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Abstract

Industry 4.0 means a deep transformation for all our industries. Smart factories
are a key feature for this transformation. Planning and scheduling are within the
core functions of those smart factories. Although scheduling problems have been
studied for long, the deployment of digital scheduling solutions in industries is
still an ongoing process. In this work, we discuss the detailed scheduling problem
in an aeronautical assembly line. It has the structure of a challenging multimode
Resource-Constrained Scheduling Problem with incompatibility constraints, a re-
source leveling objective and also a high number of tasks. To begin with, we
present two new event-based mixed-integer linear programming formulations for
this problem. Then, a constraint programming formulation is also detailed. A
large-neighborhood search approach based on constraint programming and tai-
lored to the resource leveling objective is presented. The four approaches are
tested and compared using ad hoc data sets and industrial instances, yielding
significant improvement compared to the heuristic currently used by the com-
pany. Moreover, the large-neighborhood search approach significantly improves
the method proposed in the literature on a related multimode resource investment
problem when short CPU times are required.
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programming, large neighborhood search

1. Introduction

The aeronautical industry has experienced an in-depth transformation in the
last years. The demand for aircrafts has increased but also the complexity and
customization of the products. As a result, aircraft manufacturers have had to
produce more units of more complex aircrafts while trying to reduce time to mar-
ket, production lead times and costs (Mas et al., 2015). In order to face these and
other challenges, the aeronautical industry has moved towards the implementation
of Industry 4.0 trends (Kagermann and Wahlster, 2013). As in other industries,
globalization and digitization have become central features. In fact, the aeronauti-
cal industry has been ahead in the use of digital solutions. A wide range of Product
Life-cycle Management tools have been deployed in the aeronautical industry and
have resulted in highly digitized processes from aircraft design to aircraft main-
tenance (Mas et al., 2014). However, planning and scheduling processes have
consistently remained almost unaffected. Most of the activities that are related to
these processes continue to use manual procedures that rely on the knowledge of
experts.

Nevertheless, the digitization of scheduling processes is necessary not only
for Manufacturing Execution System implementation but also for Industry 4.0
deployment. Schläpfer et al. (2014) list three goals for Industry 4.0, which cannot
be reached without improving planning and scheduling process:

• Higher flexibility through dynamic planning, control and execution;

• Higher productivity and resource efficiency for customized products;

• Shorter lead times through the application of intelligent analyses.

In line with these objectives, this paper proposes solution methods for the
detailed scheduling of stations in an aircraft final assembly line. This problem
can be classified within the Resource-Constrained Project Scheduling Problems
(RCPSPs) category. In Brucker et al. (1999), a classification of such complex
scheduling problems together with an overview on existing solution methods can
be found. A more recent overview of RCPSP models and solution approaches can
be found in Schwindt and Zimmermann (2015).
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In this work, a part of which was presented in (Borreguero et al., 2015a,b), we
address a multimode RCPSP with generalized temporal constraints, several labor
skills and a resource leveling objective.

Our contributions can be stated as follows:

• We propose two Mixed-Integer Linear Programming event-based formula-
tions of the problem, extending the event-based formulation initially pro-
posed for the standard RCPSP to tackle the additional constraints coming
from the considered industrial problem, which had not been studied in the
literature so far.

• We also propose an exact constraint programming method to solve the prob-
lem, in order to be able to compare the performance of both types of paradigms.

• Finally, we propose a large neighborhood search heuristic with neighbor-
hoods tailored to the resource-leveling objective, with the aim to improve
the performance of exact methods and of the heuristic approach currently
used by the company on large-scale industrial instances.

The structure of the article is as follows: Section 2 provides a more detailed
problem description, Section 3 presents a literature review. Section 4 deals with
the Mixed-Integer Linear Programming (MILP) formulation proposal and its ex-
perimentation results. Section 5 includes the Constraint Programming approach
and its results. In Section 6, the large neighborhood search heuristic is presented.
All approaches are compared, including a comparison to the existing solution
methods from an aircraft manufacturer and a comparison with a method proposed
in the literature for a related multi-mode resource investment problem. Finally,
conclusions and further research directions are presented in Section 7.

2. Problem Description

Aeronautical assembly lines consist in a series of stations where different jobs
are executed. Most of them have been transformed into moving or pulse lines
where each product has to go through all the stations following a fixed path. More-
over, the line is frequently synchronized, which means that the time that each
product remains on a station is always the same and equal to the rate at which the
assembly line produces its output. In this context we consider the cycle time as
the time needed for an airplane to visit each of the stations. In our problem the
maximum cycle time is fixed.
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The assignment of jobs to a station is in most of the cases related to indus-
trial issues: assembly technologies and the need of specific jigs that cannot be
easily moved. Therefore, the assignment of jobs between stations is made only
once, during the line definition. Although there may be a small percentage of jobs
that can be performed in more than one station, once the jobs are assigned they
are rarely moved from one station to another, so we can assume with no loss of
generality that the task assignment is constant per station.

Taking this into account, the scheduling decision consists in establishing the
order in which the jobs will be done together with the resources allocated to each
of them, given the line cycle time and a set of jobs per station. The result is usually
displayed as a bar chart where each task is assigned a start/end date and a set of
operators. From the operator point of view, a performance tracker view is used.
The main difference is that the performance tracker is worker-oriented, so each
line provides information on the task to be performed by an operator all through
the cycle time. An example of each of them is presented in Figures 1 and 2.

Figure 1: Bar Chart Example

In the recent years, automation of aeronautic stations has experienced major
improvements. In spite of this, aeronautical assembly remains intensive in highly-
qualified operators. Often, some of the jobs need to be done by workers with a
specific certification, and not all them have the same certifications. These different
skills are managed by the use of ‘profiles’ that gather one or more certifications.
Each operator is assigned a profile, according to her/his skills. As well as this,
each task may be done by operators with one or several profiles. For example,
if profile 1 includes only elementary mechanical tasks (such as drilling and rivet-
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Figure 2: Performance Tracker Example

ing) and profile 2 includes the previous ones and also pipes installation, a work
involving riveting and drilling can be done by both profiles.

Operators are organized in permanent groups, with a team leader per group
of 5 to 15 operators. Each group is responsible of tracking its performance and
taking corrective actions. In order to enable this, each group works together and
is assigned to a station for the whole cycle time. Extra resources may be available
for peak demands, but they must not be included on the standard schedule. As a
result, if N operators are needed only one day at one station, they will stay on the
station within the cycle time, and the related cost must be allocated to that station.

Some of the assembly jobs can be performed by only one operator, whereas
others must be done by two or more. On some cases, there is a range of possible
operator numbers, which will lead to a set of production times for the work. In
addition, having more than the minimum number of operators decreases the dura-
tion of a job, but not in a linear way, as some activities may not be performed in
parallel. For example: the time for preparing the necessary material and reading
the documentation will be the same no matter what is the number of operators
working. As a result, the number of operators reduces the processing times in
a non-linear job-specific manner. When several operators are involved, they all
need to have the same profile.

