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. Application on a vehicle bicycle model highlights the efficiency of the proposed approach. Comparisons with other efficient estimation and fault detection strategies are provided to discuss the accuracy of the obtained results.

INTRODUCTION

Fault detection and diagnosis are important for all system engineering problems. Several methods for fault detection in dynamic systems are mentioned in [START_REF] Willsky | A survey of design methods for failure detection in dynamic systems[END_REF], including the innovation-based method in which a χ 2statistic hypothesis testing was used. This last method is applied appropriately with the standard Kalman filter [START_REF] Kalman | A new approach to linear filtering and prediction problems[END_REF]) to process the linear dynamic system with deterministic coefficient matrices. In [START_REF] Sainz | Fault detection and isolation of the three-tank system using the modal interval analysis[END_REF], for example, an approach to generate envelopes based on interval techniques of the modal interval analysis is proposed. In [START_REF] Puig | Fault diagnosis and fault tolerant control using set-membership approaches: Application to real case studies[END_REF], set-membership methods in fault diagnosis (FD) and fault tolerant control (FTC) are reviewed, these methods aim at checking the consistency between observed and predicted behaviour by using simple sets to approximate the exact set of possible behaviour.

In [START_REF] Tran | Cadre unifié pour la modélisation des incertitudes statistiques et bornées -Application à la détection et isolation de défauts dans les systèmes dynamiques incertains par estimation[END_REF], a fault detection approach is presented and this approach combines a χ 2 -statistics hypothesis test with the Upper Bound Interval Kalman Filter (UBIKF). An upper bound for all positive semi-definite matrices belonging to an interval matrix is proposed. This upper bound aims to overcome the singularity of the inverse of interval matrices. Based on the concept of UBIKF, a filter using optimal upper bounds for this class of problems, named OUBIKF, is introduced in [START_REF] Lu | Optimally bounded interval kalman filter[END_REF]. The contribution of the later consists in a rigorous mathematical framework for an optimal upper bound (in the sense of operator norm minimization) providing tight estimate intervals containing all actual states of the dynamic system.

In this paper, an adaptive hypothesis test method is developed to detect sensor faults applied to a linear discrete time dynamic system with assumptions requiring the use of interval computations. The proposed scheme for fault detection combines the developed hypothesis test (based on a χ 2 -statistic with degrees of freedom (d.f.) adaptively chosen thanks to amplifier coefficients) and the OUBIKF.

The paper is organized as follows: Section 2 provides some preliminaries including principles and OUBIKF algorithm. In Section 3, the proposed scheme for fault detection is developed and some evaluation indicators are given. An application in simulation of the proposed approach is presented in Section 4. The application model comes from automotive domain. A comparison with other method (see [START_REF] Raka | Fault detection based on robust adaptive thresholds: A dynamic interval approach[END_REF]) is given. Conclusions and some ideas for future works are provided in Section 5.

PRELIMINARY

Optimal upper bound of all positive semi-definite matrices belonging to an interval matrix

A real positive semi-definite matrix M is denoted by M 0. Denote also S(n) = M ∈ R n×n : M = M T and S + (n) = {M ∈ S(n) : M 0}.
Let M, N be two real squared matrices of the same size. An order between M and N denoted by N M is defined if and only if M -N 0. M is called an upper bound of N , or says N is dominated by M or M dominates N . For Hermitian matrices, this order is known as the Loewner (partial) order [START_REF] Pukelsheim | Optimal design of Experiments[END_REF]; [START_REF] Zhan | Matrix Inequalities[END_REF]). This partial order is extended to the notion of bounds for a non empty set Ω of real squared matrices as follow. If a real squared matrix K satisfying M K, ∀M ∈ Ω then K is an upper bound of Ω, denoted Ω K. If K and L are two upper bounds of Ω, then K is said better than L if K ≤ L depending on the choice of matrix norm . . 

th column). Write M ∈ [M ] to indicate a punctual matrix M belonging to [M ], i.e. ∀i, j, M ij ∈ [M ] ij . Let [M ] be an n × n real interval matrix. Denote: a) S([M ]) = M ∈ [M ] : M = M T , b) S + ([M ]) = {M ∈ S([M ]) : M 0}, c) BS + ([M ]) = {K ∈ S + (n) : S + ([M ]) K}.
Other standard notations and computations related to interval analysis are referred to [START_REF] Jaulin | Applied Interval Analysis, with Examples in Parameter and State Estimation, Robust Control and Robotics[END_REF].

