Yannick Pencolé
email: yannick.pencole@laas.fr

Audine Subias
email: audine.subias@laas.fr

Camille Coquand
email: camille.coquand@laas.fr

A Model Checking method to solve the event pattern diagnosis problem in safe labeled time Petri nets

This paper addresses the problem of identifying whether a given pattern of unobservable events has occurred in a partially observable timed discrete event system. The systems that are considered here are modelled with safe labeled time Petri nets. To solve the problem, we propose to use a model checking approach. Given the model of the system, the pattern to analyse, and the sequence of observations produced by the system, the method firstly builds automatically a labeled time Petri net and a pair of queries that represent the pattern diagnosis problem to solve. The second step then consists in using a model-checker for time Petri net that provides the answer to the queries. The solution provided by the modelchecker is then analysed to determine whether the pattern under investigation has definitely occurred or not.

Introduction

Classically, the problem of model-based fault diagnosis in discrete event systems (DES) is the problem of determining whether a set of unobservable and faulty events has occurred in the system based on a complete behavioural model and a sequence of observations produced by the system. This initial problem, originally introduced in [START_REF] Sampath | Failure diagnosis using discrete-event models[END_REF], has been addressed for decades based on different formalisms such as automata, Petri nets, process algebra and a survey of these techniques can be found in [2] and for specifically Petri nets in [START_REF] Basile | Overview of fault diagnosis methods based on Petri net models[END_REF].

Based on these previous contributions, two independent extensions have been proposed. The first one is about dealing with time. In the initial definition of the problem, time is just characterized by events occurring sequentially but their dates of occurrences are not taken into account. The date itself, as a numerical piece of information, is an observation and depending on the date of a given observation the diagnosis might be different. The extension of the problem to deal with time has been formally addressed in [START_REF] Tripakis | Fault Diagnosis for Timed Automata[END_REF] where the considered formalism is time automata. The decidability question as well as some complexity results can also be found in [START_REF] Bouyer | Fault Diagnosis Using Timed Automata[END_REF]. A few method based on time automata have then been proposed in [START_REF] Simeu-Abazi | Diagnosis of discrete event systems using timed automata[END_REF] and more recently in [START_REF] Bouyer | Efficient Timed Diagnosis Using Automata with Timed Domains[END_REF]. Extensions to deal with time have also been addressed with formalisms like time Petri nets [8; 9; 10; 11].

The second type of extension is about the nature of what is diagnosed. In the previous cited pieces of work, the result of the diagnosis method is about the occurrence of faults represented as single events. In [START_REF] Thierry Jéron | Supervision patterns in discrete event systems diagnosis[END_REF], the notion of supervision patterns is introduced as automata, also called temporal specification in [START_REF] Jiang | Failure diagnosis of discrete-event systems with linear-time temporal logic specifications[END_REF] or semantic patterns in [START_REF] Lamperti | Diagnosis of Active Systems by Semantic Patterns[END_REF]. A supervision pattern is a specific assembling of events and this assembling is considered as faulty or more generally as critical enough so that knowing whether this pattern of events has definitely occurred in the system is of importance to assist any further decision (repair, reconfiguration, maintenance). A succint representation of such patterns is proposed as Petri nets in [START_REF] Gougam | Diagnosability analysis of patterns on bounded labeled prioritized Petri nets[END_REF] and a method for diagnosing such patterns on labeled Petri net is proposed in [START_REF] Pencolé | Diagnosis of supervision patterns on bounded labeled petri nets by model checking[END_REF].

The goal of this paper is to extend the method proposed in [START_REF] Pencolé | Diagnosis of supervision patterns on bounded labeled petri nets by model checking[END_REF] to Labeled Time Petri nets (LTPN) so that we can benefit of the observation of dates to make the pattern diagnosis more accurate. We propose to turn the pattern diagnosis problem over LTPN as a reachability problem over LTPN that can be solved by a model-checker. Given a pattern, the model of a system and a sequence of observations, the proposed method builds a single LTPN that gathers all the information and designs a set of formal properties over this LTPN that will produce the diagnosis result. The effective construction of this LTPN requires specific products that have been recently introduced in [START_REF] Pencolé | Diagnosability of Event Patterns in Safe Labeled Time Petri Nets: A Model-Checking Approach[END_REF].

Background

This section recalls the mathematical background that will be used throughout this paper.