Stations can be of very different sizes: from a part of a major component (a fan
cowl, for example) of 1-10 meters, to a complete aircraft (hundreds of meters) in
the last steps of a final assembly line. However, even the smallest stations are big
enough for two or more jobs to be performed in parallel. Usually, several tasks
are to be done near to each other, in a way that they cannot be executed at the

5



same time due to space constraints. As a result, stations are divided on smaller
areas, where a limited number of operators can work at a time. In consequence,
the space on each area is a scarce renewable resource for scheduling.

Each task may require a set of tools that can be standard or specific for the
work. If they are specific, different jobs rarely share a tool and if they share it, the
tool can be duplicated if jobs are to be performed in parallel. Standard tools are
available so that all operators can use them freely. Therefore, tools need not be
included in the scheduling model.

The constraints between tasks can be of different nature. The most common
case is that of precedence constraints: when a task cannot be started until a pre-
vious one has been finished. For example: harnesses cannot be routed until the
supports to which they are attached have been riveted to the aircraft structure, or a
functional test cannot be performed until the system it tests has been completely
installed.

Another kind are incompatibility or disjunctive constraints that will be called
in the remaining of the paper non-parallel constraints: these mean that some ac-
tivities can be done in any order as far as they are not being performed at the same
time. This is the case of some tasks that due to health and security reasons must
be done with as fewer persons as possible in the hangar, e.g. corrosion inhibition
application. This also happens in tests that require a specific aircraft condition:
hydraulic tests need to have the power on, but the aircraft must have its power off
for fuel tests.

Finally, maximum time lags also occur. For example, bonding tests have to be
performed at the end of the installations, and bonding protection must be accom-
plished within the same working day where the test was passed.

In accordance to the fixed cycle time, the objective function will be to min-
imize the resource consumption per station. As we have said, this is equivalent
to minimizing the sum of the peak operators demand per profile, i.e. resource
leveling.

On average, for final assembly lines, the cycle time varies from 14 to 25 work-
ing days. There are two or three operator teams per station, that is, more or less 20
operators in shifts of 8 hours. Sample profiles are: mechanical technician, elec-
trical technician, fluid systems technician, inspector and test specialist. However,
as jobs within a station are usually from similar technologies more than three pro-
files are rarely required per station. As for the working areas, there can be defined
up to 5 different ones per station. The total workload can be from 1000 to 3000
man.hours.

Precedence constraints are the most frequent. There are normally a small per-
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centage of jobs that do not have any kind of precedence relationship with the
others. Jobs are usually organized on several groups (1-10) that can be done in
parallel. Within these groups, most of the tasks must be done in series. Non-
parallel constraints and maximal time lags occur at a much lower rate than prece-
dence constraints but, at the same time, they cannot be omitted because they have
a major impact on product quality, reliability or health and safety issues.

In summary, the short term scheduling of a final assembly line station must
fulfill the following requirements:

Cycle time

• All the tasks must be completed within the stations’ cycle time.

Objective function: number of operators

• Given a fixed cycle time, the aim is to find a schedule that minimizes the
number of operators needed.

Station definition

• The station is divided in working areas and each operation is assigned to
one of those working areas.

Task definition

• Each task can be performed in different modes. Each mode is characterized
by a number and profile of operators.

• Each task can be performed by one or several operator profiles. However,
all the operators selected to do the task must belong to the same profile.

• The duration of the task depends on the number of operators assigned and
therefore on the selected execution mode.

• Whenever a task begins, an execution mode is selected. The same mode
must be used throughout its execution.

• No preemption is allowed: once a task begins it must be continued until it
is finished.

Other Constraints
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• The number of operators working on an area at a specific time must be lower
than the capacity of that area.

• There are precedence constraints between some operations.

• The precedence constraints between operations may also include maximal
time lags.

• There are non-parallel constraints between some operations: those opera-
tions cannot be active at the same time.

Given this problem description, the next section will be dedicated to the review
of similar problems in the literature, and to the most widely encountered solution
approaches, including the one that is currently used by the aircraft manufacturer
for the considered problem.

3. Literature Review

Concerning the relevant literature in aircraft assembly lines, assembly line bal-
ancing techniques (Boysen et al., 2009), where jobs have to be optimally assigned
to stations, have been applied to aeronautical assembly lines. As a recent result,
Biele and Mönch (2018) proposed mixed-integer programming techniques for as-
signing jobs and operators to stations in a fixed-job sequence aircraft assembly
line.

Contrarily to traditional assembly line balancing, our research takes place in
the production phase where jobs have already been assigned to stations, as stated
in Borreguero et al. (2015c), which turns the problem into a time- and resource-
constrained scheduling problem.

More precisely, we are dealing with a project scheduling problem consisting
of a time window and resource assignment for a set activities of known duration
and resource requests, that must be executed guaranteeing some precedence rela-
tions. Given a time limit for the project duration the objective is to find the least
resource consuming schedule. Time-Constrained Scheduling Problems with re-
source leveling objectives are variants of Resource-Constrained Scheduling Prob-
lems. These were classified by Brucker et al. (1999) using an α|β |γ generalized
scheme similar to the one existing for machine scheduling. In accordance with
that classification, the scheduling of the tasks from an aeronautical assembly sta-
tion is denoted by:

MPSm,σ , ρ | temp | ∑Co ∗numop
o
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• α = MPSm,σ ,ρ . This stands for a multi-mode resource-constrained project
where each activity can be processed in several alternative modes and there
exists a set of renewable resources available for each time period during
the project execution: m being the resources, σ the units of each resource
available and ρ the maximum number of units of the resources demanded
by an activity. For our particular problem, the activities are the work tasks
assigned to each station. The renewable resources are the number of op-
erators (each of them belonging to a profile) and the space in each of the
station’s working areas. As well as this, each mode for an activity defines
a combination of operator profile, number of operators and duration. All
the operators assigned to an activity must be from the same profile and the
range of possible numbers of allocated operators per task is independent
from the chosen profile.

• β = temp. There are precedence constraints (task w′ cannot start until task
w has been completed), non-parallel constraints (tasks w and w′ cannot be
in progress at the same time, but there is no precedence relation between
them), and maximal time lags between tasks (task w′ must start within a
maximal time after w has been completed). All the temporal constraints are
independent from the mode in which a task is executed.

• γ = ∑Co ∗numop
o . The objective function is to minimize the resource in-

vestment, given that the cycle time is fixed. In consequence, the objective
function is to minimize the labor cost of the assembly. As the operators,
once assigned to a station stay working on it for all the cycle time, mini-
mizing the labor cost is in our case equivalent to minimizing the maximum
number of operators needed throughout the cycle time. We will consider
that the cost of an operator does not depend on its profile.

There have been a wide range of studies on both heuristic and metaheuristic
methods for solving the RCPSP, as well as different MILP models (Brucker and
Knust, 2011; Artigues et al., 2010; Hartmann and Briskorn, 2010; Wang et al.,
2010; Nouri et al., 2013). The first MILP formulations proposed for the RCPSP
were Discrete time formulations (Pritsker et al., 1969). Afterwards, Continuous
time formulations were proposed by Alvarez-Valdés and Tamarit (1993) with a
model based on the concept of forbidden sets and Artigues et al. (2003) with a
model based on a resource flow network.