For any n × n matrix A, we use the notations σ i (A), λ i (A) (i = 1, ..., n) to indicate respectively the singular values and eigenvalues of A among which σ max (A) and λ max (A) are the corresponding maximum values. It is referred to [START_REF] Zhan | Matrix Inequalities[END_REF] for vector and matrix norm definitions.

In the following two theorems, let [M ] be an n × n real interval symmetric matrix and assume that S + ([M ]) = ∅. Theorem 1. (Existence of Optimal upper bounds). The following properties hold:

i) α * = sup M ∈S+([M ]) {λ max (M )} < ∞ and S + ([M ]) αI if and only if α ≥ α * . ii) α * I is the optimal upper bound of S + ([M ]) in the set BS + ([M ]
) in the sense of operator norm minimization.

iii

) Let Ω = K ∈ BS + ([M ]) : n -1 n i=1 λ i (K) ≥ α * . α * I is the optimal upper bound of S + ([M ]) in Ω in the sense of nuclear norm minimization.
α * is said the optimal value of BS + ([M ]). Theorem 2. (Bounds of Optimal value α * ). The following properties hold:

i) E = {M ∈ S + ([M ]) : diag(M ) = diag(sup([M ]))} is
the non empty set of maximal elements of S + ([M ]). ii) There exists a matrix

N * ∈ E s.t. λ max (N * ) = α * . iii) Let Max([M ]) = (Max ij ) be a matrix determined by Max ij = sup([M ]) ij , if mid([M ]) ij ≥ 0 inf([M ]) ij , otherwise . (1) then α * ≤ sup M ∈[M ] { M F } ≤ Max([M ]) F . If Max([M ]) 0 then λ max (Max([M ])) ≤ α * ≤ Max([M ]) F . Remark 1. α * I is the simplest upper bound of S + ([M ]
) to use both in practice and theory. Its existence and optimality are stated in Theorem 1. Theorem 2 provides a simple way to localize the optimal value α * (via Max([M ])).

More details and proofs can be found in [START_REF] Lu | Optimally bounded interval kalman filter[END_REF].

2.2 Mixed uncertainty linear discrete-time dynamic system for state estimation and fault detection Consider the following linear discrete time dynamic system 

x k = A k x k-1 + B k u k + w k , y k = C k x k + D k u k + v k , k ∈ N * , (2) 
] ([r k ] = y k -[ŷ k ], [ŷ k ] = [C][x k|k-1 ] + [D]u k )
where [x k|k-1 ] is the predicted state estimate and [ŷ k ] the measure estimate.

Algorithm 1 OUBIKF ALGORITHM Initialization:

[x 0|0 ], P 0|0 , [A], [B], [C], [D], [Q], [R], p, u k , y k , k = 1, 2, ..., N . Find n 0 the number of non zero radius of [C] Find γ s.t. S + ([R]) γI for k = 1, 2, 3, ...N do Prediction step: [x k|k-1 ] = [A][x k-1|k-1 ] + [B]u k [P k|k-1 ] = [A]P k-1|k-1 [A] T + [Q] Find α k s.t. S + ([P k|k-1 ]) α k I Correction step: β k = 1/(2α p k ) ; σ k = β k /n 0 V k = mid([C])mid([C]) T + γ k α k (1+n0/β k ) I + β k +n0σ k 1+n0/β k diag{rad([C])rad([C]) T } K k = mid([C])V -1 k [x k|k ] = (I -K k [C])[x k|k-1 ] + K k (y k -D k u k ) P k|k = (I -K k mid([C]))α k (1 + n 0 /β k ) end for where S + ([P k|k ]) P k|k , K k = argmin{tr(P k|k )}.
In this paper, fault detection approach is based on the one hand Algorithm 1 and on the other hand a statistical hypothesis testing. Therefore, it is vital to investigate carefully the stochastic properties of related terms of the system (2), otherwise the fault detection test for the interval case cannot be derived. In this study, it can be proved that state x k , measure output y k , estimator xk|k , estimation error k and residual r k are all Gaussian vectors, in which

r k ∼ N (0, S k ), r k is a function of {x 0 , w 1:k , v 1:k } and S k
is the covariance matrix of estimation error.

