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Abstract

We address the runway scheduling problem under consideration of winter operations. During snowfall, runways

have to be temporarily closed in order to clear them from snow, ice and slush. We propose an integrated

optimization model to simultaneously plan snow removal for multiple runways and to assign runways and take-

off and landing times to aircraft. For this winter runway scheduling problem, we present a time-discrete binary

model formulation using clique inequalities and an equivalent constraint programming model. To solve the

winter runway scheduling problem optimally, we propose an exact solution methodology. Our start heuristic

based on constraint programming generates a feasible initial start solution. We use a column generation

scheme, which we initialize with a heuristic solution, to identify all variables of the binary program which are

required to solve it optimally. Finally, we apply a branch-and-bound procedure to our resulting binary program.

Additionally, we present an enhanced time discretization method to balance model size and solution quality.

We apply our algorithm to realistic instances from a large international airport. An analysis of resulting model

sizes proves the ability of our approach to significantly reduce the number of required variables and constraints

of the time-discrete binary program. We also show that our method computes optimal schedules in a short

amount of time and often outperforms a time-continuous formulation as well as a pure constraint programming

approach.
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1. Introduction

At most major airports, runway capacity is a scarce resource especially during winter operations, when

runways have to be intermittently closed in order to clear them from snow, ice, and slush. This situation

will presumably intensify in the future since the number of operated aircraft and, therefore, corresponding

flight movements are expected to almost double until 2040 (Boeing, 2019). Hence, it is crucial to utilize the

runway system in the best possible way. The winter runway scheduling problem (WRSP) assigns runways and

take-off or landing times to departing and arriving aircraft and, simultaneously, schedules snow removals on

runways. While the first models looking at runway scheduling date back to the 1970s (Dear, 1976; Psaraftis,

1980), the integrated consideration of aircraft scheduling and snow removal planning on runways has only been

addressed recently. Pohl et al. (2021) proposed a time-continuous model for the WRSP, which computes very

good schedules in a short amount of time. Larger instances, however, can not be solved to proven optimality

within reasonable time limits. In this paper, we propose an exact solution procedure based on a time-discrete

model formulation to overcome this drawback. Our solution approach combines constraint programming (CP)

techniques with a column generation approach. Furthermore, the model of Pohl et al. (2021) is limited to

piecewise linear convex cost functions. Our time-indexed model, however, offers greater flexibility with regard

to the objective (cost) function. From a technical viewpoint, a time-discrete model is favorable since such

model formulations often provide relatively strong bounds.

This paper is organized as follows. In Section 2, we detail the structure and characteristics of the problem.

Section 3 presents on overview of related research articles and places our work into existing literature. In

Section 4, we present two model formulations. We propose a time-discrete binary program (BP) based on

clique inequalities. Our BP is based on problem-inherent incompatibilities and builds up on a model for

the runway scheduling problem (RSP) of Avella et al. (2017). We also present an equivalent CP model

formulation. In Section 5, we propose a method to discretize the planning horizon, which enables improved

solutions and allows an efficient balance between solution quality and model size. We present our exact solution

methodology in Section 6. During preprocessing, we apply problem-specific dominance rules to reduce variable

domains. We use the CP model to further reduce variable domains through constraint propagation and as a

start heuristic. We use our BP to solve the WRSP optimally. To keep the size, i.e., the number of variables

and constraints, of our time-discrete binary model formulation manageable, we present a column generation

scheme, which generates all variables required to solve the BP to optimality. In Section 7, we apply our method

in a computational study to realistic data from Munich International Airport. We show the applicability and

effectiveness of our approach by analyzing resulting model sizes and computational times. Most importantly,

we show that, for large instances, our method outperforms a time-continuous formulation and a pure CP

approach. Section 8 concludes our work with a brief summary.
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2. Problem Statement

We define the WRSP as the problem of scheduling aircraft and snow removals on multiple airport runways

while minimizing earliness and tardiness (delay) cost for aircraft. We consider an operational planning horizon

of up to two hours. A feasible solution to the WRSP assigns a runway as well as a take-off or landing time

to each departing or arriving aircraft. Assigned take-off and landing times have to lie within aircraft- and

runway-specific time windows. For departing aircraft, the earliest possible take-off time is given by the time

at which ground operations and taxiing to the runway can be finished and the aircraft can be ready for take-

off. The latest possible take-off time is theoretically unrestricted until, ultimately, the flight is canceled. For

arriving aircraft, the earliest possible landing time is given by the shortest flight path and the maximum flight

speed of the aircraft. Latest possible landing times are imposed by limited fuel, airport opening times, and

regulations regarding working hours of flight personnel. Associated with each aircraft is a preferred target

take-off or landing time within the aircraft’s time window. This target time reflects the most economical flight

path and flight speed for arriving aircraft and standard ground operations for departing aircraft. A deviation

from this target time constitutes earliness or tardiness and causes aircraft-specific earliness or tardiness cost.

The objective of the WRSP is to minimize the sum of these earliness and tardiness cost over all aircraft. In

this paper, we examine convex cost functions which are piecewise linear with integer break points.

Aircraft scheduled on the same runway (or, in general, on interdependent runways) have to follow minimum

separation requirements to comply with safety regulations imposed by the Federal Aviation Administration

(FAA) and the International Civil Aviation Organization (ICAO). These separation times between aircraft are

sequence-dependent and depend on the operation classes of the aircraft, i.e., their weight classes (e.g., “Small”,

“Large”, “Boeing 757”, “Heavy”, “Super”), operation modes (“Take-off” or “Landing”) and relative positions

(“Leading” or “Trailing”). Table 1 lists separation requirements for a typical set of aircraft operation classes

operated at large international airports.

During winter operations, runways regularly have to be cleared from snow, ice, and slush to enable safe

flight operations. If a runway is covered by a critical amount of snow, ice, or slush, the runway becomes

unsafe. At this point, the previous flight operation on that runway must have been completed and new flight

operations can only start once the runway has been cleared. Due to advanced weather predictions, the exact

point in time within the planning horizon at which runways become unsafe can be accurately forecast two

hours in advance and, thus, is known at the beginning of the operational planning horizon. Airports use snow

removal groups to clear runways from snow, ice, and slush. These snow removal groups consist of multiple

snowplows and trucks, which clear a runway collaboratively in a coordinated performance. At most larger

airports, the number of runways exceeds the number of snow removal groups. Hence, not all runways can be

cleared at the same time and snow removal groups have to clear multiple runways sequentially. Consequently,
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Table 1: Separation requirements based on aircraft operation classes according to FAA (2017) (in seconds)

Trailing

Landing Take-off

Leading Large Boeing 757 Heavy Super Large Boeing 757 Heavy Super

Landing

Large 69 69 60 60 75 75 75 75

Boeing 757 157 157 96 96 75 75 75 75

Heavy 157 157 96 96 75 75 75 75

Super 180 180 120 120 180 180 120 120

Take-off

Large 60 60 60 60 60 60 60 60

Boeing 757 60 60 60 60 120 120 90 90

Heavy 60 60 60 60 120 120 90 90

Super 180 180 120 120 180 180 120 120

the snow removal planning for multiple runways becomes a scheduling problem itself. Snow removal schedules

have to consider snow removal durations per runway (as processing times) and transit times between runways

(as setup times). These transit times are sequence-dependent since distances and driving durations between

runways depend on the physical layout of the airport and its road network. After a runway has been cleared,

it usually stays safe for at least two hours. Hence, each runway has to be cleared not more than once within

the operational planning horizon of up to two hours.

3. Related Literature

This section briefly presents related literature. We focus on recent contributions most relevant for our work.

For a general overview of publications concerning the RSP and related problems in airport arrival management,

departure management, and surface management, we refer to Bennell et al. (2011), Lieder & Stolletz (2016),

and Samà et al. (2019). Bennell et al. (2011) gave a comprehensive literature overview of articles published

until 2011. Lieder & Stolletz (2016) considered more recent contributions until 2015 focusing on articles with

heterogeneous (or interdependent) runways and single (or independent) runways. Samà et al. (2019) organized

their comprehensive literature discussion around aircraft arrival scheduling, aircraft departure scheduling, and

mixed arrival-departure scheduling.

