced in [START_REF] Baccelli | Synchronization and linearity: an algebra for discrete event systems[END_REF][START_REF] Maxplus | Second order theory of min-linear systems and its application to discrete event systems[END_REF]. The history of DES with the use of (max,+) algebra is presented in [START_REF] Komenda | Max-plus algebra in the history of discrete event systems[END_REF]. For example, [START_REF] Kim | Feedback control of cluster tools for regulating wafer delays[END_REF] uses (max,+) algebra to control wafer delays in cluster tools for semiconductor production. The problem of failure diagnosis by the use of (max,+) algebra has been introduced in [START_REF] Sahuguède | Design of indicators for the detection of time shift failures in (max, +)-linear systems[END_REF] where the proposed detection method relies on the residuation theory and compares observable outputs with expected ones to detect output time shifts (Section 3). Failure localisation is then performed by an ad hoc structural analysis of the underlying TEG that does not use (max,+) algebra. The objective of this paper is to design a new set of time shift failure indicators (Section 5) that are not based on the observable outputs of the system only but on the estimation of the internal state of the system (Section 4) so that the failure localisation problem is also solved in an algebraic way. To do so, the proposed failure indicator will rely on an observer that is proposed in [START_REF] Hardouin | Observer design for (max,+) linear systems[END_REF] and aims at rebuilding system states based on the observations. 

Motivation

The problem that we address is motivated by a real production line that is at STMicroelectronics Crolles300 plant. Semiconductor manufacturing is complex and one of its most important challenges is to succeed in detecting production drifts before they have real impact on production plan. STMicroelectronics has complex production lines of wafer batches with many pieces of equipment running in parallel. One of the objectives is to detect as soon as possible that an equipment is late to ensure that products (wafer batches) are delivered on time or at least with minimal delays. Figure 1 presents a fault-free behavioural model of such a production line defined by a TEG. This production line corresponds to three pieces of equipment (namely Eq1, Eq2, Eq3 

Mathematical background

About dioid theory The dioid theory is used to describe the inputs and the behavior of a system. Definition 1. A dioid D is a set composed of two internal operations ⊕ and ⊗. 4The addition ⊕ is associative, commutative, idempotent (i.e. ∀a ∈ D, a ⊕ a = a) and has a neutral element ε. The multiplication ⊗ is associative, distributive on the right and the left over the addition ⊕ and has a neutral element e. Element ε is absorbing by

⊗ (i.e. ∀a ∈ D, a ⊗ ε = ε = ε ⊗ a).
For instance, let Z max be the set (Z ∪ {-∞}) associated with the max operation denoted ⊕ (2 ⊕ 3 = 3...) with neutral element ε = -∞ and the integer addition denoted ⊗ (2 ⊗ 3 = 5...) with neutral element e = 0, then Z max is a dioid. Definition 2. A dioid is complete if it is closed for infinite sums and if ⊗ is distributive over infinite sums.

Z max is not complete as +∞ does not belong to Z max . Let Z max = Z max ∪ {+∞}, Z max defines a complete dioid where (-∞) ⊗ (+∞) = (-∞). By construction, a dioid D is partially ordered with respect to with:

∀a, b ∈ D, a b ⇔ a ⊕ b = b.
The exponential term a i , a ∈ D, i ∈ N is defined as follows: a 0 = e and ∀i > 0, a i+1 = a ⊗ a i . Finally, in a complete dioid, the Kleene star operator is a * = i≥0 a i . From this, it follows a fundamental result (Theorem 1):

Theorem 1. Let D be a complete dioid, x = a * b is the solution of x = ax ⊕ b. About dioid M ax in [[γ, δ]] The complete dioid B[[γ, δ]] is the set of formal series s J = (n,t)∈J
γ n δ t with J ⊆ Z 2 where γ n δ t is a monomial composed of two commutative variables γ and δ. Neutral elements are ε = (n,t)∈∅ γ n δ t and e = γ 0 δ 0 . Graphically, the series s J of B[[γ, δ]] represents any collection J of point of coordinates (n, t) in Z 2 with γ as horizontal axis and δ as vertical axis (see Figure 1). The dioid 