Key property (K):

Assuming S k is non singular and let η k = S -1/2 k r k = (η k,1 , ..., η k,ny ). Then η k ∼ N (0, I), that is η k,i 's are N (0, 1)-distributed and independent each other. Furthermore, being a transformation of r k , η k is then a function of {x 0 , w 1:k , v 1:k }, write η k = η k (x 0 , w 1:k , v 1:k ).
Therefore, for any 1 ≤ t ≤ s, η t = η t (x 0 , w 1:t , v 1:t ) and η s = η s (x 0 , w 1:t , w t+1:s , v 1:t , v t+1:s ) are not independent. The same holds for r t and r s .

Sensor fault detection using the χ 2 -statistics in the literature

The measure y k affected by an additive fault vector f s k is given by

y k = C k x k + D k u k + v k + f s k ,
where f s k is a sensor fault vector belonging to R ny . The fault vector f s k can be composed by multiple or single faults:

-first type: some (or all) sensors are faulty, -second type: only one sensor is faulty.

In the literature, using the χ 2 -statistics test for sensor fault detection is a kind of Innovation approach mentioned in [START_REF] Mehra | An innovation approach to fault detection and diagnosis in dynamic systems[END_REF]. In [START_REF] Willsky | Adaptive filtering and self-test methods for failure detection and compensation[END_REF] and [START_REF] Willsky | Two self-test methods applied to an inertial system problem[END_REF], this method is applied for fault detection problems in which the following statistic is used

ν k = k i=k-W +1 η T i η i = k i=k-W +1 r T i S -1 i r i , (3) 
where W is a window size (W ≤ k). This statistic is used as χ 2 -distributed random variable with W n y degrees of freedom. A rule for the fault detection test was established:

(H 0 ) ν k ≤ δ, no error occurred; (H 1 ) ν k > δ,
an error occurred, where δ is a threshold determined by P(χ 2 (W n y ) > δ) = α with α a chosen significance level (P is a probability measure).

Clearly, any η T k η k follows the distribution χ 2 (n y ) since, by property (K), η T k η k is the sum of n y independent Gaussian components. Also by property (K), η t and η s are not independent for all t = s, so

k i=k-W +1 η T i η i ∼ χ 2 (W n y )
does not hold exactly. Nevertheless, this test worked rather well as an alarm (detection) to faults and was a simple one among others tests. This statistic ν k might be approximated reasonably by a χ 2 (W n y ). We distinguish a statistic T following exactly a distribution F and being approximated by another statistic T with distribution F . Any statistic can be used as estimator for a quantity of interest with different accuracies.

SENSOR FAULT DETECTION BASED ON OUBIKF AND ADAPTIVE DEGREES OF FREEDOM

χ 2 -STATISTICS Considering system (2) and assumptions (H). Measures

y k and interval matrices [A], [B], [C], [D], [Q], [R] are known.
The following terms are obtained by computation:

measure estimate intervals [ŷ k ] = [C][x k|k-1 ] + [D]u k , residual intervals [r k ] = y k -[ŷ k ] and the interval matrix [S k ] = ([C][A])[P k-1|k-1 ]([C][A]) T +[C][Q][C] T +[R]
which contains all residual covariances S k .