Since the general RSP is known to be NP-hard (Bianco et al., 1999), many heuristic approaches to solve

the problem have been developed. Bianco et al. (2006) and Sabar & Kendall (2015) presented local search

algorithms, while variable neighborhood and adaptive large neighborhood search methods were proposed by

Salehipour et al. (2009) and Vadlamani & Hosseini (2014). Salehipour et al. (2013) and Bennell et al. (2017)
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suggested simulated annealing approaches to solve the aircraft landing problem. Various population based

heuristics were proposed as well. Abela et al. (1993), Hansen (2004), and Liu (2010) developed genetic search

algorithms and Pinol & Beasley (2006) presented a scatter search and bionomic algorithms to solve the aircraft

landing problem.

Exact approaches for the RSP mainly use dynamic programming (DP) or mixed-integer programming

(MIP) techniques. Bennell et al. (2017) presented a DP for the single runway problem and Lieder & Stolletz

(2016) developed a DP approach for multiple interdependent and heterogeneous runways. Balakrishnan &

Chandran (2010) proposed DP algorithms for the single runway problem under consideration of constrained

position shifting, which reduces the solution space of the DP by prohibiting large deviations from a First-

Come-First-Served (FCFS) order. Furini et al. (2014) built up on that and presented state space reduction

techniques to further improve computational times for DP approaches.

MIP models optimize runway schedules either in continuous time using big-M formulations or in discrete

time using time-indexed models. Abela et al. (1993) presented a time-continuous MIP formulation for the single

runway case. Beasley et al. (2000) developed a MIP model for the multiple runway case, which has become

the groundwork for many succeeding model formulations. Pohl et al. (2021) extended the MIP approach of

Beasley et al. (2000) to reflect winter operations and proposed a time-continuous MIP formulation for the

WRSP. For realistic instance sizes, time-discrete formulations were long considered to be computationally

intractable due to a very large number of binary variables. However, thanks to algorithmic advances of MIP

solvers and increasing computational power, they received more attention in recent years. Kjenstad et al.

(2013) proposed a three-step approach for air traffic management at airports where, in the second step, a

time-indexed formulation is used to optimally assign arrival and departure times to aircraft. Heidt et al.

(2014) proposed a dynamic variant of a time-discrete model formulation, in which aircraft-specific slot sizes

depend on an aircraft’s distance to the runway. Faye (2015) developed a time-discrete model based on a

decomposition of separation times. Bertsimas & Frankovich (2015) presented a time-discrete approach to

optimize the air traffic flow through airports in a holistic way. Closest to our work is the time-indexed

formulation for the RSP by Avella et al. (2017), which computes optimal schedules for departing and arriving

aircraft on a single runway. The authors developed a new family of clique inequalities which is a generalization

of clique inequalities presented in Nogueira et al. (2019). In the introduction of their paper, Avella et al.

(2017) also discussed properties of time-indexed formulations describing advantages and drawbacks of this

model type.

In a method-independent publication, Maere et al. (2017) presented pruning rules for the RSP to decrease

corresponding solution or search spaces. Their generic pruning rules are model-independent and can be applied

to different (meta-)heuristics and exact algorithms.

5



With regard to CP, Allignol et al. (2012) compiled a survey of CP approaches for air traffic management

including but not restricted to runway scheduling. For the aircraft sequencing problem on a single runway,

Fahle et al. (2003) compared different exact and heuristic methods including a CP model. For the same single

runway problem, Dı́az & Mena (2005) presented a CP implementation and preprocessing techniques. Junker

et al. (1999) and Yunes et al. (2000) independently developed a column generation method in which the pricing

subproblem is solved using CP techniques. This method was applied to a wide range of applications (Gualandi

& Malucelli, 2013), specifically to the tail assignment problem (Grönkvist, 2006; Gabteni & Grönkvist, 2008)

and the crew assignment problem (Junker et al., 1999; Fahle et al., 2002).

Our work in this paper builds up on Avella et al. (2017), extends their formulation to consider multiple

runways as well as winter operations, and presents a novel solution algorithm combining a column generation

scheme with a CP start heuristic.

4. Model Formulations

In Section 4.1, we introduce a time-discrete BP for the WRSP considering multiple homogeneous or he-

terogeneous runways, multiple snow removal groups, and sequence-dependent separation requirements for all

pairs of aircraft as well as sequence-dependent transit times for snow removal groups. In Section 4.2, we

present additional constraints for the BP based on precedence relations. We present an equivalent CP model

formulation in Section 4.3 and show additional precedence constraints for the CP model in Section 4.4. While

our solution approach and computational study focus on convex cost functions which are piecewise linear with

integer break points, both model formulations presented in Sections 4.1 and 4.3 are also valid for arbitrary

cost functions.

4.1. Time-Discrete Binary Program Based on Clique Inequalities

In this section, we introduce a time-discrete mathematical problem formulation for the WRSP. We consider

the finite planning horizon [1, Tmax] and a set T of time points t ∈ T : 1 ≤ t ≤ Tmax within the planning

horizon. If an aircraft or snow removal is scheduled at time t, the take-off, landing, or snow removal operation

starts at t. If a runway becomes unsafe at time t, this is the latest time at which an aircraft can still safely

take-off or land and the runway has to be closed immediately afterwards.

If aircraft a ∈ A is scheduled on runway r ∈ R at time t ∈ T , binary variable xart equals one and associated

cost Cart occur. Respectively, if snow removal group g ∈ G is scheduled on runway r at time t, binary variable

ygrt equals one. If runway r is not cleared during the planning horizon, binary variable zr equals one.

We consider runway-specific aircraft time windows Tar = {Ear, . . . , Lar} ⊆ T where Ear denotes the earliest

possible take-off or landing time of aircraft a on runway r and Lar denotes the latest possible take-off or landing
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time respectively. The preferred take-off or landing time of aircraft a on runway r, i.e., the time avoiding any

earliness or tardiness cost, is denoted as the aircraft’s runway-specific target time Tar with Ear ≤ Tar ≤ Lar.

If aircraft a cannot be assigned to runway r, then Tar = ∅. In practice, time window differences between

runways are caused by slightly different flight paths and runway approach paths and, thus, are often minor.

Similarly, we consider snow removal time windows Trg = {Erg, . . . , Lrg} ⊆ T for combinations of runways r

and snow removal groups g. If snow removal on runway r is conducted by group g, snow removal can neither

start before Erg nor after Lrg. Here, snow removal time windows of a snow removal group can differ between

runways depending on the current position of the snow removal group within the airport area, which impacts

the driving time to the respective runways.

We denote the operation class of aircraft a by c(a). We also enforce separation requirements Sc(a)c(b)

between pairs of aircraft a and b on the same runway, safety buffers Oc(a) between aircraft a and following

snow removals on the same runway, and runway-specific snow removal durations Pr. If an aircraft a is scheduled

at time t, the take-off or landing operation starts at t and is completed at t+Sc(a)c(b) (if aircraft b is scheduled

next) or at t + Oc(a) (if a snow removal is scheduled next). If a snow removal is scheduled at time t, snow

removal activities start at t and are finished at t + Pr. Additionally, we consider that each runway r can

become unsafe due to snow, ice, or slush at time Ur if it has not been cleared before in the planning horizon.

If Ur ≥ T max, runway r does not become unsafe during the planning horizon. At the moment a runway

becomes unsafe, the previous flight operation must have been completed. An unsafe runway must be cleared

before it can be re-opened and used again. We assume that, due to the operational planning horizon of up

to two hours, at most one snow removal must be scheduled for each runway. For snow removal groups, we

consider sequence-dependent setup times Qrs between runways r and s, which, for the ease of notation, include

the time required to clear runway r and the transfer (driving) time from runway r to runway s. Our model

minimizes the weighted deviation of aircraft from their target take-off or landing times and, therefore, the

overall lateness cost of the schedule. The notation we use for our BP is summarized in Table 2. Note that the

model formulation allows early starts of snow removals (before runways become unsafe) as well as late starts

of snow removals (after runways have become unsafe). The objective function implicitly computes the optimal

trade-off between early starts and late starts of snow removals considering all implications within the planning

horizon, e.g., a loss of runway capacity due to late starts of snow removals or insufficient runway availability

in case too many runways are cleared at the same time.