Koné et al. (2011) proposed the use of event-based formulations from a model
introduced by Zapata et al. (2008) that, despite a poor LP relaxation, have the ad-
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vantage to be able to tackle instances having large time horizons. They concluded
that event-based formulations outperformed the time-discrete MILP models for
large scheduling horizons and outperformed also the continuous time flow-based
formulations for highly cumulative instances, as it is our case. However, the event-
based formulations proposed by Koné et al. are suitable for the standard RCPSP,
which includes some assumptions that are too restrictive for many applications
(Hartmann and Briskorn, 2010). Therefore, it is of great interest to improve this
kind of formulations so that they can be used on more practical RCPSP contexts.
Constraint Programming (CP), on the other hand, provides a flexible and generic
modeling language and efficient solutions approaches to a wide range of schedul-
ing problems (Baptiste et al., 2001; Laborie et al., 2018). Therefore CP is a tech-
nique of choice to solve variants of RCPSP including general temporal constraints,
calendar constraints (Kreter et al., 2017), multiskill operators (Polo-Mejı́a et al.,
2020). Note that a constraint programming model was proposed by Arkhipov
et al. (2018) for a closely related aircraft assembly line scheduling problem, but
with the makespan minimization objective instead of the resource-leveling one.

To deal with large-scale industrial instances, while benefiting from the power
of MILP or CP solvers, large neighborhood search (LNS) heuristics have been
designed. This technique, based on the iterative solving of a subproblem where
a part if a current solution of the global problem is fixed while another part is
freed, was originally introduced in Shaw (1998) and turned out to perform well on
several problems, as routing problems (Hemmelmayr et al., 2012) or scheduling
problems (Palpant et al., 2004; Godard et al., 2005; Laborie and Godard, 2007;
Cordeau et al., 2010; Artigues and Hébrard, 2013; Thomas and Schaus, 2018).

The LNS algorithm on variants of the RCPSP including multi-skill operators
such as in Cordeau et al. (2010), generally consider time-related objective func-
tions such as makespan, maximum lateness, sum of completion times or outsourc-
ing costs that tend to favor compact schedules. To our knowledge, the LNS tech-
nique was never applied to multi-mode project scheduling problem with resource
leveling objectives such as in our case.

The problem considered in this paper has been for long solved in the indus-
try using expert knowledge, with the only aid of standard spreadsheet files. Re-
cently, a scheduling tool has been implemented. It uses an activity-oriented serial
scheduling generation heuristic (Borreguero et al., 2015c). Its priority rules are
focused on the minimum start time per task: select the task with the smallest lat-
est start time and smallest earliest start time. The latest and earliest start times
per task are calculated using the precedence diagram and the resource availabil-
ity. This heuristic is good at providing feasible solutions fast enough, given a
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station’s cycle time and a resource availability. However, there is no proof of op-
timality in terms of resources. In consequence, the scheduler needs to follow an
iterative approach, which requires a long time and, in most cases, ends up with
non-optimal solutions. Therefore, the aim of this paper is to investigate the use
of mixed-integer linear programming and constraint programming models, which
may prove optimality of the solution reached on some instances. Also, an effi-
cient large neighborhood search techniques able to tackle the resource leveling
objective will be presented.

4. MILP Formulation

We have developed two new event-based formulations for the aeronautical
station scheduling problem. They are inspired by the Start/End and On/Off Event-
Based Formulations presented by Koné et al. (2011).

Extension of previously existing event-based models to our problem is not im-
mediate. The main binary decision variables have been modified with two new
sub-index in order to deal with the multiple modes per task. Also, the original
formulations included only standard precedence constraints. New constraints and
variables have been added in order to take into account the maximal time lag
and non-parallel constraints. Finally, the objective function has been modified to
tackle with the resource leveling objective. In the original event-based formula-
tions, the number of events were, at most, the number of scheduled tasks plus one.
In our case, we need to add one more event for each pair of tasks with maximal
time lag precedence.

Both formulations include four different sets. Set W includes the job tasks, set
P the operator profiles, and set A the station areas. Finally, due to the formulation
chosen, we will need a set E = {0,1, ...,n} of events. The other needed sets and
parameters are explained in Table 1.

4.1. Start/End Event-based Multimode Formulation: SEE-M
Two sets of variables, xweop and yweop, are used to define the start and end

events of each task, as xweop = 1 (yweop = 1) if task w ∈W starts (ends) at event
e ∈ E using o operators of profile p ∈ Pw.

As already mentioned, significant changes have to be brought to the original
Start/End event-based model to take into account the constraints coming from the
industrial problem: for example, to guarantee the same assignation of operator
profiles and number throughout the task processing. Also, for tasks involved on
some non-parallel constraint we need to define a continuous variable, Sw which
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Table 1: Event-Based Formulation Parameters
Pw Set of operator profiles that may perform task w, ∀w ∈W
MXw Maximum number of operators that can work on task w, ∀w ∈W
MNw Minimum number of operators that can work on task w, ∀w ∈W
Mw Set of possible operator numbers that can work on task Mw =

{MNw, . . . ,MXw}
Dw Total duration (in working hours) of task w∈W , if assigned only to one

operator, ∀w ∈W
Γopw Reduction coefficient to obtain task w duration when it is done by o of

operators with operator profile p, ∀w ∈W , o ∈ Nw
Aaw 1 if task w is done on area a, 0 otherwise, ∀a ∈ A, w ∈W
PR Set of precedence relationships between tasks: (w,w′) ∈ PR means that

w ∈W must precede w′ ∈W
NP Set of non-parallel constraint between tasks: (w,w′) ∈ NP means that

w ∈W cannot be scheduled in parallel with w′ ∈W
MT Set of maximal time lag constraints: (w,w′) ∈MT means that the start

time of w′ must not exceed the end time of w plus a fixed time lag ∆

WM Set of tasks w ∈W involved in a maximal time lag constraint: ∃w′ ∈W ,
{(w′,w),(w′,w)}∩MT 6= /0

Ca Area capacity (in terms of number of operators), ∀a ∈ A
CT Station cycle time
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Table 2: SEE-M Variables
xweop 1 if task w starts at event e with o operators of profile p and

0 otherwise, ∀w ∈W,e ∈ E \{n},o ∈Mw, p ∈ Pw
yweop 1 if task w ends at event e with o operators of profile p and

0 otherwise, ∀w ∈W,e ∈ E \{0},o ∈Mw, p ∈ Pw
r∗pe Number of operators of profile p required by the tasks in

progress immediately after event e, ∀p ∈ P,e ∈ E
s∗ae Number of operators on area a required by the tasks in

progress immediately after event e, ∀a ∈ A,e ∈ E
αww′ 1 if w ends before w′ starts and 0 vice-versa. Defined

∀(w,w′) ∈ NP
te Time of event e ∈ E
np Total number of operators of profile p needed, p ∈ P
Sw Start time of task w. Used for maximal time lag constraints,

and therefore defined only ∀w ∈WM

represents the starting time of task w. Another new set of variables, np, represents
the total number of operators of profile p ∈ P needed. All the model variables
are listed in Table 2, where f irst(E) and last(E) denote the first and last event of
event set E, respectively.