Description of the approach

In the literature, to use the χ 2 -statistics test, a standard normal distribution form (

η k = S -1/2 k r k ∼ N (0, I)) is needed.
A similar form but for the interval vector [r k ] is meant to match our goals, and thus the singularity problem of [S k ] is an impediment. To overcome this impact, it is proposed in [START_REF] Tran | Cadre unifié pour la modélisation des incertitudes statistiques et bornées -Application à la détection et isolation de défauts dans les systèmes dynamiques incertains par estimation[END_REF] to use the upper bound of S + ([S k ]) instead of [S k ] and a better choice of this upper bound is applied thanks to properties in Section 2.1.

The following strategy is proposed in the present work:

+ Find Σ k such that S + ([S k ]) Σ k . This upper bound matrix is of the form Σ k = a k I (a k ∈ R * + ) using properties in Section 2.1. + Compute: [η k ] = Σ -1/2 k [r k ] = [r k ]/ √ a k , [ξ k ] = [η k ] T [η k ] = [r k ] T Σ -1 k [r k ] = [r k ] T [r k ]/a k . + Compute abs([ξ k ]), the absolute operator applying for [ξ k ], since ξ k = ηT k ηk ≥ 0, ∀ξ k ∈ [ξ k ] whilst during interval computations, most of the time 0 ∈ [ξ k ]. abs([a , b]) = [min(|a|, |b|) , max(|a|, |b|)] , 0 / ∈ [a , b] [0 , max(|a|, |b|)] , 0 ∈ [a , b]. + Let U k = sup(abs([ξ k ]))
. The statistic U k will be used in hypothesis testing for which it is approximated by a χ 2 (κ k n y ) random variable (some details are given in the next paragraph). κ k is called an adaptive amplifier coefficient.

Some remarks can be made immediately as follows: ∀k ≥ 1,

• 0 ≤ ξ k ≤ η T k η k ∼ χ 2 (n y ) (since S k Σ k for any S k in S + ([S k ])), • 0 ≤ ξ k ≤ U k , • E[χ 2 (n y )] = n y U k most of the time.
It is reasonable to consider ξ k as a χ 2 -distributed random variable with a d.f. smaller than n y , but this statistic is actually unknown. The statistic U k is obtained by computation. Based on previously mentioned remarks, it is proposed to approximate this statistic U k by a χ 2distributed random variable with an adaptive d.f. κ k n y (κ k > 1) where κ k is an adaptive amplifier coefficient (a.a.c.). Thanks to this a.a.c., adaptive thresholds are built and help to detect faults.

The rule for the fault detection test is similar to this one presented previously: (H 0 ) U k ≤ δ k , no error occurred; (H 1 ) U k > δ k , an error occurred. δ k is an adaptive threshold determined by P(χ 2 (κ k n y ) > δ k ) = α with α is a chosen significance level.

The proposed approach is summarized in Algorithm 2.

Algorithm 2 FAULT DETECTION ALGORITHM Initialization:

[x 0|0 ], P 0|0 , [A], [B], [C], [D], [Q], [R], p, α, u k , y k , k = 1, 2, ..., N . for k = 1, 2, 3, ...N do Implementation: Use Algo.1 to get : [x k|k ], P k|k , [x k|k-1 ], [P k|k-1 ]. [r k ] = y k -[C][x k|k-1 ] -[D]u k [S k ] = [C][P k|k-1 ][C] T + [R] Find a k according to theorem 2 s.t.: S + ([S k ]) a k I. U k = sup{abs([r k ] T [r k ]/a k )} κ k = mean{sup([r k ]) -inf([r k ])} Find δ k s.t.: P(χ 2 (κ k n y ) > δ k ) = α Detection signal : π k = I(U k > δ k ) end for
where I(x) equal 1 if x holds true and null otherwise.

After test running, an adjustment procedure is proposed to obtain detection signals more accurately. That is, in a window of size w, if the number of consecutive error occurrences is smaller than w, we consider that these errors (if exist) don't cause serious effects and will be dismissed. Furthermore, since error is often detected with a delay, all detection signals will be shifted to the left w/2 steps ( . is the floor function).