M ax in [[γ, δ]] is
= K k=0 γ n k δ t k with K ∈ N ∪ {+∞} with n 0 < n 1 < . . . , t 0 < t 1 < . . . . Throughout this paper, we will use series of M ax in [[γ, δ]]
to represent the occurrence of an event type over time. For instance, Figure 1 shows such a series

u 1 = u 2 = γ 0 δ 1 ⊕ γ 1 δ 2 ⊕ γ 2 δ 3 ⊕ γ 3 δ 4 ⊕ γ 4 δ 5 ⊕ γ 5 δ 6 ⊕ γ 6 δ 7 ⊕ γ 7 δ +∞ as described in the scenario of Section 2. Definition 3. Let s ∈ M ax in [[γ, δ]] be a series, the dater function of s is the non-decreasing function D s (n) from Z → Z ∪ {+∞} such that s = n∈Z γ n δ Ds(n) .
Series u 1 (similarly for u 2 ) has for dater function 

D u1 (0) = 1, D u1 (1) = 2, D u1 (2) = 3, D u1 (3) = 4, D u1 (4) = 5, D u1 (5) = 6, D u1 (6) =
n ∈ Z is defined by T a,b (n) = D a -D b . Theorem 3 ([6]). Let a, b ∈ M ax in [[γ, δ]], the time shift function T a,b (n) can be bounded by: ∀n ∈ Z, D b• /a (0) ≤ T a,b (n) ≤ -D a• /b (0),
where

D b• /a (0) is obtained from monomial γ 0 δ D b• /a (0) of series b• /a and D a• /b (0) is obtained from γ 0 δ D a• /b (0) of series a• /b. Definition 6. Let a, b ∈ M ax in [[γ, δ]],
the time shift between series a and b is

∆(a, b) = [D b• /a (0); -D a• /b (0)], (1) 
where

γ 0 δ D b• /a (0) ∈ b• /a and γ 0 δ D a• /b (0) ∈ a• /b.
In this interval, the series from which the time offset is measured is the series a. It is called the reference series of the interval.

From this definition, if the time shift interval needs to be defined with series b as the reference series, the interval will be ∆(b, a)

= [D a• /b (0); -D b• /a (0)].
Example 1. Let us consider series a = γ 0 δ 12 ⊕γ 1 δ 15 ⊕γ 2 δ 18 ⊕γ 3 δ 21 ⊕γ 4 δ +∞ and b = γ 0 δ 12 ⊕γ 1 δ 15 ⊕γ 2 δ 19 ⊕γ 3 δ 23 ⊕γ 4 δ +∞ . The minimal time shift between a and b is

D b• /a (0) = 0 (found in γ 0 δ 0 in b• /a = γ 0 δ 0 ⊕ γ 1 δ 3 ⊕ γ 2 δ 7 ⊕ γ 3 δ 11 ⊕ γ 4 δ +∞ ). The maximal time shift is -D a• /b (0) = 2 (found in γ 0 δ -2 from a• /b = γ 0 δ -2 ⊕ γ 1 δ 2 ⊕ γ 2 δ 6 ⊕ γ 3 δ 9 ⊕ γ 4 δ +∞ ). Therefore ∆(a, b) = [0, 2]
: series b is later than a with a minimum of 0 and a maximum of 2 hours. Models of (max,+)-linear systems The elements of the TEG are represented by equations in M ax in [[γ, δ]]. The equations can be grouped into a set of matrices A, B and C that contain information about the structure of the TEG. The state representation defines relations between any set of input event flows u and the state x, and the relations between the state x and the output event flows y. Let u ∈ M ax in [[γ, δ]] p×1 be the input vector of size p, x ∈ M ax in [[γ, δ]] n×1 be the state vector of size n and y ∈ M ax in [[γ, δ]] q×1 be the output vector of size q. The state representation is:

x = Ax ⊕ Bu, y = Cx,
where

A ∈ M ax in [[γ, δ]] n×n , B ∈ M ax in [[γ, δ]] n×p and C ∈ M ax in [[γ, δ]] q×n . Equality x = Ax ⊕ Bu can be transformed to x = A * Bu thanks to Theorem 1 so we have y = CA * Bu.
Matrix H = CA * B represents the transfer function of the TEG, that is the dynamic of the system between the inputs and the outputs. For the system of Fig-

ure 1 the matrices A ∈ M ax in [[γ, δ]] 6×6 , B ∈ M ax in [[γ, δ]] 6×2 and C ∈ M ax in [[γ, δ]] 3×6
of the state representation are:

A :         . γ 1 δ 0 . . . . γ 0 δ 3 . . . . . . . . γ 1 δ 0 . . . . γ 0 δ 4 . . . . γ 0 δ 2 . γ 0 δ 1 . γ 1 δ 0 . . . . γ 0 δ 4 .         B :         γ 0 δ 1 . . . . γ 0 δ 1 . . . . . .         C :   . . . . . γ 0 δ 0 . γ 0 δ 0 . . . . . . . γ 0 δ 0 . .   .
The exponent n of γ represents the backward event shift between transitions (the n + 1 th firing of x 1 depends on the n th firing of x 2 ) and the exponent of δ represents the backward time shift between transition (the firing date of x 2 depends on the firing date of x 1 and time between 2 and 5).