The presented BP for the WRSP is based on a family of clique inequalities which have been introduced and

referred to as (S, t)-clique inequalities by Avella et al. (2017). The underlying idea of our model formulation is

to generate constraints which ensure that at most one runway operation (aircraft take-off or landing or snow

removal activity) utilizes a specific runway at a given point in time, taking also runway closures into account.
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Table 2: Sets, parameters and decision variables

Sets and related parameters

Notation Definition

t ∈ T Set of considered time points within planning horizon

r ∈ R Set of runways

Ur Time at which aircraft operations on runway r become unsafe

Pr Required time to clear runway r

Qrs Sequence-dependent setup time between starts of snow removals on runways r
and s conducted by the same snow removal group (including snow removal time
Pr and required transfer time from runway r to runway s)

a ∈ A Set of aircraft

C ∈ C Set of aircraft operation classes

c(a) Operation class of aircraft a

Ear Earliest possible take-off or landing time of aircraft a on runway r

Lar Latest possible take-off or landing time of aircraft a on runway r

Tar = {Ear, . . . , Lar} ⊆ T Time window of aircraft a on runway r

Cart Cost coefficient for scheduling aircraft a on runway r at time t

SCC′ Sequence-dependent separation time between a leading aircraft of operation class
C and a trailing aircraft of operation class C′ if both aircraft are scheduled on the
same runway

OC Required separation time between an aircraft of operation class C and a
subsequent snow removal on the same runway

g ∈ G Set of snow removal groups

Erg Earliest possible time for snow removal on runway r conducted by snow removal
group g

Lrg Latest possible time for snow removal on runway r conducted by snow removal
group g

Trg = {Erg, . . . , Lrg} ⊆ T Time window for snow removal on runway r conducted by snow removal group g

V ∈ Vrt Set of cliques required to represent incompatibilities on runway r at time t

W ∈Wgt Set of cliques required to represent incompatibilities for snow removal group g at
time t

Decision variables

Notation Definition

xart =

1 if aircraft a is scheduled on runway r at time t

0 otherwise

ygrt =

1 if snow removal group g starts to clear runway r at time t

0 otherwise

zr =

1 if runway r is not cleared during the planning horizon

0 otherwise
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For this, we formulate clique inequalities limiting the number of parallel operations for every runway at every

point in time to one. Similarly, we generate clique inequalities for snow removal groups, limiting the number

of parallel snow removal activities by the same snow removal group to one.

In our model formulation, we consider required separation times between two operations i and j as part of

preceding operation i. We define subsets (cliques) of operations, i.e., of aircraft and snow removal groups, as

V ⊆ (A ∪ G) with |V| ≥ 2. For all aircraft a ∈ (V ∩ A), va(V) denotes a clique-specific minimum separation

time after scheduling aircraft a and is defined as

va(V) =


minb∈V\{a}{Sc(a)c(b)} if V ⊆ A

minb∈(V∩A)\{a}{Oc(a), Sc(a)c(b)} otherwise

The set of all cliques required for a specific combination of runway r and time t is denoted as Vrt. Similarly,

we define subsets (cliques) of runways W ⊆ R with |W| ≥ 2. Here, for all runways r ∈ W, wr(W) denotes a

clique-specific minimum setup time after clearing runway r and is defined as

wr(W) = min
s∈W\{r}

{Qrs}

The set of all cliques required for a specific combination of snow removal group g and time period t is denoted

as Wgt.

9



With this, our BP is as follows:

minimize
∑
a∈A

∑
r∈R

∑
t∈Tar

Cartxart (1)

subject to∑
r∈R

∑
t∈Tar

xart = 1 ∀ a ∈ A (2)

∑
g∈G

∑
t∈Trg

ygrt + zr = 1 ∀ r ∈ R (3)

∑
a∈V∩A

∑
l∈[t−va(V)+1,t]∩Tar

xarl +
∑

g∈V∩G

∑
m∈[t−Pr+1,t]∩Trg

ygrm ≤ 1 ∀ r ∈ R; t ∈ T : t ≤ Ur;

V ∈ Vrt (4)∑
a∈V∩A

∑
l∈[t−va(V)+1,t]∩Tar

xarl +
∑

g∈V∩G

∑
m∈[t−Pr+1,Tmax]∩Trg

ygrm + zr ≤ 1 ∀ r ∈ R; t ∈ T : t > Ur;

V ∈ Vrt (5)∑
r∈W

∑
l∈[t−wr(W)+1,t]∩Trg

ygrl ≤ 1 ∀ g ∈ G; t ∈ T ;W ∈Wgt (6)

xart ∈ {0, 1} ∀ a ∈ A; r ∈ R; t ∈ Tar

ygrt ∈ {0, 1} ∀ g ∈ G; r ∈ R; t ∈ Trg

zr ∈ {0, 1} ∀ r ∈ R

The Objective (1) minimizes the overall aircraft lateness cost of the schedule. Constraints (2) assign exactly

one runway and one take-off or landing time to each aircraft. Constraints (3) assign a snow removal group

and clearing time to a runway r if this runway is cleared during the planning horizon (and zr is zero). If

runway r is not cleared during the planning horizon, zr equals one. Constraints (4) and (5) make sure that,

at any point in time, each runway is occupied by at most one aircraft or snow removal group respecting all

separation requirements. Constraints (5) also consider the possibility that a runway is unsafe and ensure that

runways which do not allow safe operations are not used for aircraft operations. Constraints (6) secure that,

at any point in time, each snow removal group is conducting at most one snow removal respecting setup times

between runways.

The number of Constraints (4)–(6) mainly depends on the cardinalities of sets Vrt, Wgt, and T since the

cardinalities of sets R and G are comparatively small.

Our model formulation requires that all potential conflicts between aircraft operations, snow removal

activities, and unsafe runways are reflected in at least one of the clique inequalities (4)–(6). Conditions (7)–

(11) define such potential conflicts formally and state that, for each potential conflict, a corresponding clique
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inequality must be present in the model:

∀ a, b ∈ A : a 6= b; r ∈ R; t ∈ {Ear, . . . , Lar + Sc(a)c(b) − 1} ∩ Tbr ∃ V ∈ Vrt : a, b ∈ V ∧ Sc(a)c(b) = va(V) (7)

∀ a ∈ A; g ∈ G; r ∈ R; t ∈ {Ear, . . . , Lar +Oc(a) − 1} ∩ Trg ∃ V ∈ Vrt : a, g ∈ V ∧Oc(a) = va(V) (8)

∀ a ∈ A; g ∈ G; r ∈ R; t ∈ {Erg, . . . , Lrg + Pr − 1} ∩ Tar ∃ V ∈ Vrt : a, g ∈ V (9)

∀ r, s ∈ R : r 6= s; g ∈ G; t ∈ {Erg, . . . , Lrg +Qrs − 1} ∩ Tsg ∃W ∈Wgt : r, s ∈ W ∧Qrs = wr(W) (10)

∀ a ∈ A; r ∈ R; t ∈ Tar : t > Ur ∃ V ∈ Vrt : a ∈ V (11)

Condition (7) covers incompatibilities between two aircraft on the same runway due to separation require-

ments. Condition (8) covers incompatibilities between aircraft and following snow removals, while Condition

(9) covers incompatibilities between snow removals and aircraft ensuring that no aircraft are scheduled during

a snow removal. Condition (10) covers incompatibilities between two snow removals conducted by the same

snow removal group ensuring sufficient setup times between snow removals. Condition (11) covers incompati-

bilities between aircraft and unsafe runways making sure that no aircraft is scheduled on a runway which is

unsafe.