Evaluation indicators

To evaluate the fault detection performance, some indicators are introduced. Assume that system(2) is applied for N iterations among which faults occur in a region R with length l (0 ≤ l ≤ N ). The region R may be a range or union of ranges. For simplicity, hereafter we call R an error range. Knowing that the detection signal has value 1 or 0, we call right detected signal the 1-value detection signal situated inside the error range and false detected signal the 1-value detection signal situated outside the error range. More details on indicators (with slight differences) can be found in Chen and Patton (1999).

Choice of the a.a.c. κ k

A χ 2 distributed random variable has the cumulative distribution function with d.f. k:

F (x, k) = P(χ 2 k ≤ x) = x/2 0 t k 2 -1 e -t dt ∞ 0 t k 2 -1 e -t dt . (4) 
In the literature, k is a positive integer. However, from the analysis point of view, F (x, k) is a continuous function of k (k > 0) at any positive value of x (since the Gamma function Γ(z) = ∞ 0 t z-1 e -t dt is continuous for all z > 0). Consequently a positive real d.f. κ k n y is used.

For an accurate choice of a.a.c. κ k , some conditions are required:

• It must be sensitive to the fault occurred.

• It must be large enough to get a small FAR (e.g. 5%) in the fault free case. • Being a distribution parameter of statistic U k , it is highly recommended that the chosen κ k is related to the U k 's construction.

Concretely, by writing residual intervals in the form [r

k ] = mid([r k ]) + [-1 2 , 1 2 ] * width([r k ]), the statistic U k is ex- pressed as U k = width([r k ]) + 2 * abs(mid([r k ])) 2 /(4a k ) ,
(5) a function of mid([r k ]) and width([r k ]) where the later is more sensitive to the fault than the former. The residual width is a major factor influencing the U k 's computation and, furthermore, reflects the performance of the model and algorithm. Consequently it is reasonable to chose κ k as a function of residual width.

Which function of residual width will be chosen is a hard problem due to many impacts, for instance:

• no further information about width([r k ]) and mid([r k ]) is available,

• κ k and corresponding threshold δ k are both unknown; it exists only a relation represented via the quite complex function (4) so that F (δ k , κ k n y ) ≥ 1 -α, • the yielded δ k (by κ k ) must satisfy the fault detection constraint: δ k ≥ U k when no error occurs and δ k < U k otherwise.

Therefore, an additional requirement for the chosen κ k is that it must (while being sufficiently large in the fault free case as aforementioned) not increase as fast as U k when an error occurs and affects on the width([r k ]).

Combining all constraints and noticing that, in general, identifying analytically degrees of freedom for a test problem is always not evident, the following a.a.c. is proposed:

κ k = ny i=1 (sup([r k ]) i -inf([r k ]) i ) /n y . ( 6 
)
Simulation results in section 4.2 favored this choice by showing that it provides a small FAR and also satisfies all other requirements aforementioned.

Being not unique, the a.a.c. can be chosen differently, e.g. by a scale of ( 6) so that it becomes κk = λ k κ k , where λ k > 0 is a scale parameter. This choice would be a scope in our perspective research.

APPLICATION

In this section, the strategy developed previously is applied in simulation to a model taken from automotive domain [START_REF] Fergani | Robust multivariable control for vehicle dynamics[END_REF]). This model is a nonlinear continuoustime model which has been discretized/linearized and thus given under the form (2). The results are compared with those obtained by the method proposed in [START_REF] Raka | Fault detection based on robust adaptive thresholds: A dynamic interval approach[END_REF] (called method B in the next).

Simulation procedure

A discretization phase with a sampling time T = 0.05s is applied to the considered continuous model to get matrices 

A d , B d , C d , D d (
0 = (0, 0) T . At each step k, generate A k , B k , C k , D k , Q k , R k according to uniform distribution in corresponding interval matrices and so that Q k ∈ S + (n x )
and R k ∈ S + (n y ). Then w k and v k are simulated. Finally, {x k , y k } k∈1:N are computed according to system (2).