4 How can a (max,+) observer be sensitive to time shift failures?

The objective of the paper is to propose a method that detects time shift failures as proposed in Section 2 and that uses an observer as introduced in [2] and [START_REF] Hardouin | Max-plus linear observer: application to manufacturing systems[END_REF]. As later detailed in Section 4.2, this observer aims at computing a reconstructed state from the observation of the inputs and outputs of the system that is sensitive to a specific type of disturbance. These disturbances are characterized as new inputs w that slow down the system. The system will then be assumed to behave with respect to the following state representation:

x = Ax ⊕ Bu ⊕ Rw, y = Cx. (2) 

Time shift failures as input disturbances

Throughout this paper, we consider that time shift failures are permanent phenomena that can occur at any step of the production. Formally speaking, a time shift failure is characterized by an unexpected and unknown delay d > 0 that is added to the normal duration time t of a place p. As shown in Figure 2, this place is characterized by a transition upstream x i-1 , a duration t, a number of tokens o and a transition downstream

x i . Let x i-1 = K n=0
γ sn δ hn , where s n is the transition firing number, h n is the firing date and K the number of firing events. The normal downstream transition is

x i = K n=0
γ sn+o δ hn+t . When a time shift failure d > 0 holds in a place, the downstream transition then becomes:

x i = K n=0
γ sn+o δ hn+t+d . To characterize the same time shift failure over the place p by a disturbance, we will first modify the TEG. We add to the downstream transition x i an input w i , as shown in Figure 3, which slows down this transition. This new input w i is not observed because it is related to a failure in an equipment. To get the same effect of an offset d > 0 in the downstream transition, input w i has to be defined as

w i = k n=0 γ sn+o δ hn+t+d . (3) 
Back to Figure 1, to characterize a time shift failure of d = 1 on place p 5 , a disturbance w 4 is added to transition x 4 as in Figure 3. Suppose that x 3 = γ 0 δ 2 ⊕γ 1 δ 6 ⊕γ 2 δ 10 ⊕γ 3 δ 14 ⊕γ 4 δ 18 ⊕γ 5 δ 22 ⊕γ 6 δ 26 ⊕γ 7 δ +∞ . Since an offset of 1 time unit is present on p 5 , x 4 = γ 0 δ 2+4+1 ⊕γ 1 δ 6+4+1 ⊕γ 2 δ 10+4+1 ⊕γ 3 δ 14+4+1 ⊕ γ 4 δ 18+4+1 ⊕ γ 5 δ 22+4+1 ⊕ γ 6 δ 26+4+1 ⊕ γ 7 δ +∞ . By setting the disturbance w 4 = x 4 = γ 0 δ 7 ⊕ γ 1 δ 12 ⊕ γ 2 δ 17 ⊕ γ 3 δ 22 ⊕ γ 4 δ 27 ⊕ γ 5 δ 32 ⊕ γ 6 δ 37 ⊕ γ 7 δ +∞ , the firing of transition x 4 is slowed down.

Based on this characterization, the faulty system that we consider will behave based on Equation ( 2) and input disturbances as defined by Equation (3). Let w ∈ M ax in [[γ, δ]] l×1 be the input vector of disturbances of size l. The input w corresponds to the transition that will be disturbed. Matrix R ∈ M ax in [[γ, δ]] n×l is filled with γ 0 δ 0 monomials that represent the connections between disturbances and internal disturbed transitions. All the other entries are set to ε. Equality In the example of Section 2, all the internal transitions in Figure 1 will be disturbed so R is the matrix R ∈ M ax in [[γ, δ]] 6×6 with ∀i, j{1, . . . , 6}i = j, R(i, j) = ε, R(i, i) = e = γ 0 δ 0 .

Observer synthesis

In this paper we use the definition of an observer from the articles [START_REF] Hardouin | Max-plus linear observer: application to manufacturing systems[END_REF], [START_REF] Hardouin | Observer design for (max,+) linear systems[END_REF]. Figure 4 shows the system with disturbances w and from which we can observe the outputs y o . The observer is a new model obtained from the fault-free model and that will estimate the states of the system x r in the presence of such disturbances.