The complete SEE-M formulation is as follows:

Minimize ∑
p∈P

np (1)

Subject to:

t0 = 0 (2)
te ≤CT ∀e ∈ E (3)

te+1− te ≥ 0 ∀e ∈ E \{n} (4)

∑
e∈E,o∈Mw,p∈Pw

eyweop− ∑
e∈E,o∈Mw,p∈Pw

exweop ≥ 1 ∀w ∈W (5)

∑
e∈E,o∈Mw,p∈Pw

xweop = 1 ∀w ∈W (6)

∑
e∈E,o∈Mw,p∈Pw

yweop = 1 ∀w ∈W (7)

t f − te− ∑
o∈Mw,p∈Pw

DwΓopw(xweop +1− yw f op)≥ 0 ∀( f ,e) ∈ E,
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f > e,w ∈W (8)

∑
e∈E,p∈Pw

xweop = ∑
e∈E,p∈Pw

yweop ∀w ∈W,o ∈Mw (9)

∑
e∈E,o∈Mw

xweop = ∑
e∈E,o∈Mw

yweop ∀w ∈W, p ∈ Pw (10)

e−1

∑
e′′=0

o∈Mw′ ,p∈Pw′

xw′eop +
n

∑
e′=e

o∈Mw,p∈Pw

ywe′op ≤ 1 ∀e ∈ E,(w,w′) ∈ PR (11)

Sw ≥ te−CT (1− ∑
o∈Mw,p∈Pw

xweop) ∀w ∈WM (12)

Sw ≤ te +CT (1− ∑
o∈Mw,p∈Pw

xweop) ∀w ∈WM (13)

Sw′−Sw− ∑
e∈E,o∈Mw,p∈Pw

ΓopwDwxweop ≤ ∆ ∀(w,w′) ∈MT (14)

∑
e∈E,o∈Mw,p∈Pw

eyweop− ∑
e∈E,o∈Mw′ ,p∈Pw′

exw′eop

≤ n(1−αww′) ∀(w,w′) ∈ NP (15)

∑
e∈E,o∈Mw′ ,p∈Pw′

eyw′eop− ∑
e∈E,o∈Mw,p∈Pw

exweop

≤ n(αww′) ∀(w,w′) ∈ NP (16)

r∗p0− ∑
w∈W,o∈Mw

oxw0op = 0 ∀p ∈ P (17)

r∗pe− r∗pe−1 + ∑
w∈W,p∈Pw

( ∑
o∈Mw

oyweop

− ∑
o∈Mw

oxweop) = 0 ∀o ∈ O,e ∈ E \{0} (18)

r∗pe ≤ np ∀p ∈ P,e ∈ E (19)

s∗a0− ∑
w∈W,o∈Mw,p∈Pw

oxw0opAaw = 0 ∀a ∈ A (20)

s∗ae− s∗ae−1 +∑
w
( ∑

o∈Mw,p∈Pw

oyweopAaw−

∑
o∈Mw,p∈Pw

oxweopAaw) = 0 ∀a ∈ A,e ∈ E \{0} (21)

s∗ae ≤Ca ∀a ∈ A,e ∈ E (22)
xweop ∈ {0,1} ∀e ∈ E \{0}, w ∈W
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p ∈ Pw,o ∈Mw (23)
yweop ∈ {0,1} ∀e ∈ E \{n}, w ∈W

p ∈ Pw,o ∈Mw (24)
αw,w′ ∈ {0,1} ∀(w,w′) ∈ NP (25)

r∗pe ≥ 0 ∀e ∈ E, p ∈ P (26)

0≤ s∗ae ≤Ca ∀e ∈ E,a ∈ A (27)
Sw ≥ 0 ∀w ∈WM (28)
te ≥ 0 ∀e ∈ E (29)

The objective function (1) is to minimize the total project cost. This cost de-
pends only on the labor costs, which are proportional to the maximum number
of operators needed during the planning horizon, as resources allocated to a work
station will remain in it throughout the complete cycle time. Constraint (2) forces
the first event to begin at t = 0 and Constraint (3) ensures that there is no delay
in the station completion. The order of the events on time is imposed by Con-
straint (4). Constraint (5) states that the start event of a task must precede its end
event. Constraints (6) and (7) limit to one the start and end event per work task.
Constraint (8) fixes the minimum time difference between the start and the end
events to the duration of the task.

A single mode for performing the task is imposed by Constraints (9) and (10).
Note that the possible modes are limited by the definition of xweop and yweop as
they are only defined for o ∈Mw and p ∈ Pw, see (23).

As for the relations between tasks, Constraint (11) is the multimode expression
for the precedence constraints. It states that if w must precede w′ then, if w finishes
at event e, w′ cannot start until event e+ 1. Maximal time lags are enforced by
Constraints (12) to (14). Constraints (12) and (13) define the start time of a task.
These constraints will only be calculated for the task involved on maximal time
lag constraints (set WM) and it classically involves the cycle time CT as a big-M
coefficient to withdraw the constraint in case there is no precedence between the
tasks. Constraints (14) limit the time between the end of a task and the start of its
successor. This time lag is defined as a constant parameter, in our case ∆ (although
it could be easily replaced by a task dependent parameter ∆ww′). Constraints (15)
and (16) define the non-parallel constraints. In these constraints, n (the number of
events) is used as a big-M parameter.

As for the resource consumption, Constraint (17) computes the number of op-
erators needed per profile immediately after the first event. Constraint (18) com-
putes the number p of operators per profile, for all the other events. Constraint (19)
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computes the maximum need of operators per profile np over all events. Finally,
Constraints (20) and (21) ensure that the maximum occupation in the station areas
is never exceeded.

4.2. On/Off Event-based Multimode Formulation: OOE-M
The other event-based formulation we have implemented deals with a single

set of variables zweop, whose value is 1 if task w is active from event e to event
e+ 1 with o operators of profile p and 0 otherwise. Another new set of binary
variables, βwop will be used to choose the mode in which a task is performed. As
resources are modeled in a simpler way, r∗oe and s∗ae are no longer needed. There
is no need either for variables αww′ for the non-parallel constraints. Variables te,
np and Sw are common to the SEE-M model.