Sensor faults are generated in term of bias vector b k ∈ R ny added to y k for all k in a range R with length l. Each sequence of y k 's components, e.g. {y k (i)} k∈1:N for some i = 1, ..., n y , is called a chain. In this simulation, b k = b.1 where 1 is the all-ones vector in R ny .

Apply Algorithm 2 for N steps. The following choices are applied inside the algorithm: starting point [x 0 ] = ([-0.5, 0.5], [-0.5, 0.5]) T , initial error covariance bound

P 0|0 = max{diag(sup([Q]))}I, p = 3, upper bounds ω k I of any set S + ([M ]) identified by ω k = Max([M ]) F .
The window size is fixed at w = 5 (see 3.1).

Using the previously defined sampling period T , the following discrete matrices are obtained:

A d = 0.9126 0.0446 -0.17 

Simulation results

The following simulations are to be considered as first results and a preliminary study to highlight the consistency and the efficiency of the proposed method by simulating two scenarios. Other insights are being investigated in the authors ongoing studies. Table 1 shows that DR has ascending trend as well as b increases while FAR is rather stable in [1.0 , 1.5](%). This means that the larger the fault value b, the better the fault detection procedure is performed and, conversely, the b change hardly affects the false alarm rate FAR. This also means that the current choice of a.a. Table 2 shows that the adjustment procedure eliminates almost all FAR indexes (at least 73% comparing to those in Table 1). Additionally, this procedure yields a positive effect with large fault value (b > 15) and a negative effect otherwise for EFF indexes.

Scenario 2: Fix error range R. For each fault value b, do L times variable simulations to get measurements y k . This scenario aims to show the effects of different measurement samples {y k } s (k = 1 : N, s = 1 : L) on the fault detection procedure for a given error range R. Specifically, these effects come from random noises existing inside of y k since the later is a function of {x 0 , w 1 : w k , v k }. used for our method. The setting is that: 1-dimension multiplicative and additive disturbances (q = 1, δ t = d t = sin(2πt)) are used, a bias sensor fault with value b = 20 is added to all chains of measurements y t in a time range [te1, te2]. This error range is determined correspondingly to the discrete error range [300 : 350] used in the simulation of our method. Some remarks can be pointed out:

(i) method B takes the fault detection chain by chain.

(ii) to compare with the method presented in this paper, detection signals of method B in all chains are combined in one, i.e. new detection signal is 1 if there is any detection signal in any chain getting value 1. (iii) Table 5 shows that the proposed method obtains much better indexes vis-a-vis method B in the context of the implementation simulation. 

CONCLUSION AND PERSPECTIVE

A new scheme for fault detection combining OUBIKF and an hypothesis test method using χ 2 -statistics with adaptive degrees of freedom is proposed in this paper.

Theoretical framework is developed. The proposed approach is then applied to a bicycle vehicle model and it is compared to two others methods. The results obtained in simulations highlight the potential of this approach. Simulation results show that the current choice of a.a.c. κ k , in (6), is appropriate for fault detection eliminating well false alarms and dismissing almost all non clear signs of error existence (a prudent fault detection). The possibility of adjusting the a.a.c. according to different purposes of fault detection is a scope of future works. Furthermore, the modified EFF index proposed by EFF = c 1 ×DR-c 2 ×FAR with c 1 , c 2 two constants in [0, 1] can be applied to control the importance of the two indexes DR and FAR so that a compromise between them is achieved. This index, in turn, might affect the choice of the a.a.c.

Also, the great flexibility of this method by adjusting tuning factors makes it suitable to multiple applications.

A

  real interval matrix, denoted by [M ], is a matrix with real interval components (of the type [a, b] with a, b ∈ R and a ≤ b). The components of [M ] are denoted [M ] ij (i th row and j

+

  Furthermore, Detection Rate (DR) is determined by the number of right detected signals over the length l of error range. + No Detection Rate (NDR) is determined by NDR = 1 -DR. + False Alarm Rate (FAR) is determined by the number of false detected signals over N -l, the cardinal of the region outside the error range. + The Efficiency (EFF) of the detection is determined by EFF = DR -FAR.