Timed language

A timed sequence over a set of labels Σ is a sequence ρ of pairs (s, d) where d is a duration and s is a symbol of Σ ∪ {λ}. Throughout this paper, symbol λ will represent the occurrence of time and will be always considered as a silent event (λ may be part of Σ or not). The set of timed sequences over Σ is denoted T (Σ) and T (Σ) ⊆ (Σ ∪ {λ} × R +) + . Each timed sequence ρ has a canonical representation denoted [ρ] with only one λ at the end. Suppose for instance that Σ = {a, b, c}, then ρ = (a, 3).(c, 4).(λ, 2).(b, 1).(b, 2).(λ, 4) is a timed sequence of T (Σ) also denoted 3a4c2λ1b2b4λ. The canonical representation of ρ is [ρ] = 3a4c3b2b4λ. Throughout this paper, only canonical representations are considered. Given two alphabets Σ 1 , Σ 2 , the projection P Σ1→Σ2 : T (Σ 1) → T (Σ 2) of a canonical timed sequence is defined as follows.

• P Σ1→Σ2 (θλ) = θλ, for any θ ∈ R + ;

• if e ∈ Σ 2 , P Σ1→Σ2 (θe.ρ) = θe.P Σ1→Σ2 (ρ);

• if e ∈ Σ 1 \ Σ 2 , two cases hold -P Σ1→Σ2 (θeρ) = (θ +θ)λ, if θ λ = P Σ1→Σ2 (ρ).
-P Σ1→Σ2 (θe.ρ) = (θ + θ)e .ρ , if θ e .ρ = P Σ1→Σ2 (ρ).

As an example, let Σ = {c} then P Σ→Σ ([ρ]) = 7c9λ.

Labeled time Petri nets

Definition 1 (LPN). A Labeled Petri Net (LPN for short) is a 5-uple N = P, T, A, E, such that:

• P is a finite set of places;

• T is a finite set of transitions (P ∩ T = ∅);

• A ⊆ (P ×T)∪(T ×P) is a binary relation that models the arcs between the places and the transitions; • E is a finite set of transition labels; • : T → E is the transition labeling function. The preset pre(t) of a transition t is the set of (input) places pre(t) = {p ∈ P : (p, t) ∈ A} and the postset post(t) of a transition t is the set of (output) places post(t) = {p ∈ P : (t, p) ∈ A}. A state of a LPN is a marking that is a function (M : P → N) that assigns to each place a number of tokens (or marks). All along this paper, we will consider that any LPN is safe i.e. M : P → {0, 1}. A transition t is enabled by a given marking M (denoted t ∈ enabled (M)) if and only if (∀p ∈ pre(t), M (p) = 1). An LPN is usually associated with an initial marking denoted M 0 . A Labeled Time Petri net [START_REF] Merlin | Recoverability of Communication Protocols -Implications of a Theoretical Study[END_REF] is a specific class of LPN that maps any transition to a static time interval. Throughout this paper, the static interval I s (t) of a transition t is either closed ([a, b]) or semi-closed ([a, +∞[). Definition 2 (LTPN). A Labeled Time Petri Net (LTPN for short) is a 6-uple N = P, T, A, E, , I s such that:

• P, T, A, E, is a LPN;

• I s : T → I Q + is the static time interval function that maps any transition to an interval of I Q + (an interval of I Q + is an interval of reals whose bounds are either positive rationals or +∞). A state of an LTPN is a couple S = M, I where I is a partial firing interval application I: T → I R + that associates to any enabled transition t a time interval of R + (I R + : intervals with bounds in R +) in which transition t can be fired. The lower bound of I(t), also called the date of earlier firing, is denoted I(t) , and its upper bound, also called the date of later firing, is denoted I(t) . The initial state of a marked LTPN is given by S 0 = M 0 , I 0 where I 0 is such that I 0 (t) = I s (t) for any transition t enabled by M 0 .

Intuitively, in an LTPN a transition is firable from a marking M if it is enabled for a sufficient amount of time i.e an amount of time within its own static time interval. Formally, a net transition t is firable from a state S = M, I at a relative date θ if and only if:

1

-→ S 1 θ2t2 -→ . . . θ k t k -→ S, also denoted S 0 r -→ S where r is the timed transition sequence r = θ 1 t 1 θ 2 t 2 . . . θ k t k .
The sequence r will be called a run of the net. Any run r = θ 1 t 1 . . . θ i t i , i ≤ k is a prefix of r. The set of reachable states from a state S in a marked LTPN N is denoted R(N, S). A marking M is reachable from a marking M (also denoted without ambiguity M ∈ R(N, M)) if there exists a state S = M , I such that S ∈ R(N, M, I).