From articles [START_REF] Hardouin | Max-plus linear observer: application to manufacturing systems[END_REF], [START_REF] Hardouin | Observer design for (max,+) linear systems[END_REF] we get the following observer's equations:

x r = Ax r ⊕ Bu ⊕ L(y r ⊕ y o ) = (A ⊕ LC) * Bu ⊕ (A ⊕ LC) * LCA * Rw, y r = Cx r . (4) 
To obtain the estimated vector x r as close as possible to real state x, the observer relies on the largest matrix L ∈ M ax in [[γ, δ]] n×q such that: where

x r x o (A ⊕ LC) * Bu ⊕ (A ⊕ LC) * LCA * Rw A * Bu ⊕ A * Rw
L = (A * B• /CA * B) ∧ (A * R• /CA * R).
The observer matrix L of the TEG of Figure 1 is

L =         . γ 1 δ 0 (γ 1 δ 3 ) * . . γ 0 δ 0 (γ 1 δ 3 ) * . . . γ 1 δ 0 (γ 1 δ 4 ) * . . γ 0 δ 0 (γ 1 δ 4 ) * γ 1 δ 0 (γ 1 δ 4 ) * γ 0 δ 2 (γ 1 δ 4 ) * γ 0 δ 1 (γ 1 δ 4 ) * γ 0 δ 0 (γ 1 δ 4 ) * γ 0 δ 6 (γ 1 δ 4 ) * γ 0 δ 5 (γ 1 δ 4 ) *        
Suppose the system behaves with respect to the inputs u 1 and u 2 defined in Section 3 but transition x 4 is disturbed with

w 4 = γ 0 δ 7 ⊕ γ 1 δ 12 ⊕ γ 2 δ 17 ⊕ γ 3 δ 22 ⊕ γ 4 δ 27 ⊕ γ 5 δ 32 ⊕ γ 6 δ 37 ⊕ γ 7 δ +∞ then the reconstructed state is x r = (A ⊕ LC) * Bu ⊕ (A ⊕ LC) * LCA * Rw which is the vector x r = [x r1 , . . . , x r6 ] T =         γ 0 δ 2 ⊕ γ 1 δ 5 ⊕ γ 2 δ 8 ⊕ γ 3 δ 11 ⊕ γ 4 δ 14 ⊕ γ 5 δ 17 ⊕ γ 6 δ 20 ⊕ γ 7 δ +∞ γ 0 δ 5 ⊕ γ 1 δ 8 ⊕ γ 2 δ 11 ⊕ γ 3 δ 14 ⊕ γ 4 δ 17 ⊕ γ 5 δ 20 ⊕ γ 6 δ 23 ⊕ γ 7 δ +∞ γ 0 δ 2 ⊕ γ 1 δ 7 ⊕ γ 2 δ 12 ⊕ γ 3 δ 17 ⊕ γ 4 δ 22 ⊕ γ 5 δ 27 ⊕ γ 6 δ 32 ⊕ γ 7 δ +∞ γ 0 δ 7 ⊕ γ 1 δ 12 ⊕ γ 2 δ 17 ⊕ γ 3 δ 22 ⊕ γ 4 δ 27 ⊕ γ 5 δ 32 ⊕ γ 6 δ 37 ⊕ γ 7 δ +∞ γ 0 δ 8 ⊕ γ 1 δ 13 ⊕ γ 2 δ 18 ⊕ γ 3 δ 23 ⊕ γ 4 δ 28 ⊕ γ 5 δ 33 ⊕ γ 6 δ 38 ⊕ γ 7 δ +∞ γ 0 δ 12 ⊕ γ 1 δ 17 ⊕ γ 2 δ 22 ⊕ γ 3 δ 27 ⊕ γ 4 δ 32 ⊕ γ 5 δ 37 ⊕ γ 6 δ 42 ⊕ γ 7 δ +∞        
The reconstructed state x r takes into account the disturbance w 4 . If w 4 were not present, the monomial γ 0 δ 7 in x r4 would be γ 0 δ 6 (no time shift).

