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Abstract—Traffic optimization is fundamental to achieve both
great application performance and resource efficiency in data
centers with heterogeneous workloads, including incast. However,
general performance models, providing insights on how various
factors affect a certain performance metric used in the network
optimization process, are missing. For the special case of incast,
the existing models are analytical models, either tightly coupled
with a particular protocol version or specific to certain empirical
data. This paper proposes an SDN-enabled machine-learning-
based optimization framework for incast performance optimiza-
tion in data center networks that leverages learning-based perfor-
mance modeling. Evaluations based on intensive NS-3 simulations
show that we can achieve accurate performance predictions that
enable finding the efficient switch buffer space to achieve optimal
incast completion time in different configurations. We expect this
framework to be a building block for autonomous data center
network management.

Index Terms—Data centers, SDN, Machine Learning, Traffic
Optimization, QoS.

I. INTRODUCTION

Datacenter traffic is continuously increasing with the num-
ber of web applications on the internet and business ap-
plications from multi-cloud environments. Even if the data
center workload could be classified into two main groups,
elephant and mice flows, it includes diverse types of traffics
with various QoS requirements. Besides the classification
above, data center workloads often require sending requests to
large numbers of servers and handling their near-simultaneous
responses. This many-to-one communication and its associated
traffic pattern are called incast traffic [1]. This many-to-
one pattern in data centers is used for applications such as
distributed storage (e.g., BigTable, HDFS, and GFS), web-
search with partition/aggregation design pattern and cluster
computing platforms (MapReduce, Spark, etc.) [2].

The dynamic workload with heterogeneous QoS require-
ments complexify data center management tasks. These tasks
include congestion control, buffer management, load balanc-
ing, and network optimization in general. Datacenter network
optimization aiming to achieve both great application perfor-
mance and resource efficiency is necessary. This optimization
is more important for its critical traffics, such as incast.

Such an optimization process involves continuous network
monitoring (performance and resource utilization) and perfor-
mance modeling [3]. On the first hand, continuous monitoring
is needed to have deep visibility on the network. It may ease
autonomous optimization through continuous adjustment. This

can be done with SDN, with its telemetry capabilities and
its management flexibility. On the other hand, modeling is
fundamental for network optimization, as reported in [4]: ”we
can only optimize what we can model.” Indeed, to optimize
incast performance, a model providing insights on how various
factors affect it is required.

The classical approach for network modeling is the design
of handcrafted and specialized performance analytical mod-
els. For incast traffic, mostly carried with TCP, performance
modeling is very challenging [5]. Indeed, TCP’s stack is a
complex system that involves many heuristics to handle net-
work conditions and application behaviors [6]. Subtle changes
in its parameters may lead to entirely different performance.
The existing incast performance analytical models [5], [7], [8]
are either tightly coupled with a particular protocol version or
specific to certain empirical data. Relying only on analytical
performance modeling for incast performance optimization is
then not a practical solution.

In this context, we propose a machine-learning-based op-
timization framework for incast performance optimization
in datacenter networks. This framework leverages SDN and
learning-based incast performance modeling [9]. The model
is learned from historical data. There is no need for domain-
specific assumptions, and the ML model generalizes easily.
The machine-learning-based model can capture complex rela-
tionships from diverse system parameters (number of incast
senders, link bandwidth, switch buffer space, congestion algo-
rithm, etc.) to predict incast performance (its completion time)
accurately. Our optimization framework can then provide effi-
cient incast performance with resource efficiency. It can also
be leveraged for proactive management for future planning in
what-if-scenario modeling. Last but not least, the framework’s
data-driven approach makes it self-driving so that it can be
easily integrated with autonomous data center management
schemes.

The main contributions of this paper are summarized below:
• We propose a machine-learning-based optimization

framework for incast performance optimization. This
framework can achieve great incast performance with
efficient resource utilization (Section III).

• We design a random forest incast performance model us-
ing a dataset generated from intensive NS-3 simulations.
These simulations use mixed incast-elephant traffics sce-
narios (Section IV).



• Using the ML model, we propose an optimization al-
gorithm to minimize incast completion time with the
optimal switch buffer space (Section V).

• Finally, we present the performance evaluation results of
the random forest prediction model and the optimization
algorithm (Section VI).