To create sets Vrt and Wgt satisfying Conditions (7)–(11), we use algorithms Construct-Vrt (Algorithm

1) and Construct-Wgt (Algorithm 2). They enumerate all potential conflicts and add corresponding cliques

V and W to the model, while keeping the cardinalities of sets Vrt and Wgt small. Construct-Vrt is based

on the matrix of sequence-dependent separation times SCC′ between aircraft operation classes (as in Table

1) and on required separation times OC between aircraft and following snow removals. Construct-Wgt is

based on the matrix of sequence-dependent setup times Qrs between runways. Both algorithms enumerate

all potential conflicts in a systematic and structured way ensuring that all separation requirements between

aircraft and snow removals (Construct-Vrt) and all setup times between pairs of snow removals (Construct-

Wgt) are reflected, and, therefore, Conditions (7)–(11) are fulfilled. Both algorithms potentially generate

dominated cliques, leading to redundant or non-binding constraints in the BP. Here, a clique V dominates a

clique V ′ if V ⊇ V ′ and va(V) ≥ va(V ′) ∀ a ∈ V ′ ∩ A. Similarly, a clique W dominates a clique W ′ if W ⊇ W ′

and wr(W) ≥ wr(W ′)∀r ∈ W ′ (cf. Proposition 5 in Avella et al., 2017). In the last step of both algorithms, we

identify such dominated cliques through a pairwise comparison of cliques and remove them from sets Vrt and

Wgt. This reduces the number of constraints in our model and helps keeping the size of the model manageable.
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Algorithm 1 Construct-Vrt

1: initialize set of cliques Vrt = ∅
2: for all leading operation classes L ∈ C do
3: create set of separation times S = {SLF : F ∈ C, OL}
4: for all separation times s ∈ S do
5: if s ≤ SLL then
6: create new clique V of leading aircraft a, trailing aircraft b, and snow removal groups g

with V =
{
a : a ∈ L ∧ t ∈ {Ear, . . . , Lar + s− 1},
b : SLc(b) ≥ s ∧ t ∈ Tbr,
g : g ∈ G ∧OL ≥ s ∧ t ∈ Trg

}
7: add V to Vrt

8: if s > SLL then
9: for all leading aircraft a ∈ L : t ∈ {Ear, . . . , Lar + s− 1} do

10: create new clique V of leading aircraft a, trailing aircraft b, and snow removal groups g
with V =

{
a,
b : SLc(b) ≥ s ∧ t ∈ Tbr,
g : g ∈ G ∧OL ≥ s ∧ t ∈ Trg

}
11: add V to Vrt

12: remove dominated cliques from Vrt

Algorithm 2 Construct-Wgt

1: initialize set of cliques Wgt = ∅
2: create set of setup times Q = {Qrs : r, s ∈ R ∧ r 6= s}
3: for all setup times q ∈ Q do
4: for all preceding runways r ∈ R : t ∈ {Erg, . . . , Lrg + q − 1} do
5: create new clique W of preceding runway r and succeeding runways s

with W =
{
r,

s : s ∈ R ∧Qrs ≥ q ∧ t ∈ Trg
}

6: add W to Wgt

7: remove dominated cliques from Wgt
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4.2. Additional Constraints for the Time-Discrete Binary Program

Additional constraints which decrease the solution space can be derived from compulsory precedence re-

lations. We exploit such compulsory precedence relations between snow removals and between aircraft of the

same class and present aggregated-time and disaggregated-time variants for both precedence constraints.

Precedence Constraints for Snow Removals on Homogeneous Runways Based on Dominant Snow Removal

Patterns

Pohl et al. (2021) showed that, for a set of homogeneous runways, i.e., runways allowing for the same

flight operations, it is often possible to precompute a dominant snow removal pattern P∗ =
(
(r1, g1, e1),

(r2, g2, e2), . . . , (r|R|, g|R|, e|R|)
)

and, thereby, an optimal sequence of snow removals. In pattern P∗, the i-

th triple (ri, gi, ei) denotes the i-th snow removal in chronological order with runway ri being cleared by

snow removal group gi. ei denotes the earliest possible start time of the i-th snow removal activity, which is

constrained by preceding snow removals and resulting setup times. ei ≤ ej holds for i < j. A snow removal

pattern defines a clear precedence for each pair of snow removals (ri, gi, ei) and (rj , gj , ej) such that snow

removal (ri, gi, ei) must not start after snow removal (rj , gj , ej) if i < j. If a dominant, i.e., optimal, snow

removal pattern for homogeneous runways is known, Constraints (12) express all corresponding precedence

constraints in an aggregated-time variant.

∑
t∈Trjgj

(t · ygjrjt) + max
t∈Trigi

(t) · zrj −
∑

t∈Trigi

(t · ygirit) ≥ 0 ∀ (ri, gi, ei), (rj , gj , ej) ∈ P∗ : i < j (12)

A disaggregated-time variant of the same precedence constraints for snow removals can be formulated as

Constraints (13).

∑
l∈[0,t]∩Trigi

ygiril −
∑

m∈[0,t]∩Trjgj

ygjrjm ≥ 0 ∀ (ri, gi, ei), (rj , gj , ej) ∈ P∗ : i < j; t ∈ Trjgj (13)

Precedence Constraints for Aircraft of the Same Operation Class

For aircraft of the same operation class, it is often possible to determine an optimal order during prepro-

cessing and, hence, to derive precedence constraints between those aircraft. For the general RSP, Psaraftis

(1980) showed that, within an aircraft operation class, a complete order can be inferred under the assumptions

that no time window restrictions exist and that all aircraft have the same convex cost function. Briskorn &

Stolletz (2014) showed that such complete orders within aircraft operation classes also exist if a time window

order exists for all pairs of aircraft within a class and if class-specific piecewise linear convex cost functions

are assumed. For the RSP without earliness (where aircraft can not be accelerated beyond their target time

and Ear = Tar) and with aircraft-specific cost coefficients, Pohl et al. (2021) showed that it is always optimal
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to schedule aircraft of the same operation class in their corresponding time window order if they are cost

compliant. A similar observation can be made for the RSP with aircraft acceleration (where Ear ≤ Tar).

Theorem 1. For two aircraft a and b of the same operation class, it is always optimal to schedule a not after

b if Ear ≤ Ebr, Lar ≤ Lbr ∀ r ∈ R (time window order), and Cart + Cbr′t′ ≤ Car′t′ + Cbrt ∀ r, r′ ∈ R; t ∈

Tar ∩ Tbr; t′ ∈ Tar′ ∩ Tbr′ : t ≤ t′ (cost compliance). We denote such a compulsory precedence with a � b.

To prove Theorem 1, a swap argument can be applied. Either, it is not possible to swap aircraft a and b

due to a violation of respective time windows or, if a swap is possible, the objective function value can not be

improved.

For pairs of aircraft a and b, for which it is known that a must not be scheduled after b, Constraints (14)

express the corresponding precedence constraints in an aggregated-time variant.

∑
r∈R

∑
t∈Tbr

(t · xbrt)−
∑
r∈R

∑
t∈Tar

(t · xart) ≥ 0 ∀ a, b ∈ A : a � b (14)

A disaggregated-time variant of the same aircraft precedence constraints can be formulated as Constraints

(15). ∑
r∈R

∑
l∈[0,t]∩Tar

xarl −
∑
r∈R

∑
m∈[0,t]∩Tbr

xbrm ≥ 0 ∀ a, b ∈ A : a � b; t ∈
⋃
r∈R
Tbr (15)

By adjusting the set R in Constraints (14) and (15), these constraints can be adapted to situations where

aircraft precedence constraints only hold for a certain runway or a subset of runways.

In our computational experiments, we found the aggregated-time variants, especially for snow removal

precedence constraints, to be more efficient because the disaggregated-time variants yield too many constraints.

4.3. Equivalent Constraint Programming Model

In this section, we present a CP model formulation for the time-discrete WRSP. To denote our CP model,

we use common scheduling concepts from CP and a terminology which is similar to the one used in IBM ILOG

CPLEX CP Optimizer and in Goel et al. (2015) and Novara et al. (2016). We briefly introduce and define the

used constructs. Specifically, we describe used variable types, expressions, and cumulative functions.

