Computing a Robust D-Stability Bound Using a Parameter-Dependent Lyapunov Approach - LAAS - Laboratoire d'Analyse et d'Architecture des Systèmes
Article Dans Une Revue IEE Proceedings Control Theory and Applications Année : 2002

Computing a Robust D-Stability Bound Using a Parameter-Dependent Lyapunov Approach

Résumé

The problem of robust matrix root-clustering against additive structured uncertainty is addressed. A bound on the size of the uncertainty domain preserving matrix D-stability is derived from an LMI approach. A recently proposed sufficient condition for robust matrix D-stability with respect to convex polytopic uncertainty is used. It is relevant to the framework dealing with parameter-dependent Lyapunov functions. Using this condition, the problem of computing the robustness bound is formulated as a generalised eigenvalue problem, that enables the bound value to be maximised.
Fichier non déposé

Dates et versions

hal-03360881 , version 1 (01-10-2021)

Identifiants

Citer

Olivier Bachelier, Dimitri Peaucelle, Denis Arzelier. Computing a Robust D-Stability Bound Using a Parameter-Dependent Lyapunov Approach. IEE Proceedings Control Theory and Applications, 2002, 149 (6), pp.505--510. ⟨10.1049/ip-cta:20020729⟩. ⟨hal-03360881⟩
42 Consultations
0 Téléchargements

Altmetric

Partager

More