II. BACKGROUND AND PROBLEM FORMULATION

A. Mixed Elephant and Incast Traffic Scenario and Notations

Datacenter workloads are composed essentially of long-
lived flows or elephant flows (e.g., backup, replication, data
mining, etc.) and short flows or mice flows (e.g., delivering
search results). This makes the data center a very dynamic
and complex system. Moreover, data center workloads often
require sending requests to large numbers of servers and then
handling their near-simultaneous responses. This many-to-
one communication pattern is called incast traffic. Depending
on the size of the servers’ responses, we can distinguish
between long-lived incast and short-lived incast. But it’s worth
mentioning that incast manifests as short flow [10].

The co-existence of incast traffic with elephant flows brings
other troubles and challenges. Incast flows may get queued
up behind packets from large flows in the presence of con-
gestion if ever available buffer space remains, experiencing
performance degradation (long queuing delay or tail drops)
[11]. Switches must accommodate this mixed traffic with full
throughput and low latency while efficiently handling incast.

Fig. 1 shows a dumbbell topology of mixed elephant and
incast traffic. All senders and clients are connected to the
switches with a 1Gbps link. The bottleneck link between the
two switches S1 and S2, has the bandwidth C. Incast senders
are connected in a star shape to the switch S1. In this figure,
N incast servers send each other the quantity SRU (Server
Request Unit) simultaneously to the incast sink node linked to
S2. In this scenario, the elephant traffic corresponds to a bulk
transfer from the elephant source to the elephant receiver (e.g.,
background continuous file transfer or server migration). We
consider the setting parameters as in TABLE I. These notations
hold for the rest of the paper.
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Incast
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Sender 1
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Fig. 1. Basic topology of mixed elephant-incast scenario

TABLE I
PARAMETERS AND NOTATIONS

Parameters Description
N Number of incast senders
SRU Server Request Unit size, per sender; SRU = 256 KB
B Switch buffer size in packets; e.g. 64 pkts or 96 KB
C Bottleneck link capacity; e.g. C = 1 Gbps
baseRTT RTT without queuing delay; e.g. baseRTT = 200µs
RTOmin Minimal TCP Retransmission timeout; e.g. 10 ms
S TCP segment size, S=1446 bytes. Packet size = 1.5 KB
τ Overall Incast Completion Time

B. Problem Formulation

In the scenario described above, we suppose the background
elephant flow not too critical. The challenge is to guaranty
optimal performance for incast the critical traffic in such con-
ditions. Our objective is to minimize incast flow completion
time by finding adequate parameter settings. This goal is
formalized with the optimization problem as follows.

Minimize
P

τ = f(P )

subject to P ∈ ΩP

With P the set of parameters Pi (N, C, B, SRU, CC, qdisc etc.)
with their respective values spaces (e.g. SRUmin ≤ SRU ≤
SRUmax ; B < Bmax). ΩP is the resulting overall variables
domains, not to say the optimization problem constraints.

Formalized this way, the problem seems obvious to solve.
Unfortunately, that is not the case. Indeed f expressing τ based
on the parameters Pi is an unknown function. In other words,
there is no analytical model providing incast performance
based on system parameters. This makes our optimization
problem challenging, and it falls in the category of the so-
called black-box optimization.

Faced with this challenge, we propose an SDN-enabled
Learning-based Incast Performance Optimization framework.
This framework leverages Software-Defined Networking
(SDN), Machine-Learning and black-box optimization. This
framework is presented in the next section.

III. SDN-ENABLED MACHINE LEARNING TRAFFIC
OPTIMIZATION FRAMEWORK

With this framework (see Fig. 2), it is possible to optimize
incast traffic in a mixed incast-elephant scenario. Indeed, by
separating the network’s control plane from its data plane,
SDN introduces flexibility in network management, provides
a global view of the network, and facilitates telemetry. More-
over, it eases the use of machine learning techniques in
the management plane [12]. Using machine learning, we
could provide good predictions of incast performance τ for
different parameter combinations. With these predictions, we
can construct f̂ , an estimate of f that will be used during the
optimization process.