The OOE-M formulation is:

Minimize ∑
p∈P

np (30)

Subject to: t0 = 0 (31)

∑
w∈W,o∈Mw,p∈Pw

zw0op ≥ 1 (32)

te+1− te ≥ 0 ∀e ∈ E \{n} (33)

∑
e∈E,o∈Mw,p∈Pw

zweop ≥ 1 ∀w ∈W (34)

∑
p∈Pw,o∈Mw

βwop = 1 ∀w ∈W (35)

zweop ≤ βwop ∀w ∈W, p ∈ Pw,

e ∈ E,o ∈Mw (36)
e−1

∑
e′=0

o∈Mw,p∈Pw

zwe′op− e(1− ∑
o∈Mw,p∈Pw

(zweop− zwe−1op))≤ 0 ∀w ∈W,e ∈ E

(37)
n−1

∑
e′=e

o∈Mw,p∈Pw

zwe′op− (n− e)(1+( ∑
o∈Mw,p∈Pw

(zweop− zwe−1op)))≤ 0 ∀w ∈W,e ∈ E

(38)

t f − te−∑
o∈Mw,p∈Pw

DwΓopw(zweop− zwe−1op− (zw f op− zw f−1op))
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≥− ∑
e′∈E,o∈Mw,p∈Pw

(DwΓopwzwe′op) ∀( f ,e) ∈ E,

f > e,w ∈W (39)

CT − te− ∑
o∈Mw,p∈Pw

DwΓow(zweop− zwe−1op)≥ 0 ∀w ∈W,

e ∈ E (40)

∑
o∈Mw,p∈Pw

zweop +
e

∑
e′=0

o∈Mw′ ,p∈Pw′

zw′e′op− (e−1)(1−∑
op

zweop)≤ 1 ∀e ∈ E,

(w,w′) ∈ PR (41)
Sw ≥ te−CT (1+ zwe−1op− zweop) ∀e∈E,

w∈WM (42)
Sw ≤ te +M(1+ zwe−1op− zweop)

∀e ∈ E,
w ∈WM (43)

Sw′− (Sw + ∑
o∈Mw,p∈Pw

βwopDwΓopw)≤ ∆ ∀(w,w′) ∈MT (44)

∑
o∈Mw,p∈Pw

zweop + ∑
o∈Mw′ ,p∈Pw′

zw′eop ≤ 1+n(1−NPww′) ∀(w,w′) ∈ NP (45)

∑
w∈W,o∈Mw

ozweop ≤ np ∀p ∈ P,e ∈ E (46)

∑
w∈W,o∈Mw,p∈Pw

ozweopAaw ≤Ca ∀a ∈ A,e ∈ E (47)

zewop ∈ {0,1} ∀e ∈ E,w ∈W,

p ∈ Pw,o ∈Mw (48)
zw−1op = 0 ∀w ∈W, p ∈ Pw,

o ∈Mw (49)
βwop ∈ {0,1} ∀w ∈W, p ∈ Pw,

o ∈Mw (50)
te ≥ 0 ∀e ∈ E (51)

Sw ≥ 0 ∀w (52)

The objective function is to minimize the total project cost (30). The first event
on the project starts at t = 0 per Constraint (31) and at least one task must be active
after this event as per Constraint (32). Constraint (33) refers to the order of the
events, allowing two of them to occur at the same time.
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Each task must be active at least after one of the events (34) in order to ensure
the scheduling of all the tasks. Variables βwop select the mode in which each task
will be performed. One and only one of the variables βwop can be set to 1 per task,
Constraint (35) and the tasks can only be performed on the selected mode, as per
(36).

Constraints (37) to (40) are based on the three values than can take the differ-
ence zweop− zwe+1on:

• zweop− zwe+1op= -1. When e+1 is the first event after which w is active, so
zweop = 0 and zwe+1op = 1.

• zweop − zwe+1op=1. When e is the last event after which w is active, so
zweop = 1 and zwe+1op = 0.

• zweop− zwe+1op=0. Otherwise

Constraints (37) and (38) refer to the continuous processing of each task: by
(37) if task w begins after event e, then it cannot be processed before e−1. Simi-
larly, by (38) if task w ends at event e then w is no longer active ∀e′ ≥ e+1. The
time of a task is measured by the difference between the start event (the first event
e after which w is active) and the end event (the first the last event after which w
is active).

The time difference between w’s start event and its end event must be at least
the work task’s processing time (39) and none of the tasks can end after the station
cycle time, see (40).

Regular precedence constraints are (41), as if w must precede w′, then it must
start at an event after which w is no more active. Maximal time lags are expressed
by Constraints (42) to (44). Constraints (42) and (43) define the start time of a
task. These constraints will only be calculated for the tasks involved on maximal
time lag constraints. Together with them, Constraints (44) limits the time between
the end of a task and its successor’s start time. Non-parallel constraints are (45),
as two non-parallel tasks cannot be active at the same time.

Resource constraints are simpler than for the SEE-M formulation. In this case,
only one set of constraints is defined per scarce resource: (46) for the quantity of
operators per type and (47) for the amount of operators per area, and no specific
variables are defined for these constraints.

Note that there are less binary variables than in the SEE-M formulation. As
for the number of constraints, for precedence and maximal time lag constraints,
both models are similar. The SEE-M has twice as constraints as the OOE-M for
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Table 3: Instance Characteristics
Set |W | |PR| |MT | |NP| |P| |A| ∑w∈W Mw

Set1-8 8 6 1 1 2 2 12
Set2-8 8 8 1 1 2 2 16
Set3-8 8 7 1 1 2 2 17
Set4-8 8 7 1 1 2 2 16
Set3-9 9 8 1 1 2 2 18
Set3-10 10 9 1 1 2 2 18
Set3-11 11 10 1 1 2 2 18
Set4-9 9 8 1 1 2 2 16
Set4-10 10 9 1 1 2 2 16
Set4-11 11 10 1 1 2 2 16

defining the non-parallel constraints. On all, it is not possible to establish a general
dominance rule.

4.3. MILP Experimentation Results
The MILP models were validated and compared on randomly generated in-

stances. The computational results were obtained using CPLEX12.4 solver. The
tests were carried out on an Intel Core i7 2630QM processor with 2 GHz and
4 GB RAM, running Windows 7. Four sets of small 8-task instances were used.
Moreover, Sets 3 and 4 were extended in order to create instances of up to 11
tasks. Their characteristics are listed in Table 3, which gives, for each instance
family, the number of tasks, the number of precedence constraints, the number
of maximal time lag constraints, the number of non-parallel constraints, the total
number of operator profiles, the number of areas, and the total number of different
modes.

Overall, 75 different combinations of data sets, number of tasks, cycle time
and number of events were tested for each formulation.

All instances were solved up to optimality for both formulations. For SEE-M
formulation, the instances took times from seconds to fifteen minutes, and from
0.1 second to eight minutes for the OOE-M formulation. The harder instance to
solve was Set3-11, that took up to 4133 seconds for a CT = 17 days and 11 events
on the SEE-M formulation and 452 on the OOE-M formulation.

Both formulations have similar behavior as far as the impact of variations on
the number of events, number of tasks and cycle time on the solution time. As for
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the evolution of the solution time throughout different cycle times, on average the
solution time also grew as the objective cycle time got closer to the critical path
length. Table 4 shows an example of this evolution for each of the formulations.

Table 4: Sample Solving Time for Different Cycle Times

CT CT CT CT
Instance 31.5 33 34.75 41

SEE-M Set2-8 10.2s 6.65s 1.79s 0.83s
OOE-M Set2-8 4.66s 0.83s 0.47s 0.2s

Finally, focusing on the influence of the number of tasks, most of the instances
required more solution time with the same number of events when new tasks were
added. It must be noted that some instances were solved faster with more tasks.
This shows that in some cases the combinatorial structure of the problem is more
important than the number of tasks itself. We also stated that the hardening of
the instances as we add new tasks is wider on the cases where we are using more
events.

However, the major impact on the models’ performance is related to the num-
ber of events used to solve an instance. For each set and cycle time, different
number of events were tested. Starting from the theoretical minimum number of
events, they were reduced until solutions where no longer optimal. The solution
time increases exponentially with the number of events, even when solving the
same set of instances.