Consider now a run r of an LTPN S 0 r -→ S = M, I , we can associate r with a set of canonical timed sequences, denoted θ_ (r) as follows:

θ_ (r) = {[θ_ (r).dλ], d ∈ [0, d max [}, (1)
where θ_ (r) is the earliest timed sequence of r: • if r is the empty run (no transition) then θ_ (r) = 0λ;

• if r = θ 1 t 1 θ 2 t 2 . . . θ k t k , k > 0 then θ_ (r) = [θ 1 (t 1)θ 2 (t 2) . . . θ k (t k)0λ]
. Date d max is the latest possible duration stay in state S (i.e. the minimal upper bound of the current firing intervals d max = min t∈enabled(M) (I(t))). Based on the sets θ_ (r) we can define a timed language generated by an LTPN. Let Q be a subset of R(N, M 0), a timed sequence belongs to the language generated by the marked LTPN if there is a run of the LTPN that generates the sequence and that leads to a state whose marking is in Q: such a run is called an admissible run. Definition 3 (Language of an LTPN over Q). The language generated by a marked LTPN N over Q is

L(N, Q) = r:S0 r -→S= M,I ∧M ∈Q θ_ (r)

LTPN extensions

We recall here two classical LTPN extensions that will be also used in this paper: inhibitor arc and transition priorities. An inhibitor arc modifies the enabling conditions of transition t that were detailed previously for the so-called regular arcs. With an inhibitor arc (p, t), the input place p must be empty to enable t. A priority defines a binary relation between two transitions of an LTPN, denoted t 1 t 2 (t 1 has priority over t 2), that is transitive, not reflexive and not symmetrical. A firable transition is not allowed to fire if a transition with a higher priority is firable at the same date.

Problem statement

The fault diagnosis problem has been formally defined with the help of timed automata in [START_REF] Tripakis | Fault Diagnosis for Timed Automata[END_REF]. We propose here to extend this definition to deal with more complex behaviors than single faults.

System model

We consider throughout this paper that the supervised system is modelled as a safe LTPN denoted Θ = P Θ , T Θ , A Θ , Σ Θ , Θ , I ΘS with an initial marking denoted M 0Θ . Σ Θ represents the set of event types that are effectively generated by the system (λ ∈ Σ Θ). In this paper, we assume that according to the instrumentation only a subset of transitions can be observed. These transitions are associated with a sensor that generates an output turned into an observable event by a measurement function. We consider also unobservable transitions that represent effective system's event but not associated with any kind of sensors. Transition labels Σ Θ are then partitioned into two subsets:

Σ o
Θ is the set of observable events and Σ u Θ the set of unobservable ones. Finally, we assume that the model does not contain any zeno run (a zeno run is an infinite sequence of transitions that can occur in a finite amount of time which is unrealistic in real systems).

Figure 1 presents the model of a system Θ. It consists of two concurrent processes synchronized to perform together a specific activity. The first process (on the left part of the figure) is composed of several activities represented by the places p 1 i , i ∈ {1, . . . , 5} while the activities of the second process (on the right part of the figure) are modeled by the places p 2 i , i ∈ {1, . . . , 6}. Both processes are synchronized on transition t 12 1 whose firing leads to the marking of a shared place p 12 representing the activity that requires the two processes. The end of this activity is modeled by the firing of transition t 12 2 that leads to the marking of the places p 1 3 and p 2 6 so that each process can evolve independently to perform its own activities. The initial state of each process is given by the initial marking (places with black dots). Transition labels that are in bold represent observable events while the others are unobservable events. It must be noticed that Process 1 (resp. Process 2) only generates o 1 (resp. o 2) events as observations.

Event pattern model

Event patterns gather a set of specific combinations of untimed and unobservable events whose occurrence in the system leads to a situation of interest (i.e. failure, critical/dangerous situation, safe/unsafe behavior,....). Patterns that are studied throughout this paper are the same as in [START_REF] Pencolé | Diagnosability of Event Patterns in Safe Labeled Time Petri Nets: A Model-Checking Approach[END_REF] and are defined as LPNs. As for the system model, transitions labels represent events of the system. Definition 4 (Pattern). A pattern Ω is an LPN

Ω = P Ω , T Ω , A Ω , Ω , Σ Ω , M 0Ω associated with a set of final markings Q Ω ⊂ R(Ω, M 0Ω) such that: 1. (unobservable) events of Σ Ω are unobservable (Σ Ω ⊆ Σ u Θ); 2. (initialized) M 0Ω ∈ Q Ω ;
3. (well-formed) from any reachable marking M , there exists a run that leads to a marking M ∈ Q Ω ;

4. (deterministic) from any reachable marking M of R(Ω, M 0Ω) there is no event e ∈ Σ Ω that labels more than one enabled transition;

5. (stable) from any reachable marking M of R(Ω, M 0Ω) such that M ∈ Q Ω any possible run leads to a marking

M such that M ∈ Q Ω .
Patterns are LPN that aim at representing succinct behaviors that are unobservable (Condition 1) (L(Ω) ⊂ Σ u * Θ).