From Fig. 2, the workflow of the framework is as fol-
lows. Firstly, the prediction model is trained offline on the
historical data. The samples of the historical dataset represent
a combination of feature values and the associated target
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Fig. 2. SDN-enabled Learning-based Incast Performance Inference Framework

value since we are in a supervised learning configuration. The
features include the congestion control algorithm used (CC),
the queuing discipline at the switch level (qdisc), the number
of incast senders (N), the bottleneck bandwidth (C), the base
round-trip-time (baseRTT), the server request unit (SRU) and
the target attribute is the incast completion time (τ ).

The trained model is then deployed (1) as the ML Agent.
The model is deployed to be used for incast performance
inference. This step provides accurate performance models
for the optimization process. The online input (2), composed
of (CC, qdisc, C, SRU, N, RTT, baseRTT), is got when an
incast traffic is initiated by the client leveraging SDN fine-
grained telemetry, In-band Network Telemetry (INT), and
P4. Taking this input, a prediction of the incast traffic’s
performance is done (3). This prediction will then be leveraged
by the Traffic Optimizer (4), which determines optimal runtime
configurations to achieve efficient performance for the incast
traffic.

Finally, when the incast traffic completes, its real observed
performance metric is also collected, and the historical dataset
could be updated (5). Having the database up-to-date is
essential and will allow taking into account new dynamics
from the data center. When the database significantly changed,
the model needs to be re-constructed and re-deployed. Step (5),
indirectly, gives also feedback for the optimizer.

IV. ML INCAST PERFORMANCE PREDICTION MODEL

We follow the typical workflow of Machine learning in net-
working [13]. We begin with the problem formulation. For the
incast performance predictions, the target metric (completion
time) being a continuous variable, its prediction is a regression
problem. We are in the supervised learning case.

For this ML-based prediction mechanism to be relevant for
our black-box optimization, it needs to be simple and easily

generalizable [14]. Moreover, it is preferable if the model
does not require a too high training set size to provide good
predictions that capture well τ ’s dynamics.

A. Dataset and Analysis

We conducted intensive NS-3 simulations using the scenario
topology in Fig. 1 and varying the parameters from TABLE I.
For every simulation, we compute the corresponding comple-
tion time. We finally generate a dataset composed of 83200
observations, six parameters, and one target variable, the incast
completion time. The variables include two categorical vari-
ables: the congestion control algorithm CC used (NewReno or
Cubic) and the associated queuing discipline qdisc (FIFO or
FQ CoDel). The numerical variables are the bottleneck link
bandwidth C, the base round trip time baseRTT , the switch
buffer size B, and the number of simultaneous incast senders
N . The server request unit SRU and RTOmin were fixed to
256000 bytes, and 10ms respectively, and were not part of the
dataset features.

For the dataset preparation for the model training, we
consider two possibilities: a single model taking six features
(two categorical and four numerical variables) and the case
where we elaborate individual models for the 4 categories
(NewReno FIFO, NewReno FQ, Cubic FIFO, Cubic FQ).
We will consider the individual models’ case in this paper.
Detailed information about the single model construction can
be found in this previous work [9].

Each category is represented by a dataset of 20800 ob-
servations with only the numerical variables. In the data
pre-processing step, the dataset is scaled by standardizing
these numerical features. It consists of centering a feature’s
observations to the mean and scaled it to unit variance.



B. Model Training

The machine learning algorithm used for the predictions
is Random Forest. Scikit-learn 0.23.2 [15] is used for the
implementation.

Random Forest falls under machine learning averaging
methods that combine the predictions of several base estima-
tors here decision trees. The combined estimator is usually
better since its variance is reduced. Decision trees are a
non-parametric machine learning algorithm that predicts by
learning simple decision rules inferred from the data features.

Hyper-parameter tuning analysis is conducted, and it reveals
that default values perform pretty well for the predictions (e.g.,
the number of estimators (trees) used is n estimators = 100).

From a minimalism perspective, for our ML model, we
will not use all the samples from our dataset. A subset with
n samples (e.g., 5000, 10000, 15000, etc.) will be used after
shuffling the entire dataset. Form this minimalist set, 70% will
be used to train the model, while the 30% remaining will be
used to validate the trained model.

V. INCAST PERFORMANCE OPTIMIZATION

A. Preamble

The goal here is to find the optimal parameter setting for
an incast request. An incast request involves the number of
incast senders N, the total quantity of data to retrieve from the
senders (related to the SRU), and the other related parameters
like CC, qdisc, C, B, baseRTT, etc.