Figure 3 shows the evolution of the SEE-M solution times for some of the
instances whenever the number of events changed. On this figure, the series data
include information on the data set, the number of tasks and the input cycle time:
Set1-8-11.5 stands for the solution of data set 1, with 8 tasks and CT = 11.5 days.
For example, for the SEE-M formulation the first set (Set1-8), when solved for
CT = 11.5 days took from 2 to 281 seconds, depending on the number of events.
The evolution of the solution time against the number of events follows a similar
pattern for the OEE-M model.

Taking into account that in most of the instances the precedence graph had at
least two parallel paths, the possibility of event reduction could have been fore-
seen. Another important factor is the relationship between the shortest possible
cycle time and the objective cycle time, as a tighter cycle time would lead to more
tasks to be performed in parallel and therefore less events to be needed.
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Figure 3: SEE-M Solution Time vs. Number of Events

As for the comparison between the two formulations, the results in terms of
solution time, number of nodes and first lower bound have been better for all
the instances with the OOE-M formulation than with the SEE-M formulation.
Figure 4 shows the histogram for the division of the time spent for a solution with
the OOE-M formulation between the time spent by the SEE-M formulation. The
only two cases where the solving time is longer for the OOE-M formulation are
instances with solution times within the range of 0.5 seconds, where the absolute
difference is not relevant.

In fact, the difference between both formulations grows with the number of
events. Therefore, as the complexity of the instances grows the use of the OOE-M
formulation becomes more suitable.

These comparative results are coherent with the results of Koné et al. (2011)
for the single mode problem with only precedence constraints, who concluded
that the OOE outperformed the SEE formulation for all the instance sets.

5. Constraint Programming

In the previous section, we showed how to extend the event-based formula-
tions proposed in Koné et al. (2011) for the RCPSP to the considered multi-mode
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industrial problem with maximal time lags, non-parallel constraints and a resource
leveling objective. However, the obtained models could only be used on small in-
stances. Constraint Programming (CP) has been proven to be an efficient method
on several combinatorial optimization problems, especially scheduling problems
(Baptiste et al., 2001). Therefore, we propose a CP model based on standard
scheduling constraints.

5.1. Constraint Programming Model
For modeling and solving, we use the CP Optimizer constraint-based schedul-

ing library (Laborie et al., 2018). Below we refer to the basic modeling elements
we use. We refer to Laborie et al. (2018) for a more detailed definition of these
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elements.

• A task w ∈W is modeled as an interval decision variables Tw with a re-
lease date 0 and a due date CT . In the CP Optimizer modeling language this
is written, for all w ∈W :

dvar interval Tw in 0..CT

• Modes: A mode alternative for operator profile p ∈ Pw and a number of
operators o ∈ Mw is an optional interval variable Twop, which is written,
for all w ∈W , p ∈ Pw and o ∈Mw:

dvar interval optional Twop in 0..CT size ΓopwDw

Each task w ∈W is an alternative between the optional mode tasks:

alternative(Tw,(Twop)p∈Pw,o∈Mw)

• Precedences: The standard precedence constraints between a task w and its
successor w′, for each (w,w′) ∈ PR is written:

endBeforeStart(Tw,Tw′)

Similarly a maximal time lag constraint (w,w′) ∈MT is defined by:

startBeforeEnd(Tw′,Tw,−∆)

• Resource constraints: Task consumption on a resource is modeled as a
pulse function, equal to 0 outside the execution interval of a task and equal
to the resource usage (here the number of operators used by the task in its
selected mode) when the task is in process. The total consumption on a re-
source is a sum of pulse functions:

– for each area a ∈ A, ∑
w∈W |Aaw=1,
p∈Pw,o∈Mw

pulse(Twop,o)≤Ca

– for each profile of operators p ∈ P, ∑
w∈W,o∈Mw

pulse(Twop,o)≤ np
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Table 5: Real Instance Characteristics
Set |W | |PR| |MT | |NP| |P| |A| ∑w∈W Mw

Set1-70 70 64 0 11 4 2 84
Set1-100 100 90 3 14 4 2 134

• Incompatibility (non-parallel) Constraints: For each pair (w,w′) of in-
compatible tasks a noOverlap constraint is used:

noOverlap(Tw,Tw′)

• Objective: min∑p∈P np

5.2. Experimental Results and Comparison with the MILP Approaches
Experimentation on Constraint Programming was performed on a PC DELL

Inspiron 1525 Intel(R) Core(TM)2 Duo CPU, T5550 @ 1.83 GHz and 3.0 Go
RAM. The instances used have been on the one side, a selected number of in-
stances common to the MILP experimentation and, on the other, two real instances
from the Aircraft Final Assembly Line. The real instances characteristics are sum-
marised in Table 5. Due to the use of CP Optimizer 12.6.0, the time horizon has
been scaled in each instance in order to obtain integer durations. This is not an
issue for real application, as integer durations (expressed in minutes) can be used
with no loss of generality. The default search mode of CP Optimizer was used.

All the instances have been solved up to optimality. Small instances took
less than a second, whereas bigger instances were solved in at most 20 seconds
while the MILP model could not obtain feasible solutions for the larger instances.
Solution times for the MILP and CP models are listed in Table 6. The results
clearly establish the superiority of the CP Optimizer solver compared to the MILP
models on the considered scheduling problem.

6. Large Neighborhood Search Method

6.1. The Large Neighborhood Search Technique
In the previous sections, we introduced MILP and CP formulations with the

aim of solving exactly our problem. However, since this problem is NP-hard, ex-
act methods are not necessarily appropriate. The larger instance solved by the
CP model in 20 seconds (see Table 6) has 100 tasks while the real aircraft as-
sembly scheduling problem has more than 700 tasks. In this section, we propose
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Table 6: MILP - CP Optimizer Comparison
Inst CT SEE-M OEE-M OEE-M CP optimizer

(STD) (STD) (MIN)
t(s) t(s) t(s) t(s)

Set1-8 11.5 21.09 1.93 0.67 0.01
Set2-8 34.75 19.66 0.58 0.47 0.02
Set3-8 14 121.98 8.24 0.22 0.13
Set4-8 13 36.58 3.82 0.11 0.02

Set3-11 17 4133 452.53 1.45 0.29
Set4-11 13 473.54 76.32 13.07 0.05
Set1-70 1200 — — — 2.3

Set1-100 1700 — — — 20.7

a heuristic method based on Large neighborhood Search (LNS) technique that
we evaluate against the CP Optimizer solver and the heuristic used in practice
on industrial instances by the aircraft manufacturer. The main principle of LNS
techniques, inspired by Palpant et al. (2004), is the following:

(0) Compute an initial solution S of the problem P .

(1) Fix a part of solution S such that the unfixed part is critical w.r.t. the
objective function.

(2) Compute a new solution S ′ for the problem P ′, where P ′ is a problem
issued from P with the constraints induced by step (1).

(3) If S ′ is better than S then S ←S ′.

(4) If the stop condition is not met go to step (1).

(5) Return S .