Condition 2 ensures that the pattern does not represent an empty event sequence. Condition 3 guarantees that any run of the pattern is always a prefix of a matching run. Condition 4 avoid ambiguities within the pattern and is required to ensure the correctness of the combination of a pattern and a system as detailed later. Finally Condition 5 ensures that once a pattern has occurred, its effect is definitive (any system's run that has a matching run as a prefix is a matching run). Figure 2 illustrates different types of patterns of interest for the system of Figure 1. Figure 2a presents k occurrences of a single event b (pattern Ω b 1 (k)). The marking of the final place pp 1 k indicates the pattern has occurred then the set of final markings is given by

Q Ω b 1 (k) = {M : M (pp 1 k) = 1}
. This pattern extends the classical single fault event pattern that is usually studied in the literature. Throughout this paper, we will similarly denote Ω f 1 (k) the pattern modeling k occurrences of the single event f . Figure 2b presents a pattern that characterizes k occurrences of one event among a predefined set of events, here among {b, f }. The structure of the pattern depends on the value of k required. If one wants to consider one occurrence of one event among {b, f }, it is necessary to consider the marking of the place pp 1 1 and then

Q Ω2(1) = {M : M (pp 2 1) = 1}.
The marking of the place pp 2 2 indicates 2 occurrences (2 events b or 2 events f or 1 event b and 1 event f , whatever the ordering) then the set of final markings is

Q Ω2(2) = {M : M (pp 2
2) = 1}. The number of layers in the pattern depends on the k value. The k occurrences are obtained when the place

pp 2 k is marked hence Q Ω2(k) = {M : M (pp 2 k) = 1}.
The pattern Ω 2 (k) can be a base to extend the classical notion of fault class with k = 1 and the set of events is the set of n fault class events:

{f 1 , f 2 , • • • , f n }.
In this case, the pattern has only one layer with as many transitions as fault class events. Finally, Figure 2c presents a pattern that models 3 consecutive occurrences of event b that are not interleaved with any occurrence of event f . This pattern can also be extended into Ω 3 (k) to model k consecutive occurrences of an event without any occurrence of another type of event. This last pattern is interesting as it represents some fairness issues in the system that might be of interest to detect,

Q Ω3(k) = {M : M (pp 3 k) = 1}.

Pattern diagnosis

This subsection introduces the problem of diagnosing patterns in timed discrete event systems. For a given pattern Ω, the diagnosis problem consists in defining an Ω-diagnoser function that takes as input a timed sequence of observations and checks for any run of the system that can generate these observations whether it matches the pattern Ω or not. It results in the generation of three possible symbols: Ω-faulty (all the possible runs match Ω), Ω-safe (none of them match Ω), Ω-ambiguous (some of them match Ω, some of them do not) [START_REF] Gougam | Diagnosability analysis of patterns on bounded labeled prioritized Petri nets[END_REF]. A run r of the system matches a pattern Ω if one can find in a word ρ = θ 1 e 1 . . . θ n e n θ n+1 λ of θ_ (r) a sub-word j1 i=1 θ i e j1 j2 i=j1+1 θ i e j2 . . .

j k i=j k-1 +1
θ i e j k such that ρ Ω = e j1 . . . e j k is a word of L(Ω): this will be denoted by ρ ρ Ω and more generally by ρ Ω and r Ω.

Checking whether a run of Θ can generate the given observations (i.e. the run is consistent with the observations)

p 1 1 p 1 2 p 1 3 p 1 4 p 1 5 p 1 6 p 1 7 p 12 p 2 1 p 2 2 p 2 3 p 2 4 p 2 5 p 2 6 t 1 1 : o 1 [3, 4] t 1 4 : a[0, 3] t 1 2 : o 1 [1, 2] t 2 1 : e[1, 3] t 2 2 : e[2, 3] t 2 3 : b[1, 2] t 2 4 : o 2 [8, 11] t 2 5 : o 2 [1, 2] t 12 1 : d [2, 3] t 12 2 : c[1, 2] t 2 6 : o 2 [1, 3] t 1 3 : f [1, 2] t 1 5 : o 1 [1, 2] t 1 6 : e[1, 1] t 1 7 : e[1, 1]
Figure 1: A system Θ composed of two communicating and partially observable timed processes relies on the timed language projection from the alphabet Σ Θ to the observable alphabet Σ o Θ (see Section 2.1). The Ω-diagnoser can then be formally defined as follows.