Depending on the context, not all of these parameters
would be decision variables of the optimization problem. Non-
decision variables (e.g., the CC) will be taken as inputs of
the optimization model. The manageable parameters would
generally be related to the switches, such as its buffer space or
its queuing discipline. Adaptive buffer management [16] can
be achieved easily with data-plane programmability powered
by P4.

This paper will focus on efficiently choosing the switch
buffer size B to maximize the incast performance by mini-
mizing its completion time. This assumption turns our opti-
mization problem into a switch buffer sizing one.

B. Switch Buffer Sizing

Before solving the optimization problem, it’s worth recalling
switch buffer sizing. Buffer is in the heart of the vast majority
of performance issues [17]. Incast traffic is generally impacted
by timeouts that are caused by packet losses from an overfilled
buffer. Sizing it conveniently is of great importance.

In general, without making a focus on incast, buffer sizing
was intensively studied in the literature. Indeed buffers allow
internet routers to hold packets during congestion time. The
rule-of-thumb states a buffer size equals the output bandwidth
C times the round-trip-time RTT B = C ∗ RTT ( the
BDP, bandwidth-delay product) to keep high utilization at the
bottleneck link [18]. Since link bandwidth was increasing and
the number of flows carried by internet routers was growing
exponentially, the BDP rule was very challenging for routers
manufacturing. The BDP rule was then questioned by [19] that

Algorithm 1: ML-based Performance Optimization
Input: Parameters P ′, maximum buffer space Bmax

Output: B∗, the optimal buffer space
1 model = Random Forest trained model
2 Generate a search space ΩB

3 for B ∈ ΩB do
4 fct = model.predict[P’, B]
5 FCTs[B] = fct
6 end
7 B∗ = argmin

B
FCTs

proposes a smaller buffer requirement B = (C ∗ RTT )/
√
n,

where n is the number of flows. This small buffer was proposed
taking advantage of the desynchronization of the flows. It eases
the design of high-rate routers at low cost and with almost no
link utilization degradation.

For both the above propositions mainly defined for back-
bone routers, even if they present several advantages and
have wide adoption, the RRT value to use could be tricky.
Unfortunately, when it comes to data centers switches buffer
requirements, as far as we know, there is no rule-of-thumb.
A widely common recommendation is to use in data centers
relatively small buffers to achieve high bandwidth, and low
latency [20]–[22]. But due to the critical aspect of buffer size
on performance, buffer sizing needs more attention.

C. Incast Performance Optimization Algorithm

With a focus on the switch buffer size B, the optimization
problem consists of finding the best B* that minimizes τ for a
given combination of the other parameters for an incast traffic
denoted as P ′ = P ′j . The optimization procedure is done in
three steps: i) Generate a set of candidates B, ii) Evaluate
the resulting incast completion time of each of them, and iii)
selects the one that satisfies the optimization objective.

The algorithm procedure is presented in Algorithm 1. For
any incast traffic, the corresponding parameters are collected.
The expected incast completion time is inferred with the
Random forest model (constructed in the previous section)
for various candidates B. After this evaluation, the best-fitted
candidate B* is used by the SDN controller to dynamically
adjust the switch buffer space to handle the incast traffic
efficiently.

VI. PERFORMANCE EVALUATION

A. Setup and Evaluation Metrics

We generate the working dataset (presented in Section IV-A)
from intensive NS-3 simulations. These simulations use the
mixed incast-elephant traffic scenario from Fig. 1. A random
forest incast performance model is constructed using this
dataset. Its evaluation results and its effectiveness for the incast
performance optimization are provided in the next sections.

We consider three evaluation metrics. The first is the pre-
diction score. It represents which proportion of the variance
in the dependent variable is predictable from the independent
variables. The most precise regression model would be the



one that has a relatively high R squared, close to 100,
when expressed in percentage. We will represent the score
in percentage. Secondly, we will use NMAE for Normalized
Mean Absolute Error expressed in percentage. We want the
NMAE to be as small as possible. And finally, we will consider
the relative prediction error: |yi−ŷi|

yi
.