We use interval variables to model aircraft and snow removals. In a solution of a constraint program, an

interval variable x̃ can be present with a discrete start time s and end time e or can be absent (denoted as

x̃ =⊥). Hence, an interval variable x̃ is formally defined as x̃ ∈ {[s, e[: s, e ∈ Z ∧ s ≤ e} ∪ {⊥}. The set of

possible values for an interval variable constitutes its domain. We use the following expressions and constraints

for interval variables x̃ and ỹ and sets Ã of interval variables.

presenceOf(x̃) equals TRUE if interval x̃ is present and FALSE if interval x̃ is absent.
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startOf(x̃) equals the start time s of a present interval x̃ = [s, e[.

lengthOf(x̃) equals the size e− s of a present interval x̃ = [s, e[.

startBeforeStart(x̃, ỹ) enforces interval x̃ to start not after interval ỹ if both intervals are present.

alternative(x̃, Ã) defines an exclusive alternative between intervals in set Ã. If interval x̃ is present, then

exactly one interval of set Ã is present and this specific interval starts and ends together with interval

x̃. If interval x̃ is absent, all intervals in set Ã are absent.

We use sequence variables to model sequences for specific runways and snow removal groups. A sequence

variable ξ̂ is defined over a set Ã of intervals and represents an ordering of all present intervals in set Ã. Each

interval ã in set Ã is also associated with a type θã ∈ Θ through a mapping function Ω : Ã → Θ. A transition

matrix can be specified as a function M : Θ×Θ′ → Z to express the minimal distance between the end of an

interval of type Θ and the start of an interval of type Θ′. In combination with a noOverlap-constraint, this

allows to model sequence-dependent transition (setup) times. We use the following expressions and constraints

for sequence variables ξ̂, sets Ã of interval variables, mappings Ω to associated interval types Θ, and transition

matrices M .

sequenceVar(Ã, Ω) defines a sequence variable ξ̂ over interval set Ã and type mapping Ω.

noOverlap(ξ̂, M) enforces sequence-dependent transition times for all intervals in ξ̂ according to transition

matrix M .

We use cumulative functions to model runways and snow removal groups as constrained resources. Hereby,

a cumulative function’s value over time represents a resource availability over time. Intervals individually

contribute to a cumulative function by changing the function’s value through elementary step functions, which

represents the use and release of a resource. We use the following elementary step functions.

pulse(x̃, k) changes the value of a cumulative function by k during the interval x̃ = [s, e[. It increases the

function’s value by k at time s and decreases the value by k at time e.

stepAtEnd(x̃, k) increases the value of a cumulative function by k at the end e of interval x̃ = [s, e[.

step(t, k) increases the value of a cumulative function by k at time t.

For scheduling aircraft, we define mandatory interval variables x̃a for all aircraft a ∈ A. To represent the

specific scheduling of an aircraft a on runway r, we use optional interval variables x̃ar for all aircraft a ∈ A

and runways r ∈ R. Similarly, for scheduling snow removals on runways r, we define optional interval variables
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ỹr for all runways r ∈ R. To represent the specific scheduling of a snow removal on runway r by snow removal

group g, we use optional interval variables ỹgr for all snow removal groups g ∈ G and runways r ∈ R.

To represent a sequence of aircraft and snow removals on a specific runway r, we use sequence variables

σ̂r for all runways r ∈ R. To represent a sequence of snow removals for a specific snow removal group, we use

sequence variables τ̂g for all snow removal groups g ∈ G.

To facilitate constraint propagation and domain reduction in our CP model, we split required separation

times SCC′ between aircraft of operation class C and aircraft of operation class C′ in a constant processing time

p = minC,C′∈C{SCC′} and a setup time SCP
CC′ = SCC′ − p.

We define two mappings of interval variables to types and two transition matrices accordingly. With regard

to specific runway sequences, mapping ΩR : Ã → C ∪ {srg} associates each aircraft interval variable x̃ar with

a type corresponding to its operation class c(a) and all snow removal interval variables ỹgr with a type srg:

ΩR(ã) =


c(a) ∀ ã ∈ {x̃ar : a ∈ A ∧ r ∈ R}

srg ∀ ã ∈ {ỹgr : g ∈ G ∧ r ∈ R}

Transition matrix MR : C ∪ {srg} × C ∪ {srg} → Z represents separation requirements between aircraft and

snow removals accordingly:

MR(C, C′) =


SCP
CC′ ∀ C, C′ ∈ C

0 otherwise

With regard to snow removal sequences of specific snow removal groups, mapping ΩG : Ã → R associates

all snow removal interval variables ỹgr with a type corresponding to its runway r:

ΩG(ỹgr) = r

Transition matrix MG : R×R → Z represents required transfer times between runways accordingly:

MG(r, s) = Qrs − Pr

The function Costar : T → R denotes an aircraft- and runway-specific cost function and determines the

resulting earliness cost or tardiness cost if aircraft a is scheduled on runway r at time t. For cost factors Cart

in the binary program and cost function Costar of the CP model, Cart = Costar(t) holds.
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With this, our CP model formulation is as follows:

minimize
∑
a∈A

∑
r∈R

Costar(startOf(x̃ar)) (16)

subject to

x̃ar ∈ [Ear, Lar + p) ∀ a ∈ A; r ∈ R (17)

lengthOf(x̃ar) = p ∀ a ∈ A; r ∈ R (18)

presenceOf(x̃a) = TRUE ∀ a ∈ A (19)

alternative(x̃a, {x̃ar : r ∈ R}) ∀ a ∈ A (20)

lengthOf(ỹgr) = Pr ∀ g ∈ G; r ∈ R (21)

alternative(ỹr, {ỹgr : g ∈ G}) ∀ r ∈ R (22)

σ̂r = sequenceVar({x̃ar : a ∈ A, ỹgr : g ∈ G}, ΩR) ∀ r ∈ R (23)

noOverlap(σ̂r, MR) ∀ r ∈ R (24)

τ̂g = sequenceVar({ỹgr : r ∈ R}, ΩG) ∀ g ∈ G (25)

noOverlap(τ̂g, MG) ∀ g ∈ G (26)∑
a∈A

pulse(x̃ar, 1) + step(Ur, 1) +
∑
g∈G

stepAtEnd(ỹgr, −1) ≤ 1 ∀ r ∈ R (27)

Objective (16) minimizes the overall aircraft lateness cost of the schedule depending on the take-off and

landing times of aircraft. Constraints (17) and (18) define the time windows and processing times for all

aircraft. Constraints (19) and (20) ensure that each aircraft is scheduled on exactly one runway. Constraints

(21) define the duration of snow removals on runways and Constraints (22) assign exactly one snow removal

group to each runway which is cleared. Constraints (23) declare runway-specific sequences of aircraft and

snow removals and Constraints (24) ensure that all separation times between aircraft and snow removals on

the same runway are met. Similarly, Constraints (25) declare a snow removal sequence for each snow removal

group and Constraints (26) ensure sufficiently large setup times between snow removals for each snow removal

group. Finally, Constraints (27) represent the availability of each runway and make sure that aircraft are only

scheduled on a runway when it is safe.

4.4. Additional Constraints for the Constraint Programming Model

As for the BP, additional constraints which decrease the solution space can be derived from compulsory

precedence relations between snow removals and between aircraft of the same operation class.
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Precedence Constraints for Snow Removals Based on Dominant Snow Removal Patterns

Given an optimal pattern of snow removals P∗ =
(
(r1, g1, e1), (r2, g2, e2), . . . , (r|R|, g|R|, e|R|)

)
, Constraints

(28) assign to each runway a corresponding snow removal group and Constraints (29) express all derivable

precedence constraints between snow removals.

presenceOf(ỹgiri) = TRUE ∀ (ri, gi, ei) ∈ P∗ (28)

startBeforeStart(ỹgiri , ỹgjrj ) ∀ (ri, gi, ei), (rj , gj , ej) ∈ P∗ : i < j (29)

Precedence Constraints for Aircraft of the Same Operation Class

For pairs of aircraft a and b with a � b, Constraints (30) express the corresponding precedence relations.

startBeforeStart(x̃a, x̃b) ∀ a, b ∈ A : a � b (30)

5. Enhanced Time Discretization

To apply the time-discrete BP, we discretize the continuous planning horizon [1, Tmax] by defining a set

T of considered time points t ∈ T : 1 ≤ t ≤ Tmax. The size of our BP, the required computational effort

to solve it, and the objective function value of the optimal solution significantly depend on the chosen time

discretization and the resulting cardinality of T . If the number |T | of considered time points is increased,

the number of variables xart and ygrt as well as the number of constraints (4)–(6) grows. Increasing |T |, in

general, increases the required computational effort to solve the model but can lead to better optimal objective

function values which are closer to an optimal time-continuous solution. The opposite is true for decreasing

the number |T | of considered time points and, with that, the number of variables and constraints of the model.