Definition 5 (Ω-diagnoser). An Ω-diagnoser is a function

∆ Ω : T (Σ o Θ) → {Ω-faulty, Ω-safe, Ω-ambiguous} with • ∆ Ω (σ) = Ω-faulty if for any ρ ∈ L(Θ) that is con- sistent with σ (i.e. P ΣΘ→Σ o Θ (ρ) = σ), ρ Ω; • ∆ Ω (σ) = Ω-safe if for any ρ ∈ L(Θ) that is consis- tent with σ, ρ Ω; • ∆ Ω (σ) = Ω-ambiguous otherwise.
It must be noticed that, even if Definition 5 uses Petri nets (Θ and Ω notations), this definition is purely languagebased. The diagnosis problem is defined over the set of timed sequences ρ in L(Θ), the matching relation is defined over event sequences and consistency is achieved by sequence projection. It follows that Definition 5 defines a problem independently from the underlying model structure but with respect to their language expressiveness (time Petri nets, timed Event Graphs, timed automata...). Considering now a set of patterns Ω 1 , . . . , Ω n , the diagnoser function of a system can be defined as ∆:

T (Σ o Θ) → n i=1 {Ω i -faulty, Ω i -safe, Ω i -ambiguous} such that ∆(σ) = (∆ Ω1 (σ), . . . , ∆ Ωn (σ)).
Let us now illustrate the diagnosis problem with a few examples based on the system of Figure 1 and the family of patterns of Figure 2.

Example 1. Suppose that the timed sequence that is received by the diagnoser from the system of Figure 1 is σ 1 = 3o 1 2o 2 8o 2 2o 1 1λ (that is the reception of event o 1 at date 3 then the reception of o 2 at date 5 and another reception of o 2 at date 13 followed by o 1 at date 15 and finally the observed sequence ends at date 16). The pattern Ω b 1 (1) models the single occurrence of b. Based on σ 1 , we know that the first occurrence of o 2 is at the absolute date 5 which means that an occurrence of b has definitely occurred. So ∆ Ω b 1 (1) (σ 1) = Ω b 1 (1)-faulty. Considering now pattern Ω b 1 (2) (i.e. two occurrences of b). If b has occurred twice, the second occurrence is after the second occurrence of o 2 at date 13. As σ 1 lasts at date 16, it is possible that b has occurred twice (the second occurrence would be at date in [START_REF] Gougam | Diagnosability analysis of patterns on bounded labeled prioritized Petri nets[END_REF][START_REF] Pencolé | Diagnosis of supervision patterns on bounded labeled petri nets by model checking[END_REF]) but not necessary:

∆ Ω b 1 (2) (σ 1) = Ω b 1 (2)-ambiguous.
The pattern Ω 2 (2) models two occurrences of an event among {b, f }. Based on σ 1 , we know that b has definitely occurred once. As the second occurrence of event o 1 occurs at date 15, it enforces that transition t 1 3 has been fired once so the event f has certainly occurred and ∆ Ω2(2) (σ 1) = Ω 2 (2)-faulty. Finally, ∆ Ω3(3) (σ 1) = Ω 3 (3)-safe (event f has necessarily occurred once and b at most twice).

Proposed method

The proposed method relies on the formal framework proposed in [START_REF] Pencolé | Diagnosability of Event Patterns in Safe Labeled Time Petri Nets: A Model-Checking Approach[END_REF] that is used for analyzing pattern diagnosability on the same type of systems. Figure 3 presents an overview of the proposed method.

The main principle of the method is to synthesize an LTPN, denoted Π Θ,Ω σ , that represents as a whole the set of runs of Θ that are consistent with σ and for each run of these runs, the LTPN should also represent the fact that the pattern Ω is matched or not. Once Π Θ,Ω σ is obtained, the remaining step is to check into Π Θ,Ω σ whether the runs match the pattern or not. To do so, we propose first to synthesize a set of formal queries and secondly to use a model-checker on Π Θ,Ω σ to solve the queries and get the diagnosis (see Section 5 for details about this part). This section now presents how the LTPN Π Θ,Ω σ is computed based on the LTPN Θ, the LPN Ω and the timed sequence σ. The computation is based on specific compositions of LTPNs that have been formally introduced in [START_REF] Pencolé | Diagnosability of Event Patterns in Safe Labeled Time Petri Nets: A Model-Checking Approach[END_REF] and that are described in the next subsections.

About composing LTPNs

Usually, composition of Petri nets relies on the synchronization of some transitions. However, in time Petri nets, compositionnality is kept only when synchronizations involve transitions with an interval [0, +∞[[START_REF] Berthomieu | Bridging the gap between timed automata and bounded time Petri nets[END_REF] and transitions with a time interval [α, β] cannot be synchronized as is. Indeed, synchronizing two transitions means that it is necessary to determine a clock enabled only when the transitions are both enabled and that stops as soon as one of the local clocks stops. This synchronization is then impossible by simply merging both transitions and assigning a time interval to it based on their respective time intervals as the stop of the synchronized clock depends on the enabling time of each transition and not on the enabling time of their synchronization. It is then required to perform a time decomposition of transition t to ensure that the synchronization is performed only on transitions with [0, +∞[time intervals. The time decomposition of transition t with preset p 1 , . . . , p n and postset p 1 , . . . , p n consists in replacing t in the initial LTPN N by the set of transitions/places defined in Figure 4. This time decomposition ensures that transition e t is firable exactly in the same conditions as the initial transition t. Indeed, once t is enabled by the marking of p 1 , . . . , p n , transition cs t (i.e. clock start) is enabled in the decomposition and is silenty fired (λ event) exactly at time α > 0 so transition e t starts being firable exactly from time α till time β. At β, either e t or the silent transition to t (i.e. time out) is fired, so e t is firable in [α, β] as t and leads to the same postset. Now, as soon as to t is fired, it means that the behavior is actually not admissible (transition t must have been fired in [α, β] as it is conflict-free), the place Na t then permanently holds a token and inhibits any further fire of cs t thanks to an inhibitor arc between Na t and cs t . The aim of na t is then to empty the preset of cs t in case of a non admissible behavior.