The LNS generic principles do not specify any type of diversification, but
rather rely on the idea that if the neighborhood of a solution is large enough, the
quality of local optima in the neighborhood tends to be better.

Clearly, one the main stake of LNS algorithms is deciding which part of the
initial solution to fix at step (2) so that its neighborhood contains better solutions;
in other words, how to evaluate the criticality of a solution part?
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6.2. Large Neighborhood Search for the Aircraft Assembly Line Scheduling Prob-
lem

As mentioned in literature review, LNS is generally applied to scheduling
problems where the objective is to minimize a time-related criterion or an out-
sourcing cost. A typical large neighborhood of a solution in this context consists
in selecting a time interval and fixing all activities scheduled outside the interval
and compacting as much as possible the activities scheduled inside the interval.
This is the case for the first LNS method proposed for the RCPSP (Palpant et al.,
2004). Notably, the default search of the IBM CP Optimizer we used in the pre-
vious section also implements an LNS method based on this principle (Laborie
and Godard, 2007). This is not what we should do for the considered problem, as
compacting a schedule as much as possible would inevitably increase the resource
usage.

In the problem considered here, we aim at minimizing the maximal use of a
given resource. We aim at identifying the set of tasks that are involved in the
maximal resource peaks. Consider a solution S where each task w ∈W has start
time S̄w ∈ [0,CT ], a number of assigned operators ōw ∈ Mw for operator profile
p̄w ∈ Pw and a maximal number of operators n̄p for each operator profile p ∈ P.
The set of peak tasks is the set of all critical sets as defined below:

Definition 1. A critical set W̃ is a set of overlapping tasks that reaches the max-
imal number of operators for at least one profile p ∈ P. More formally: ∃t ∈
[0,CT ], ∃p ∈ P, ∀w ∈ W̃ , p̄w = p, S̄w ≤ t < S̄w +Γōw p̄wwDw and ∑w∈C ōw = n̄p.

In fact, the resource usage only changes at the beginning or the end of a task.
Let T denote the set of different start and end time of the tasks. The set of all
critical sets can be enumerated by a sweep algorithm that tests the condition of
definition 1 for each set built by the task that overlaps each time point in T .
Algorithm 1 describes the sweep algorithm that computes the set of all peak tasks
C in O|W |2|P| time.

In order to generate a high quality neighborhood, we let free all the tasks that
contribute to the maximal use of the objective resource (the ones belonging to the
peak set computed by the sweep algorithm) and the tasks that must precede them
by a precedence constraint, and we fix the others.

We then solve this new problem given the bound provided by the value of the
initial solution and the constraints induced by the fixed tasks, within a limited
time. If a solution has been found, it replaces the initial solution as the best solu-
tion and we start over. However, if no solution was found, we solve a new prob-
lem, fixing fewer tasks and setting a greater solving time, using the self-adaptive

26



Algorithm 1 The sweep algorithm for peak task computation
Require: A problem P and a solution S = {(S̄w, p̄w, ōw)w∈W ,(n̄p)p∈P}

C ← /0
T ←{S̄w|w ∈W}∪{S̄w +Γōw p̄wwDw|w ∈W}
for p ∈ P do

for t ∈T do
W̃ ← /0; cons← 0
for w ∈W do

if p̄w = p and S̄w ≤ t < S̄w +Γōw p̄wwDw then
W̃ ← W̃ ∪{w}; cons← cons+ ōw

end if
end for
if cons = n̄p then

C ← C ∪W̃
end if

end for
end for
return C

principle originally proposed by Palpant et al. (2004). To be more specific, each
time the solver is unable to find a solution, we fix 10% less activities and add 10
seconds to the maximum solving time. These values were determined empirically
using the instances from the benchmark considered in the previous sections.

In our implementation, we use CP Optimizer as a black box to solve differ-
ent generated subproblems using the constraint programming model described in
Section 5. Algorithm 2 provides the pseudo-code of our implementation of the
LNS method for the aircraft assembly line scheduling problem.

Note that presenceOf(Twop) in the CP Optimizer language is a constraint
that enforces the presence of the optimal task Twop, while startAt(Tw, t) is a
constraint that fixes the start time of task Tw to value t. These two constraints are
used to fix the modes and the start times of the tasks in W \W ′ while the tasks in
W ′ are freed and form the LNS subproblem. Note that τ ′ is a value much lower
than τ giving the amount of time devoted to the CP solver to get an initial solution.

6.3. Experimental Comparison with CP Optimizer and the Heuristic Used in
Practice

In order to assess the LNS algorithm efficiency as an heuristic we use a set
of instances different from those dealt in the previous sections. These instances
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Algorithm 2 LNS for the aircraft assembly line scheduling problem
Require: An aircraft assembly line scheduling problem P in the form of a con-

straint programming model (Section 5.1) and a time limit τ

Initialize solution S ∗ = {(S∗w, p∗w,o
∗
w)w∈W ,(n∗p)p∈P} by solving P with CP

Optimizer under time limit τ ′

πratio← 100
τbase← 10
τinc← 0
while elapsed time < τ do

W̃ ← sweep(P,Sbest) (get the peak tasks)
W ∗← W̃ ∪{W ′ ∈W |(w′,w) ∈ PR} (add the tasks that precede them)
W ′← a subset of W ∗ where we randomly select πratio% tasks
P ′←P
for w ∈W \W ′ do

P ′←P ′∪presenceOf(Two∗w p∗w)
P ′←P ′∪startAt(Tw,S∗w)

end for

P ′←P ′∪{∑p∈P np < ∑p∈P n∗p }
Get solution S = {(S̄w, p̄w, ōw)w∈W ,(n̄p)p∈P} by solving P ′ with CP Opti-
mizer under time limit min(tbase + tinc,T − elapsed time)
if ∑p∈P n̄p < ∑p∈P n∗p then

S ∗←S
τinc← 0
πratio← 100

else if S is empty then
τinc← τinc +10
πratio← πratio−10

end if
end while
return S ∗
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Table 7: CP Optimizer - LNS Comparison
Inst |W | CP optimizer LNS

1min 15min 30min 1min 15min 30min
A 90 6 6 6 6 6 6
B 159 17 17 13 20 14 13
C 455 20 19 19 19 18 18
D 455 20 20 18 22 18 18
E 721 24 21 21 25 21 21
F 486 23 20 19 23 17 17
G 165 20 16 15 24 15 13

Table 8: LNS Improvement over CP Optimizer
Inst |W | 1min 15min 30min
A 90 0% 0% 0%
B 159 -17.6% 17.6% 0%
C 455 5% 5.2% 5.2%
D 455 -10% 10% 0%
E 721 -4.2% 0% 0%
F 486 0% 15% 10.7%
G 165 20% 6.2% 13.3%
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Table 9: LNS - SSG Heuristic Comparison
Inst |W | Heuristic LNS impr
A 90 6 6 0%
B 159 18 13 27.7%
C 455 18 18 0%
D 455 18 18 0%
E 721 22 21 4.5%
F 486 26 17 23%
G 165 13 ∞

are denoted by letters from A to G and some of them are much more difficult to
solve. In fact, they are real-based instances coming from final assembly lines of
an aircraft manufacturer. They have between 90 to 721 tasks each.