If |T | is decreased, the model becomes easier and faster to solve but, in general, optimal objective function

values become worse due to a loss of time granularity.

We propose the following time discretization approach to keep |T | small while, at the same time, enabling

improved objective function values (c.f. Figure 1):

1. We start with a general time discretization by considering equidistant time points t ∈ T which span the

planning horizon with a constant step size.

2. For each aircraft a and runway r, we add the aircraft’s target time Tar to the set Tar and to the set T .

Thus, we open the possibility to schedule aircraft a on runway r exactly at its target time Tar avoiding

any earliness or tardiness cost, i.e., we do not have to deviate from Tar if an optimal solution with

xart = 1 exists.
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Tar = {t2, t3, Tar, t4, xcpar, t5}
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Figure 1: Enhanced time discretization and resulting time window Tar of aircraft a on runway r

3. Similarly, for each aircraft a and runway r, we add the time xCP
ar = startOf(x̃ar) to the sets Tar and T

if the CP start heuristic (which solves the time-discrete problem for a step size of one) assigns aircraft a

to runway r. Thus, we include the solution of the CP start heuristic for a step size of one, referred to as

step-size-one solution, in our BP solution space. Notably, we include the optimal step-size-one solution

for aircraft a on runway r to our BP solution space if it is found by the CP start heuristic.

For step sizes greater than one, this enhanced time discretization approach often enables significantly better

solutions or even the optimal step-size-one solution while adding only marginal complexity (in terms of variables

and constraints) to the model. Note that the optimal step-size-one solution equals the optimal time-continuous

solution if all time parameters in the model are integer and the cost function is piecewise linear with integer

break points.

6. Exact Approach Using Constraint Programming and Column Generation

In this section, we detail all steps of our algorithm to solve the time-discrete WRSP to optimality. Figure

2 gives an overview of our proposed approach. During preprocessing, we compute dominant snow removal

patterns to decrease the number of variables, which reduces our solution space. We use our CP model to reduce

variable domains through constraint propagation and to generate an initial (incumbent) solution heuristically.

This incumbent solution from the CP start heuristic provides the basis for the enhanced time discretization.

We also use this heuristic solution to initialize a column generation scheme which solves the LP relaxation

of our BP optimally. We identify all variables which are potentially required to solve the BP to integer

optimality resulting in a column-reduced BP. In the last step, we use a branch-and-bound procedure to solve

this column-reduced BP.

A key feature of the proposed algorithm is that it decreases the model size, i.e., the number of variables

and constraints, of the time-discrete BP in order to accelerate the final branch-and-bound procedure. Pre-

processing, constraint propagation, and the column generation scheme primarily aim at reducing the number
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Preprocessing computes dominant snow removal patterns

BP before preprocessing

CP model

CP start heuristic generates solution for enhanced time discretization and as upper bound UBCP

Constraint propagation reduces variable domains

BP after preprocessing with set X of xart variables

Column generation solves LP relaxation of BP

xart variables in X \ X ′ with reduced cost r < UBCP − LBLP are added to master problem

Optimal solution of LP relaxation serves as lower bound LBLP

Master problem: LP relaxation of BP with Subset X ′ ⊆ X of xart variables
Pricing subproblem: Compute reduced cost for all xart variables in X \ X ′

Add xart variables with negative reduced cost to X ′

Column-reduced BP with all required variables for integer optimality

Branch-and-Bound solves column-reduced BP

Initial
solution

(columns)

Upper
bound
UBCP

�

Figure 2: Overview of our exact approach using constraint programming and column generation

of variables in the model. This is particularly efficient, since, in the proposed model formulation, a reduction

of xart and ygrt variables usually decreases the sizes of sets Tar, Trg, Vrt, and Wgt. This, subsequently, also

reduces the number of constraints (4)–(6).

6.1. Preprocessing

In a preprocessing step, we use the concept of dominant snow removal patterns to reduce the number

of ygrt variables in order to decrease the solution space. Given a dominant snow removal pattern P∗ =(
(r1, g1, e1), (r2, g2, e2), . . . , (r|R|, g|R|, e|R|)

)
, only corresponding precalculated combinations of runways, snow

removal groups, and earliest possible snow removal times have to be considered in order to solve the WRSP

optimally. Therefore, we restrict the ygrt-variables to all tuples (g, r, t) with (r, g, e) ∈ P∗ and e ≤ t.
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6.2. Constraint Programming for Constraint Propagation and as a Start Heuristic

We apply constraint propagation to our CP model in order to compute possible assignments of aircraft to

runways and to tighten time windows for aircraft and for snow removals. To achieve this, constraint propagation

makes logical deductions about the presence and possible domains of x̃ar and ỹgr interval variables. We only

include xart and ygrt binary variables in our BP which correspond to x̃ar and ỹgr interval variables in the

CP model after constraint propagation. This significantly reduces the number of ygrt and xart variables.

Furthermore, we exclude from T all time points t which can not be the start time of any interval variable.

This reduces the number of constraints (4)–(6) in our BP and, thus, its model size and complexity.

We use a CP optimization engine to solve the CP model of the WRSP heuristically in order to derive an

initial solution and upper bound UBCP for the problem. We terminate the CP solution procedure after a

given limit of failed tries to construct a solution or after a given time limit. To adjust for the complexity of the

instances to be solved, we compute these limits from the number of considered aircraft and runways. We use

the resulting best found solution of the CP model for our enhanced time discretization approach and include

the heuristically computed time-continuous solution in our BP solution space by adding the corresponding

time points xCP
ar = startOf(x̃ar) to Tar and T as described in Section 5. We also use the solution from the CP

start heuristic as initial columns for our column generation scheme.

6.3. Column Generation Scheme to Solve the Linear Relaxation of the Binary Program

After reducing the number of variables during preprocessing, the resulting BP still has a large number of

xart variables. Most of them, however, are non-basic in the optimal solution. We denote the full set of xart

variables after preprocessing as X . We use column generation to identify a subset X ′ ⊆ X which includes all

xart variables required to solve the LP relaxation of the BP to optimality.

The master problem of our column generation scheme is the LP relaxation of the BP containing all ygrt and

zr variables but only xart variables with xart ∈ X ′. Since the number of xart variables exceeds the number of

ygrt and zr variables by far, we restrict our column generation scheme to the generation of xart variables. We

initialize the master problem with the subset X ′ of xart variables corresponding to the solution of the CP start

heuristic. In each iteration of the column generation scheme, our pricing mechanism computes the reduced cost

for all xart variables in X\X ′. This pricing procedure can be implemented very efficiently since the number of

xart variables in X\X ′ is finite and the pricing of each variable is solely a linear combination of respective dual

variables. We add xart variables with negative reduced cost to the variable set X ′ for the next iteration of the

column generation and terminate the column generation if no more variables with negative reduced cost are

found. The final solution of the master problem after the last iteration of the column generation procedure is

the optimal solution for the LP relaxation of the BP and, thus, constitutes a lower bound LBLP for our BP.
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6.4. Solving the Binary Program Optimally

To compute the optimal integer solution for our BP, we apply a method initially developed and proven by

Baldacci et al. (2007) to solve the capacitated vehicle routing problem. In the following, we describe how we

adapt their approach to our problem and sum up the method and the rationale behind it.

After the last iteration of the column generation procedure, when no more variables with negative reduced

cost are found in the pricing step, all variables required to optimally solve the master problem, i.e., the LP

relaxation of the BP, have been generated. Solving the BP to integer optimality, however, could require

additional variables from set X\X ′. For all variables xart ∈ X\X ′, their reduced cost c̄xart
describe their

contribution to the objective function value of the master problem if these variables become basic. Given the

lower bound LBLP from the LP relaxation and the upper bound UBCP from the CP start heuristic, we know

that variables xart ∈ X\X ′ with LBLP + c̄xart
≥ UBCP can not be required for the optimal integer solution.