pp 1 0 pp 1 1 b b . . . b pp 1 k (a) Ω b 1 (k): k occurrences of b with Q Ω b 1 (k) = {M : M (pp 1 k) = 1}. pp 2 0 pp 2 1 pp 2 k-1 pp 2 k b f b f b f (b) Ω2(k): k occurrences of b or f with Q Ω 2 (k) = {M : M (pp 2 k) = 1}.

Pattern matching product

The first step of the computation of Π Θ,Ω σ is to compute an LTPN that represents how a system Θ is actually matching a pattern Ω: this step is based on the pattern matching product. This product relies on a specific product between the transitions of Θ and Ω. Consider now t as a tran- Without loss of generality, we assume that t is conflict-free (no other transition has the same preset). 2 Let t Ω be a transition of Ω labeled with a with pre(t Ω) = {q 1 , . . . , q m } and post(t Ω) = {q 1 , . . . , q m }. To effectively obtain the pattern matching product between t and t Ω , first a time decomposition of t is performed in order to replace t with a transition e t as detailed in the previous subsection. As t Ω is part of an LPN and not an LTPN, it means that the implicit static time interval of t Ω is [0, +∞[so no time decomposition is required for t Ω . The pattern matching product consists then in replacing e t and t Ω by the set of transitions/places defined in Figure 5.

p 1 p 2 p n . . . cs t : λ[α, α] Ti t e t : a[0, +∞[to t : λ[β -α, β -α] p 1 p 2 p n . . . Na t na t : λ[0, 0]
On the left, transition e t , resulting from the time decomposition of t, is kept as is. On the right, the transition t Ω is replaced by a synchronized transition e t ||t Ω whose preset (resp. postset) is the union of the presets (resp. postsets) of e t and t Ω . Finally, a priority constraint is added between 1 Recall that the system has no zeno runs so we suppose that α > 0.

2 Indeed, if t is in conflict with another transition t , Θ can be transformed by adding two silent transitions λ[0, 0] enabled by the preset of t and t . Each silent transition has a postset with one new place that replaces the preset of either t or t . New versions of t and t are then conflict-free while the generated langage L(Θ) remains the same.

Ti t e t : a[0, +∞[Applying this product to Θ and Ω then leads to an LTPN denoted Θ Ω. As explained in the previous section, Θ Ω contains admissible markings (a marking M is admissible if for every place N a t resulting from the time decomposition of a transition t, M (Na t) = 0). Let Q match Θ Ω be the set of admissible markings of Θ Ω such that for every M ∈ Q match Θ Ω , the restriction of M to the places of Ω belongs to the accepting markings Q Ω of Ω. Then, as proved in [START_REF] Pencolé | Diagnosability of Event Patterns in Safe Labeled Time Petri Nets: A Model-Checking Approach[END_REF], the set of runs in Θ Ω leading to a marking of Q match Θ Ω is exactly the set of runs of Θ that match Ω:

p 1 p 2 p n . . . q 1 q m . . . e t ||t Ω : a[0, +∞[q 1 q m . . .
p ok σ o 1 [3, 3] o 2 [2, 2] o 2 [8, 8] o 1 [1, 1] t λ : λ[1, 1]
Proposition 1. L(Θ Ω, Q match Θ Ω) = {ρ ∈ L(Θ)|ρ Ω}

Composing with timed observations

To finally get the LTPN Π Θ,Ω σ as a single LTPN that represents the diagnosis problem, the next step is to find a way to encode whether a run of the system Θ is consistent with the observations σ or not. If a run is consistent with σ it means that it produces the sequence of observations at the correct time. Consider again the observation sequence 3o 1 2o 2 8o 2 1o 1 1λ. The principle is to build out of this sequence, an LTPN (noted ξ σ) as the one depicted in Figure 6.