5 Time shift failure detection in (max,+)-linear systems Proof: We show that, if the system has no failure in the upstream of x i , I xi (u, y o ) necessarily returns false. Suppose the system does not have such a time shift failure, by definition of the observer, the reconstructed state x ri is the same as the fault-free model state x si as no place in the upstream of x i is disturbed. If 

x si = x ri , then we have x si • /x ri = x ri • /x si = x ri • /x ri but x ri • /x ri = (x ri • /x ri ) * according to
(x ri • /x ri ) * = e ⊕ • • • = γ 0 δ 0 ⊕ . . . . So if x ri = x si , one has D xri• /xsi (0) = -D xsi• /xri (0) = 0.
In the example of Section 2, based on the previous observer, suppose that the system behaves with respect to the inputs u 1 and u 2 defined in Section 3. Suppose that in reality there was an incident on Equipment 2: the operation lasts longer with a processing time of 5 hours in p 5 instead of 4 hours (see Figure 1). The real system is then characterized by Equation (2) with the disturbance w 4 that is defined in Section 4.1. The estimated state is the same as given at the end of Section 4.2. In particular, x r3 is represented with plain line in Figure 5 (as well as series x s3 with dotted line). The expected state x s is the vector:

        xs1 xs2 xs3 xs4 xs5 xs6         =         γ 0 δ 2 ⊕ γ 1 δ 5 ⊕ γ 2 δ 8 ⊕ γ 3 δ 11 ⊕ γ 4 δ 14 ⊕ γ 5 δ 17 ⊕ γ 6 δ 20 ⊕ γ 7 δ +∞ γ 0 δ 5 ⊕ γ 1 δ 8 ⊕ γ 2 δ 11 ⊕ γ 3 δ 14 ⊕ γ 4 δ 17 ⊕ γ 5 δ 20 ⊕ γ 6 δ 23 ⊕ γ 7 δ +∞ γ 0 δ 2 ⊕ γ 1 δ 6 ⊕ γ 2 δ 10 ⊕ γ 3 δ 14 ⊕ γ 4 δ 18 ⊕ γ 5 δ 22 ⊕ γ 6 δ 26 ⊕ γ 7 δ +∞ γ 0 δ 6 ⊕ γ 1 δ 10 ⊕ γ 2 δ 14 ⊕ γ 3 δ 18 ⊕ γ 4 δ 22 ⊕ γ 5 δ 26 ⊕ γ 6 δ 30 ⊕ γ 7 δ +∞ γ 0 δ 7 ⊕ γ 1 δ 11 ⊕ γ 2 δ 15 ⊕ γ 3 δ 19 ⊕ γ 4 δ 23 ⊕ γ 5 δ 27 ⊕ γ 6 δ 31 ⊕ γ 7 δ +∞ γ 0 δ 11 ⊕ γ 1 δ 15 ⊕ γ 2 δ 19 ⊕ γ 3 δ 23 ⊕ γ 4 δ 27 ⊕ γ 5 δ 31 ⊕ γ 6 δ 35 ⊕ γ 7 δ +∞        
and the computed intervals are in Figure 5. Indicators that return true are associated with transitions x 3 , x 4 , x 5 , x 6 . Indicators for transitions x 1 , x 2 return false. Now, if we assume that there is only one type of time shift failure in the system, Proposition 4 ensures that the time shift failure occurs in a place that is in the upstream of every transition x 3 , x 4 , x 5 , x 6 . The time shift failure occurs in Eq2, either in place p 2 (transportation delay before the arrival in front of Eq2), or in place p 6 (processing start of Eq2 is delayed), or in place p 5 (process of Eq2 longer than expected). 

Conclusion

This paper defines a method for detecting time shift failures in systems modeled as Timed-Event Graphs using an observer that estimates the real states of the system. The method defines a formal (max,+) algebraic indicator based on the residuation theory. The proposed indicator is able to detect the presence of time shift failures as soon as it returns true and provides first localisation results. As a perspective, we aim at improving the accuracy of this indicator to better exploit the quantitative information contained in the interval ∆(x ri , x si ). We expect that a further analysis about the bounds of the intervals may actually provide more information about failure localization and identification.
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 1 Fig. 1. Fault free model (left) and a graphical representation of the inputs u1 (=u2) in the proposed scenario (right).

  defined as the quotient of the dioid B[[γ, δ]] by the modulo γ * (δ -1 ) * . The internal operations are the same as in B[[γ, δ]] and neutral elements ε and e are identical to those of B[[γ, δ]] and M ax in [[γ, δ]] is also complete. By construction, any series of M ax in [[γ, δ]] represents a non-decreasing function over γ and its canonical form is s