In our experiment we ran both CP-solving algorithm (with CP Optimizer) and
the LNS algorithm on the instances with three different time limits: 1 minute, 15
minutes and 30 minutes. Table 7 displays the objective value of the best solutions
found by both algorithm within the time limits. In the first column, the number of
task per instance is also displayed, in order to provide a hint on the instance com-
plexity. Both methods provided feasible solutions for all the 6 instances. Also, we
can note that the LNS performs poorly within the 1 minute time limit. This is not
really surprising, since the LNS algorithm starts by exploring the neighborhood of
the first feasible solution found by CP Optimizer using the CP model. However,
we observed that the LNS algorithm often finds better quality solutions than the
CP approach within greater time limits. Table 8 that displays the improvement
in percent shows that when the time limit is 15 minutes or 30 minutes the LNS
approach never performs worse than CP Optimizer. The largest improvement is
obtained for a CPU time limit of 15 minutes with an improvement on 5 instances
out of 7.

Since instances A to G are real instances from the manufacturer, we had also
the opportunity to compare the LNS algorithm performance to the results from the
current activity-oriented serial scheduling generation (SSG) heuristic deployed at
the aircraft manufacturer, described in Section 2. This comparison is shown in
Table 9. It can be seen that the LNS leads to better solutions in 4 out of the 6
instances. For the two where it came to the same solution (C, D), the LNS was
able to prove the optimality, which cannot be proven by the heuristic. Moreover,
for instance G, the heuristic is not capable of finding a solution while the LNS
provided one.
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Table 10: LNS Improvement over CP Optimizer for the Multi-mode Resource Investment Problem
Inst. 1 min 15 min 30 min
MRIP30 5.27% 11.15% 0.82%
MRIP50 5.61% 15.47% 1.14%
MRIP100 10.58% 17.46% 3.40%

6.4. Further Experiments
In this section, we propose to go a step further in the experiments. In Gerhards

(2020) the author proposes a Constraint Programming model to solve the Multi-
mode resource investment Problem (MMRIP). Formally, this problem is very sim-
ilar to the assembly line scheduling problem at stake here. The notable differences
are, firstly, the presence of non-renewable resources, and secondly, the objective
function, where we want to minimize the weighted sum of the maximums of the
resources used. In the same way that we used our CP model as a black box for
the LNS algorithm, this time we will use the CP model that the author proposes
as a black box and compare the results obtained by LNS with the results of his CP
model. We use the same sweep algorithm as the one introduced in the previous
section. We test our algorithm on the same instances as those used by the author,
taken from the RIPlib dataset. These instances are separated into three subsets,
with 30, 50 and 100 tasks. Note that we removed from these instances those that
were solved by CP Optimizer in less than a minute, so that the results more ac-
curately highlight the comparison on the difficult instances in this dataset. Both
methods were tested within 1, 15, and 30 minutes. The average improvement (in
%) are displayed in Table 10.

Looking at the results, we can notice several things. For all sets of instances,
the LNS algorithm improves very little the solutions returned by the CP model
solution after 30 minutes, which is explicable by the fact that most of the instances
are closed after this time. On the other hand, it is with a time limit of 15 minutes
that the difference in the quality of the solutions is the most noticeable: in this
time the CP model is not yet solved, whereas the LNS algorithm has been able to
explore a more interesting subset of solutions. It can be noted that this difference
increases with the size of the instances.

7. Conclusions & Further Research

In this work, we have identified a gap in the traditional mixed-integer pro-
gramming formulations of scheduling problems and the modeling needs for the
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scheduling of aeronautical assembly stations. We have chosen to extend the event-
based formulations for our problem. To do so, we have dealt with minimal time
lags, multi-mode scheduling and resource leveling objectives. These constraints
had been seldom addressed on their own in the existing literature and no mixed-
integer linear program have been found dealing with them together. Due to these
features, the two new formulations we have developed are a contribution not only
for the aeronautical industry but also for general scheduling.

The computational results from Section 4.3 have proven that the model is able
to solve up to optimality small instances. As well as this, they have enabled as
to make a comparative study between the two event-based formulations: SEE-M
and OOE-M formulations. The results of these comparisons are coherent with
the ones reported by Koné et al. (2011) for the single mode with only precedence
constraints model.

However, in order to extend it to bigger instances, it is necessary to improve
the solver performances. Both SEE-M and OOE-M formulations have a number
of constraints that grows as O(|E|2|W |) where |E| is the number of events and
|W | the number of work tasks to be scheduled. From the computational results we
know that most of the instances can be solved with less events than the established
upper bound of |W |+1 for SEE-M and |W | for OOE-M. Therefore, the use of pre-
processing to approximate the real needed number of events will lead to major
performance improvements.

On the other hand, a Constraint Programming model has also been proposed.
Directly solved via the CP Optimizer solver, it has had a promising performance
even with bigger and real instances.

Remarking that the methods embedded inside the CP Optimizer solver, espe-
cially the LNS method described in Godard et al. (2005) are time oriented and
globally aim at compacting the schedule, we proposed a new LNS method more
adapted to the resource leveling objective. We used a fast sweep algorithm to com-
pute the load peaks and a self-adaptive neighborhood to efficiently reschedule the
tasks involved in such peaks and their predecessors.

The method outperforms CP Optimizer on the industrial instances for medium
CPU time limits (15 and 30 minutes).

Moreover, it manages to decrease by more than 20% the resource levels reached
by the heuristic currently used by the aircraft manufacturer on the industrial in-
stances, potentially yielding substantial gains.

Finally, the proposed LNS method substantially improves the results of the
CP model proposed by Gerhards (2020) on hard instances of a related multi-mode
resource investment problem for short CPU time limits (1 and 15 minutes).
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A future research direction are the associated filtering techniques to solve the
problem under study. CP solution scheme encompasses also constraint propaga-
tion techniques that can be used as pre-processing to calculate the relevant number
of events; this issue would lead to major performance improvements. A promis-
ing research direction is to propose a hybrid MILP/CP large neighborhood search
heuristic, as the one proposed for the MISTA challenge 2013 on the multi-mode
RCPSP (Artigues and Hébrard, 2013). Ergonomic constraints and objectives for
operators could also be considered for the problem at hand as recently proposed
in a related problem by Arkhipov et al. (2018).
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Artigues, C., Hébrard, E., 2013. MIP relaxation and large neighborhood search
for a multi-mode resource-constrained multi-project scheduling problem, in:
6th Multidisciplinary International Conference on Scheduling: Theory and Ap-
plications (MISTA), Ghent, Belgium. pp. 814–819.

Artigues, C., Michelon, P., Reusser, S., 2003. Insertion techniques for static and
dynamic resource-constrained project scheduling. European Journal of Opera-
tional Research 149, 249–267.

33



Baptiste, P., Le Pape, C., Nuijten, W., 2001. Constraint-Based Scheduling: Ap-
plying Constraint Programming to Scheduling Problems. International Series
in Operations Research and Management Science, Kluwer.

Biele, A., Mönch, L., 2018. Hybrid approaches to optimize mixed-model assem-
bly lines in low-volume manufacturing. Journal of Heuristics 24, 49–81.
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