It is a single sequence of transitions ending with a specific silent transition t λ and its postset p ok σ . By construction of ξ σ , we have L(ξ σ , {p ok σ }) = {σ}. To fully encode the diagnosis problem in Π Θ,Ω σ , we now need to compose ξ σ with the pattern product Θ Ω in such a way that:

1. we keep only the runs of Θ Ω that produce the events of σ in the same order and at the same date;

2. among these runs we keep the ones which have the same duration than σ.

To implement the first condition, two operations are performed. Firstly, any transition labeled with an observable event that is not shared with at least one transition of ξ σ must be deactivated. To do so, its postset is simply replaced with a postset containing a single non-admissible place denoted N a obs . Secondly, the idea is to synchronize any transition of ξ σ with every transition of Θ Ω that share the same event label. To do so, the first step is to apply the time decomposition on every transition of ξ σ and on every transition of Θ Ω that shares an event label o ∈ Σ o Θ with at least one transition of ξ σ . Once the time decomposition is done, every couple of obtained transitions (e t1 , e t2), where t 1 belongs to Θ Ω and t 2 belongs to ξ σ and such that e t1 and e t2 share the same observable event label o ∈ Σ o Θ , is replaced by the synchronized transition e t1 ||e t2 labeled with o as detailed in Section 4.2. To implement the second condition, the principle is to finally add a set of constraints as priorities and inhibitor arcs that block any continuation of a run that is fully synchronized with the observations and has the same duration as σ:

1. a priority t t λ is added for any transition t from Θ Ω or resulting from the time decomposition of a transition in Θ Ω; 2. an inhibitor arc is added between the place p ok σ and every such transition t. Priorities ensure that any run that ends with the effective fire of a transition from Θ Ω at the exact firing date of t λ has indeed the same duration than σ. Inhibitor arcs then forbid any further fire of any transitions after the fire of t λ which ensures that any run with greater duration is ignored. From this construction of Π Θ,Ω σ , it follows that: Proposition 2. Any run of Θ consistent with σ is an admissible run of Π Θ,Ω σ that leads to a marking M such that M (p ok σ) = 1 and reciprocally.

Pattern diagnosis as a model-checking problem

The previous section details how to build the LTPN Π Θ,Ω σ and shows that, by solving a reachability problem in Π Θ,Ω σ , it is possible to solve the pattern diagnosis problem. This section now details how to apply a model-checking technique to solve the pattern diagnosis problem based on Π Θ,Ω σ .

Model-checking problem

Generally speaking, model-checking is a paradigm that gathers the set of techniques that aim at formally checking whether a property ϕ holds in a finite-state model M:

M |= ϕ. (2)
A model-checker then returns a binary answer:

• either ϕ holds in M and the model-checker returns true; • or ϕ does not hold in M and the model-checker returns false and a counter-example which proves the claim (a counter-example e is such that e |= M ∧ ¬ϕ). We propose to solve the pattern diagnosis problem by using the LTPN model checker TINA [20; 21]. Consider a LTPN N and a property ϕ written as a SE-LTL formula (State/Event Linear Temporal Logic), TINA then solves the problem N |= ϕ. 3 SE-LTL is a temporal logic that is able to express properties about runs of a LTPN. A formula ψ is a SE-LTL formula if it is a universally quantified formula ψ ::= ∀ϕ where ϕ ::

= cst | r | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ | ϕ | ϕ | ♦ϕ | ϕUϕ.
The constant cst can be ⊥ (false), (true), dead (deadlock), div (temporal divergence), sub (partially known state). r defines constraints e e with ∈ {=, <, >, ≤, ≥} between arithmetical expressions e involving place and transition symbols from the underlying LTPN. The operators (next), (always), ♦ (eventually) and U (until) have their usual LTL semantics.

Based on SE-LTL, it is in particular possible to implicitly characterize sets of markings in a given LTPN. For instance, suppose an LTPN N composed of n ≥ 2 places p 1 , p 2 , . . . , p n . The set Q of markings M ∈ Q of N such that M (p 1) = 1 and M (p 2) = 1 can be characterized by the SE-LTL property denoted MARKINGS(N, Q):

MARKINGS(N, Q) ≡ (p 1 = 1 ∧ p 2 = 1)
and the problem of checking whether in N , from its initial marking M 0 , it is always true () that a run eventually (♦) leads to a marking M such that M (p 1) = 1 and M (p 2) = 1 can be formulated as follows:

N |= ♦MARKINGS(N, Q)

Design of the diagnosis properties

To solve the diagnosis problem, two SE-LTL properties must be checked. The first one, denoted FAULTY(Θ, Ω, σ), will formally express the property that every run of Θ that is consistent with the observation σ matches the pattern Ω. If the model-checker returns true to the problem Π Θ,Ω σ |= FAULTY(Θ, Ω, σ) then it means that the Ω-diagnoser must return:

∆ Ω (σ) = Ω -faulty.