Note that all variables which are required to construct the solution from the CP start heuristic resulting in

UBCP are present in the master problem since the column generation scheme has been initialized with these

variables. To secure that also all variables potentially required for integer optimality of the BP are present

in the master problem, we add all variables xart ∈ X\X ′ with LBLP + c̄xart
< UBCP to the master problem,

resulting in the column-reduced BP. Finally, we solve the integer variant of the column-reduced BP using a

standard branch-and-bound procedure of a MIP solver.

7. Computational Study

In our computational study, we test and evaluate our approach with real world data from Munich Inter-

national Airport. We show that our enhanced time discretization approach enables good solutions even for

larger step sizes. By analyzing model sizes in terms of variables and constraints, we show that preproces-

sing, constraint propagation, and our column generation approach significantly reduce the model complexity.

Finally, we analyze the computational times of our approach. We show that our method outperforms a time-

continuous model formulation for more complex instances and solves all instances of our computational study

significantly faster than a pure CP approach. We computed all instances on an Intel i7-8700K with 3.7 GHz

and 32 GB RAM using Python 3.6 with Gurobi 8.1 as MIP solver and IBM ILOG CPLEX CP Optimizer as

CP optimization engine.

7.1. Description of Test Instances

Based on the data set of Pohl et al. (2021), we consider 24 realistic instances which differ in their cha-

racteristics and parameters. All instances consider flight operations of a winter day with considerable snow
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Figure 3: Cost functions

fall in November 2017 at Munich International Airport. We tested our approach with various parameter

combinations and assumptions:

Aircraft time windows We consider two types of aircraft time windows which both are established in lite-

rature on runway scheduling. First, we consider instances without earliness, where an aircraft’s target

time constitutes its earliest possible take-off or landing time. Second, we consider instances allowing

earliness where aircraft can be scheduled up to 10 minutes ahead of their target time causing respective

earliness cost. In both cases, we allow aircraft tardiness of up to 20 minutes after target time. For each

aircraft, we assume the same aircraft time window for all runways.

Cost function We consider two different types of cost functions which both are used in literature (cf. Figure

3). For the cost function type “linear”, we assume that earliness cost as well as tardiness cost are linearly

related to the deviation from an aircraft’s target time. In practice, earliness often causes higher cost

than tardiness, e.g., due to higher fuel consumption at higher aircraft speeds. We assume that the cost

increase rate (slope of the cost curve) for earliness is 50% higher than for tardiness. To take into account

that delays of larger aircraft with a higher number of passengers are more critical, we use cost increases

for tardiness of 1, 2, and 3 monetary units per second for aircraft of the classes “Large”, “Boeing 757”,

and “Heavy” respectively. For the cost function type “double”, we assume that the cost increase rate of

the linear cost function doubles every minute for earliness cost as well as for tardiness cost.

Snowfall scenario We consider two scenarios regarding snowfall. For the scenario “beginning snowfall”, we

assume that, at the start of the planning horizon, all runways have the same snow conditions. Due to

snowfall, operations become unsafe at the same point in time on all runways, i.e., U1 = U2 = . . . = U|R|.

In our computational study, we assume that runways become unsafe 25 minutes after the beginning of

the planning horizon. For the scenario “continuous winter operations”, we assume that runways have

previously been cleared from snow, ice, and slush at different times. Thus, the times at which runways

become unsafe mainly depend on the times elapsed since the previous snow removals and, consequently,

runways become unsafe at different times, i.e., U1 6= U2 6= . . . 6= U|R|. In our computational study, we
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Table 3: Transfer times between runways (in seconds)

Succeeding runway

Preceding runway Runway 1 Runway 2 Runway 3

Runway 1 - 600 1,200

Runway 2 900 - 1,200

Runway 3 1,500 1,500 -

assume that the first runway becomes unsafe 10 minutes after the beginning of the planning horizon and

that the second runway becomes unsafe after 25 minutes. In case of three runways, we assume that the

third runway becomes unsafe after 40 minutes.

Runways and snow removal groups We consider instances with either two runways and one snow removal

group or with three runways and two snow removal groups. We consider sets of homogeneous and

independent runways, i.e., runways allow for the same flight operations and flight operations on one

runway do not affect flight operations on other runways. Table 3 lists considered transfer times between

runways. For the first two runways, these are based on the road infrastructure of Munich International

Airport. For the third runway, we consider an extension of the existing runway system as currently

planned by the airport. In our experiments, we do not limit snow removal time windows and allow for

all runways r and snow removal groups g the maximum set Trg = {0, ..., Tmax} of potential snow removal

times.

Aircraft and flight density We compute all instances for 45 and 75 aircraft to be scheduled. For instances

with two runways and one snow removal group, we consider 45 flight operations per hour. For instances

with three runways and two snow removal groups, we assume 60 flight operations per hour.

Table 4 lists the complete configurations and parameters for all considered instances.

For the CP start heuristic, we used a limit of 2, 000× |R| × |A| fails for instances without earliness and a

limit of 8, 000× |R| × |A| fails for instances with earliness to account for their larger solution space.

7.2. Balancing Model Size and Solution Quality Through Enhanced Time Discretization

In Table 5, we show that our enhanced time discretization approach enables high quality solutions while

keeping the model size comparatively small. Therefore, we compare the number of variables and constraints

and the optimal objective function values of four different time discretization variants. We compare step

sizes of one second (TD1), three seconds (TD3), and five seconds (TD5) using a standard time discretization

(without consideration of target times Tar and heuristic solutions xCP
ar ) to our enhanced time discretization

approach which uses a step size of five seconds and includes target times Tar and heuristic solutions xCP
ar in

the solution space (TD5e). We use the most granular time discretization variant TD1 as a benchmark. We
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generated all four time discretization variants for all instances to determine the respective model sizes. When

solving instances with TD1, for some of the instances, we ran out of memory and had to abort the solution

procedure (indicated by “n/a” in column “Obj. Val.”).

Regarding the model size, the number of variables as well as the number of constraints is almost directly

proportional to the chosen step size of the time discretization. A step size of three seconds reduces the number

of variables and constraints each by approximately a factor of three and, thus, the matrix size of the BP by a

factor of nine. Similarly, a step size of five seconds reduces the number of variables and constraints each by

approximately a factor of five and, thus, the matrix size of the BP by a factor of 25. This comes at the cost of

losing granularity and solution quality compared to a step size of one second. A standard time discretization

of three seconds (TD3) yields optimal objective function values which are up to 14.5% (on avg. 4.3%) higher

than objective function values of variant TD1. If a standard time discretization of five seconds (TD5) is used,

respective optimal objective function values increase up to 25.0% (on avg. 8.7%). With our enhanced time

discretization (TD5e), we achieve optimal objective function values which are only up to 2.4% (on avg. 0.9%)

higher than for TD1 while realizing almost the full model size reduction of factor 25.

Considering operational circumstances at airports, a scheduling accuracy of five seconds is often not achie-

vable in practice. Given that, during peak periods, aircraft are scheduled every 80 to 90 seconds on airport

runways (cf. Flughafen München, 2014; Kobie, 2018) and considering the distribution of required separation

times between aircraft (cf. Table 1), step sizes of up to 20 seconds seem reasonable. While, in our computatio-

nal study, we are showcasing the capabilities of our method using a step size of up to five seconds (TD5e), our

approach is also applicable and valid for larger step sizes. Larger step sizes would further reduce the problem

size and accelerate the solution procedure.

7.3. Reducing the Number of Variables Through Preprocessing, Constraint Propagation, and Column Genera-

tion

Table 6 shows the impact of preprocessing, constraint propagation, and the column generation approach on

the size of the resulting model. For this analysis, we use time discretization variant TD5e due to its favorable

trade-off between model size and solution quality. For all considered instances, we report the number of

variables and constraints of the original BP before preprocessing (corresponding to columns “TD5e” of Table

5). We also show the number of variables and constraints after preprocessing and constraint propagation.