  7 and D u1 (7) = +∞. This dater function lists all the dates of the event occurrences. About time comparison in series: residuation theory Let D and C denote two complete dioids. I dC and I dD are the identity mappings on C and D. Definition 4. Let Π : D → C be an isotone mapping 5 , Π is residuated if for all c ∈ C there exists a greatest solution of Π(x) = c. Moreover this solution is Π (c) where Π : C → D is the unique isotone mapping such that Π • Π I dC and Π • Π I dD . Π is called the residual of Π. Consider the isotone mapping L y : D → D : x → y ⊗ x, it is residuated and its residual is L y (z) also denoted y • \z. That is y • \z is the greatest solution on x of y ⊗ x = z, ∀z ∈ D. Similarly, for the residuated isotone mapping R y : D → D : x → x ⊗ y, R y (z) = z• /y. Intuitively speaking, y • \z and z• /y provide a way to formally compare z and y in a complete dioid. Theorem 2. Let A ∈ D n×m be a matrix of series. Then, A • \A = (A • \A) * . Time comparison between series of M ax in [[γ, δ]] can be defined with residuals. Definition 5. Let a, b ∈ M ax in [[γ, δ]] and their respective dater functions D a and D b . The time shift function representing the time shift between a and b for each
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 23 Fig. 2. Representation of a place
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 4 Fig. 4. Observer structure with disturbance (on the left) and the global architecture of the detection method (on the right).
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 474 Figure4on the right shows how the proposed set of indicators is designed: the system is ruled by the observable inputs u, the unobservable disturbances w and produces the observable outputs y o ; the observer estimates the states x r based

  Theorem 2 and with Definition 1 of the Kleene star:

∆

  (xr1, xs1) = [D x r1 • /x s1 (0) , -D x s1 • /x r1 (0)] = [0, 0], ∆(xr2, xs2) = [D x r2 • /x s2 (0) , -D x s2 • /x r2 (0)] = [0, 0], ∆(xr3, xs3) = [D x r3 • /x s3 (0) , -D x s3 • /x r3 (0)] = [0, 6], ∆(xr4, xs4) = [D x r4 • /x s4 (0) , -D x s4 • /x r4 (0)] = [1, 7], ∆(xr5, xs5) = [D x r5 • /x s5 (0) , -D x s5 • /x r5 (0)] = [1, 7], ∆(xr6, xs6) = [D x r6 • /x s6 (0) , -D x s6 • /x r6 (0)] = [1, 7].

Fig. 5 .

 5 Fig. 5. Computed intervals for the scenario and representation of xr3 and xs3.

  ). Eq1 is modeled with a couple of places p 3 , p 4 : it is available (i.e. no current processing) if a token is in place p 3 while it is processing its input if a token is in place p 4 . The process of Eq1 is carried out in 3 hours. Similarly Eq2 and Eq3 are respectively modeled by the couple of places p 6 , p 5 (processing time: 4 hours) and p 9 , p 10 (processing time 4 hours). Places p 7 , p 8 model wafer batch transportation between Eq1, Eq2 and Eq3. For i = {1, 2}, a trigger of an input transition u i represents the occurrence of an event from sensors on the production line that indicates the arrival of unprocessed wafer batches in front of Eqi. The output to the production line is a stream of fully processed wafer batches modeled by firing transition y 1 . Outputs y 2 and y 3 provide observable information about the end of the process of Eq1

	and Eq2. Suppose a scenario where a stream of 7 wafer batches arrive at Eq1
	(input u 1 ) respectively at time t ∈ {1, 2, 3, 4, 5, 6, 7} and suppose it is similar
	for u 2 . As detailed later, this sequence of events can graphically be represented
	as a set of points (event of index γ = 0 arrives at time δ = 1...), see Fig-
	ure 1. Then, suppose that processed wafer batches are successively available at
	time {12, 17, 22, 27, 32, 37, 42} (output y 1 ), and process information is available
	at time {5, 8, 11, 14, 17, 20, 23} for output y 2 and at time {7, 12, 17, 22, 27, 32, 37}
	for output y 3 . Then, the question is: based on the fault-free model of Figure 1,
	can we detect and localize a time shift failure in the underlying production line?
	This paper aims at designing a model-based (max,+)-algebraic decision method
	for the detection of such time shifts relying on the use of the dioid M ax in [[γ, δ]].

When there is no ambiguity, the symbol ⊗ is omitted.

Recall that dioids are ordered sets. Let Π : S → S be an application defined on ordered sets, Π is isotone if ∀x, x ∈ S, x x ⇒ Π(x) Π(x ).

A place p is in the upstream of a transition x in a TEG if there is a path of arcs from p to x.