(3) If the model-checker returns false, then it also returns as a counter-example a run consistent with σ that does not match Ω. Then two cases hold:

1. either every run that is consistent with σ, does not match Ω and the diagnosis is Ω-safe 2. or there is another run consistent with σ that matches Ω which means then that the diagnosis is Ω-ambiguous. To determine whether it is Case 1 or Case 2, a second modelchecking problem needs to be solved. The second SE-LTL property to check is denoted SAFE(Θ, Ω, σ) and expresses that every run of Θ that is consistent with the observation σ does not match pattern Ω. If finally the model-checker returns true then it is Case 1, otherwise it is Case 2. Note that, in case of an ambiguity, the method provides two runs, one is matching the pattern Ω and the other is not.

Both formulas FAULTY(Θ, Ω, σ) and SAFE(Θ, Ω, σ) express a property on runs of Θ that are represented as runs leading to admissible markings in Π Θ,Ω σ . A marking M from Π Θ,Ω θ is not admissible as soon as for one place of type NaΘ (see Section The second property is the matching property. By construction of Π Θ,Ω σ (see Proposition 1), a run matches Ω if it is admissible and leads to a marking which includes an accepting marking of Q Ω . MATCH(Π Θ,Ω σ) is the formula representing such markings: MATCH(Π Θ,Ω σ) ≡ ADM(Π Θ,Ω σ) ∧ MARKINGS(Ω, Q Ω). Similarly, the property NOMATCH(Π Θ,Ω σ) asserts the admissible marking M of Π Θ,Ω σ is not a matching property, i.e. its restriction M |Ω does not belong to the final markings of Ω.

NOMATCH(Π Θ,Ω σ) ≡ ADM(Π Θ,Ω σ)∧¬MARKINGS(Ω, Q Ω). From Proposition 2, a run of Θ that is consistent with σ is characterized by an admissible run of Π Θ,Ω σ that leads to a marking that includes the marking of p ok σ .

CONSISTENT(Π Θ,Ω σ) ≡ ADM(Π Θ,Ω σ) ∧ MARKINGS(Ω, {p ok σ }). Finally, FAULTY(Θ, Ω, σ) is defined as follows: it is always () true that if the run is consistent then it matches the pattern.

FAULTY(Θ, Ω, σ) ≡ (CONSISTENT(Π Θ,Ω σ) ⇒ MATCH(Π Θ,Ω σ)) SAFE(Θ, Ω, σ) is defined as follows: it is always () true that if the run is consistent then it does not matche the pattern. SAFE(Θ, Ω, σ) ≡ (CONSISTENT(Π Θ,Ω σ) ⇒ NOMATCH(Π Θ,Ω σ))

First experimental results

Table 1 presents the implementation results for the scenarios that are presented in Example 1. Each line presents some details about the LTPN Π Θ,Ω σ that is generated (number of places, transitions, arcs, priorities). To check the properties FAULTY and SAFE, the model-checker TINA first precomputes a Strong State Class Graph (SSG) that is then used as a Kripke structure. Table records the details (states, transiitons) for the precomputed SSGs. The result for each query is also presented and shows that there are consistent with the expected result detailed in Example 1.

Conclusion

This paper proposes a method to solve the pattern diagnosis problem in timed discrete event systems. This method turns the problem to a couple of model-checking problems over a safe LTPN. The method only takes into account untimed patterns. One perspective would be to extend the method to also deal with timed patterns. Such an extension is not straightforward due to the specificities of the system-pattern product. We will firstly aim at better understanding the pattern matching product for timed patterns by characterizing it as a set of temporal constraints.

 Ω3(3), 3 consecutive occurrences of b without any occurrence of f , Q Ω 3 (3) = {M : M (pp 3 3) = 1}.

Figure 2 :Figure 3 :

 23 Figure 2: A set of patterns.

Figure 4 :

 4 Figure 4: Time decomposition of a transition t of a LTPN N with (t) = a and I s = [α, β], α > 0.

Figure 5 :

 5 Figure 5: Pattern matching product between a transition t of Θ and a transition of Ω.

Figure 6 :

 6 Figure 6:LTPN ξ σ for observation sequence 3o 1 2o 2 8o 2 1o 1 1λ.

 4.2), we have M (NaΘ) = 0 or if M (N a obs) = 0. Let first define the set of admissible markings of Π Θ,Ω σ in SE-LTL: ADM(Π Θ,Ω σ) ≡ NaΘ∈Π Θ,Ω σ NaΘ = 0 ∧ N a obs = 0.

Note that the problem N |= ϕ is generally undecidable however TINA is able to determine sufficient conditions for decidable subclasses. In our specific case, the problem we solve are decidable by construction of Π Θ,Ω σ (safe LTPNs).