In the last two columns, we report the number of variables and constraints which remain after the column

generation scheme in the column-reduced BP. This includes all variables xart with LBLP + c̄xart < UBCP and,

thus, all variables which are required to solve the BP to integer optimality. Our column generation scheme

generates only 14.7% to 56.0% (on avg. 29.6%) of all variables of the original BP. This corresponds to 15.4%
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Table 6: Reducing the model size through preprocessing, constraint propagation, and column generation

Original BP before
preprocessing

BP after preprocessing
and constraint
propagation

Column-reduced BP after column generation
(including variables xart with
LBLP + c̄xart

< UBCP)

Instance Variables Constraints Variables Constraints Variables Constraints Matrix Size
(in % of

Original BP)

T / l / begin / 2 / 45 23,172 19,467 16,295 14,579 8,746 (37.7%) 7,969 (34.4%) 13.0%

T / l / begin / 2 / 75 38,384 33,075 31,507 28,187 13,574 (35.4%) 13,715 (35.7%) 12.6%

T / l / begin / 3 / 45 35,880 31,086 33,876 28,823 20,098 (56.0%) 16,770 (46.7%) 26.2%

T / l / begin / 3 / 75 59,274 53,637 56,424 49,814 32,767 (55.3%) 29,342 (49.5%) 27.4%

T / l / cont / 2 / 45 23,172 19,467 15,659 13,984 4,519 (19.5%) 4,171 (18.0%) 3.5%

T / l / cont / 2 / 75 38,384 33,075 30,871 27,592 6,219 (16.2%) 6,872 (17.9%) 2.9%

T / l / cont / 3 / 45 35,862 30,792 35,015 30,052 8,802 (24.5%) 8,560 (23.9%) 5.9%

T / l / cont / 3 / 75 59,256 53,343 58,409 52,603 13,003 (21.9%) 14,599 (24.6%) 5.4%

E+T / l / begin / 2 / 45 33,254 27,063 23,508 19,799 14,352 (43.2%) 12,021 (36.1%) 15.6%

E+T / l / begin / 2 / 75 55,654 45,844 45,192 38,218 27,464 (49.3%) 24,076 (43.3%) 21.3%

E+T / l / begin / 3 / 45 50,835 41,426 48,828 39,072 20,874 (41.1%) 17,731 (34.9%) 14.3%

E+T / l / begin / 3 / 75 85,031 72,775 82,172 68,773 34,221 (40.2%) 30,561 (35.9%) 14.5%

E+T / l / cont / 2 / 45 33,251 26,979 23,221 19,647 12,140 (36.5%) 10,602 (31.9%) 11.6%

E+T / l / cont / 2 / 75 55,660 45,944 44,902 38,057 21,411 (38.5%) 20,006 (35.9%) 13.8%

E+T / l / cont / 3 / 45 50,823 41,140 50,375 40,800 8,245 (16.2%) 8,538 (16.8%) 2.7%

E+T / l / cont / 3 / 75 85,023 72,523 84,575 72,242 17,177 (20.2%) 19,805 (23.3%) 4.7%

E+T / d / begin / 2 / 45 33,254 27,024 23,512 19,824 6,299 (18.9%) 6,626 (19.9%) 3.8%

E+T / d / begin / 2 / 75 55,659 45,900 45,193 38,245 12,502 (22.5%) 13,940 (25.0%) 5.6%

E+T / d / begin / 3 / 45 50,840 41,410 48,830 39,072 12,081 (23.8%) 12,609 (24.8%) 5.9%

E+T / d / begin / 3 / 75 85,032 72,775 82,182 68,934 19,930 (23.4%) 21,767 (25.6%) 6.0%

E+T / d / cont / 2 / 45 33,259 27,075 23,225 19,700 5,784 (17.4%) 6,240 (18.8%) 3.3%

E+T / d / cont / 2 / 75 55,664 45,957 44,901 38,040 12,055 (21.7%) 13,535 (24.3%) 5.3%

E+T / d / cont / 3 / 45 50,826 41,207 50,378 40,818 7,478 (14.7%) 7,849 (15.4%) 2.3%

E+T / d / cont / 3 / 75 85,026 72,601 84,575 72,243 14,295 (16.8%) 17,198 (20.2%) 3.4%
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to 49.5% (on avg. 28.5%) of all constraints. As a result, the size of the matrix of the column-reduced BP

is considerably smaller and only 2.3% to 27.4% (on avg. 9.6%) of the matrix size of the original BP before

preprocessing.

7.4. Analysis of Computational Times

In Table 7, we report in detail the computational performance of our proposed algorithm using enhanced

time discretization variant TD5e. We present details on the three main components of our algorithm, namely

the CP start heuristic, the column generation phase, and the final branch-and-bound procedure for the column-

reduced BP. With regard to the CP start heuristic, we report the best found solution as upper bound UBCP,

the CP internal optimality gap at termination of the heuristic, and the computational time at termination (due

to reaching the given fail limit). For the column generation phase, we report the number of required iterations

before no more variables with negative reduced cost are found and the corresponding solution as LBLP. As

computational time, we report the combined time over all iterations to compute the LP solutions. For the final

branch-and-bound procedure, we report the computational time to solve the column-reduced BP to integer

optimality and the objective value of the final solution. In the last column, we show the sum of computational

times over all three components as overall computational time. We also compare our algorithm to a pure CP

approach and report the best found solution and the remaining CP internal optimality gap model after a time

limit of five minutes. Additionally, we compare our algorithm to an implementation of the time-continuous

WRSP model presented in Pohl et al. (2021) using a time limit of one hour. Where applicable, we report the

relative decrease of computational times through our new approach in column Improvement.

Our algorithm based on TD5e solves all 24 considered instances of the time-discrete WRSP to optimality

within three minutes. For 15 out of 24 instances, we compute the optimal solution in less than one minute.

Within the chosen fail limits, our CP start heuristics calculates good solutions deviating at most 26.4% (8.4%

on avg.) from the optimal solution in 2 to 49 seconds. For instances without aircraft earliness, the CP start

heuristic finds the optimal solution but can not prove its optimality and terminates with significant optimality

gaps above 87%. For all instances, we require less than 20 iterations to generate all required columns and, in

each iteration, we calculate the solution of the LP in less than one second on average.

Our algorithm outperforms a pure CP approach, which can not solve any instance to proven optimality

within a time limit of five minutes. The computational experiments also show that, for many instances, our

approach outperforms the computational times of a time-continuous model formulation. Overall, the time-

discrete formulation has lower computational times for 15 of the 24 instances. Remarkably, the time-discrete

model performs significantly better for large problem sizes. Our approach solves much faster all instances with

more than two runways and reduces computational times in these cases by up to 97%.
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8. Conclusion

Previous research showed that an integrated scheduling of aircraft and snow removals on runways ena-

bles large efficiency gains. The existing time-continuous model for the WRSP struggles to solve larger and

more complex instances to proven optimality. Therefore, we presented a time-discrete variant of the WRSP

and an exact solution algorithm to solve it. We proposed a CP start heuristic and a BP, which we solved

using a column generation scheme and a branch-and-bound procedure. We demonstrated the efficiency of

our algorithm by applying it to realistic instances from Munich International Airport and showed that our

algorithm regularly outperforms the time-continuous model formulation and a pure CP approach in terms of

computational times. We also proposed an enhanced time discretization method which enables high-quality

solutions while maintaining small model sizes. We achieve this through a model formulation which allows

time discretization with variable step sizes and by utilizing results from the CP start heuristic. Preprocessing,

constraint propagation, and column generation further reduce the size of our time-discrete model resulting in a

reduced BP whose matrix size is, on average, less than 10% of the matrix size of the original BP. Based on this

reduction of model size, we hope that our proposed algorithm combining CP techniques and column generation

is transferable and adaptable also to time-discrete optimization models with high numbers of variables in other

domains and encourage further research in that direction.

While this paper solved the static and deterministic version of the WRSP, many aspects of the problem

setting, including aircraft time windows, weather conditions, and potential operational disruptions, are subject

to change or uncertainty. Therefore, it might be worthwhile to account for the stochasticity of the problem

and to explore how concepts of robust optimization can be applied to the WRSP.
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