B. ML Prediction Accuracy

For a subset with n samples of 10000, where 7000 samples
are used to train the random forest model, we obtain the
scores and NMAE on the 3000 remaining set as presented in
TABLE II. Using all the dataset (20800 samples) generated
through NS-3 simulations gives scores around 99% with
NMAE of around 1%. These results prove the ability of the
ML-performance approach to provide accurate predictions.

TABLE II
ML PREDICTIONS ACCURACY

Categories Score (%) NMAE (%)
NewReno FIFO 96.54 9.81
NewReno FQ 96.95 9.07
Cubic FIFO 96.90 9.26
Cubic FQ 96.23 10.98

The prediction score and NMAE provide a good picture
of the prediction accuracy. But they don’t give detailed infor-
mation on the model behavior. This information is provided
in Fig. 3 which presents the CDF (Cumulative Distribution
Function) of the relative errors over all the evaluation samples.
This distribution of residuals shows that the prediction error is
very low for most of the test data points for the 4 categories.
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Fig. 3. CDF of predictions relative errors

In Fig. 4, we show For Cubic FQ the real observed test
points and their corresponding predictions with the random
forest model. This regression plot confirms the significant
relative errors observed from the CDF plot.

C. Optimization Evaluation Results

To evaluate the effectiveness of our optimization algorithm
Algorithm 1, we compute B* for diverse values of N, with all
the other parameters fixed. The algorithm output is presented
in TABLE III. We will compare the performance observed
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using this optimal B versus when using the maximum available
buffer space Bmax.

TABLE III
OPTIMAL BUFFER SPACE B* FROM INCAST PERFORMANCE

OPTIMIZATION ALGORITHM

N 1 4 8 16 20 32 48 64 100
B* 4 16 64 64 40 32 64 25 64

Fig. 5 shows the incast completion time τ when using
Algorithm 1 against over-provisioning using Bmax. We can
observe that τ is almost the same with both B* and Bmax.
It follows from these results that, with our framework, we
could achieve great incast performance while preventing buffer
wastage that may occur when over-provisioning. Moreover,
sometimes, using the maximum available buffer space could
degrade the performance (N = 32 on Fig. 5).
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VII. RELATED WORKS

Prior works have explored the use of ML to provide models
for network and performance optimization. The work in [23]
proposes RouteNet that leverages the ability of Graph Neural
Networks (GNN) for network modeling and optimization in
SDN. Taking as input network topology information, routing



schemes, and traffic matrix RouteNet, based on Generalized
Linear Models, can provide accurate end-to-end performance
metric predictions such as delay distribution (mean delay and
jitter) and packet drop prediction. These predictions could then
be leveraged by QoS-aware global performance optimization.

The work in [24] explores if Deep Reinforcement Learning
(DRL) can be used for automatic traffic optimization in
datacenters. Their preliminary study shows that The DRL
approach’s high latency is an obstacle to traffic optimiza-
tion at the scale of current datacenters. Leveraging long-
tail distribution of datacenter workload, they propose AuTO
mimicking the Peripheral and Central Nervous Systems in
animals to solve this scalability problem. Their work focuses
on flow scheduling and load balancing. They adopt Multi-
Level Feedback Queueing by optimizing its thresholds.

The study in [14] evaluates whether ML offers a general
and straightforward approach to performance prediction. It
assesses 6 ML performance prediction models across 13 real-
world applications. The authors of [14] show that many
applications exhibit a surprisingly high degree of irreducible
prediction error. And they propose a more nuanced methodol-
ogy for applying ML for performance prediction.

VIII. CONCLUSION AND FUTURE RESEARCH DIRECTIONS

In this work, we propose an SDN-enabled machine-
learning-based optimization framework for incast performance
optimization in datacenter networks. It allows optimization on
unknown or difficult to obtain analytical performance models
by exploiting machine learning predictions. Evaluations based
on intensive NS-3 simulations show that we can achieve
accurate incast performance predictions. These predictions
enable finding the efficient switch buffer space to achieve
optimal incast completion time in different configurations.
With the optimal switch buffer space, we achieve great incast
performance while preventing buffer wastage that may occur
when over-provisioning. We expect this framework to be a
building block for autonomous data center management.

As future works, while this paper focuses on the use
of ML in the optimization process of incast performance
only, multi-objective optimization of both incast and elephant
flows can be developed. We will also investigate other black-
box optimization algorithms (e.g., Genetic Algorithms) in the
optimization process.
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