  non interval and independent of time instant k) according to equations in (2). Then, interval matrices [A], [B], [C], [D] are generated as follow: for M ∈ {A d , B d , C d , D d }, let M = mid([M ]) and choose the radii rad([M ]) at random in [0 , max rad] with max rad = 0.5. The covariance matrices [Q] and [R] are generated in the same way, their diagonal elements being intervals of positive real numbers. Inputs u k are simulated according to a dynamic change for N = 864 iterations. The initial state is chosen at x

  General implementation: Let b k = b.1 be identical for all k in an error range R with length l = 50. Let b vary in 0 : 5 : 30. According to each scenario and for each value of b, do L = 100 times of fault detection. Indicators are computed for each of L simulation times and their means are yielded afterward. Remark 2. Let τ = b/Max width where Max width is the maximum width of the diagonal elements of [Q] and [R].This quantity gives an idea of how large is the actual fault value b w.r.t. some known quantity causing the fault and propagating according to the dynamic system, that is the maximum covariance of noises.Scenario 1: Fix variable simulation {y k } k∈1:N . For each fault value b, choose randomly error range R and do L times error generations. This scenario helps us to consider the method performance in term of fault values b and the positions at which errors occur (in R) w.r.t. a given measurement sample {y k } k∈1:N .

Fig. 1 .

 1 Fig. 1. Method B -Residual for the system with disturbances and bias sensor fault b = 20.

  in which the notations are usual for the standard Kalman filter: x k ∈ R nx and y k ∈ R ny represent state variables and measures respectively,u k ∈ R nu inputs, w k ∈ R nx state noises, v k ∈ R ny measurement noises. Matrices A k , B k , C k ,D k are unknown, deterministic and belonging to a given bounded interval matrices [A], [B], [C], [D] respectively. w k , v k are centered Gaussian vectors with covariance matrices Q k and R k belonging respectively to given interval matrices [Q] and [R]. The initial state x 0 is also Gaussian with mean µ 0 and covariance matrix P 0 . In addition, x 0 , {w 1 , ..., w k } and {v 1 , ..., v k } are assumed to be mutually independent.

	Assumptions (H): Toward achieving efficient sensor fault detection, OUBIKF
	has been introduced and Algorithm 1 is the devoted
	algorithm. The filter focuses on state estimation of system
	(2) and can be used to get residual intervals [r k

Table 1 .

 1 Fault detection table for scenario 1 with a fixed data {y k } k=1:N .

	b	τ	DR%	NDR%	FAR%	EFF%
	0	0	1.26	98.74	1.03	0.23
	5	13.8	5.34	94.66	1.04	4.30
	10 27.5	21.12	78.88	1.04	20.08
	15 41.3	67.28	32.72	1.17	66.11
	20 55.0	94.94	5.06	1.26	93.68
	25 68.8	98.64	1.36	1.36	97.28
	30 82.5	99.84	0.16	1.42	98.42

Table 2 .

 2 c. κ k is appropriate for a fault detection eliminating well false alarms and dismissing almost all non clear signs of error existence (a prudent fault detection). For different purposes of fault detection, κ k can be adjusted. Adjusted fault detection table for scenario 1 with a fixed data {y k } k∈1:N .

	Seeing more, EFF represents the effectiveness of the fault
	detection procedure taking into account both DR and
	FAR. It has also ascending trend according to b. Starting
	at b = 15 (≈ 41×Max width) EFF begins to achieve
	remarkable value (66.11%).		
	b	τ	DR%	NDR%	FAR%	EFF%
	0	0	0	100	0	0
	5	13.8	3.30	96.70	0.01	3.29
	10 27.5	17.70	82.30	0.02	17.68
	15 41.3	63.54	36.46	0.05	63.49
	20 55.0	96.36	3.64	0.06	96.30
	25 68.8	99.96	0.04	0.15	99.81
	30 82.5	100	0	0.38	99.62

Table 3 .

 3 Fault detection table for scenario 2 with a fixed error range. Fig.1presents the simulation of this method applying to bicycle model with an as similar as possible setting with that

	b	τ	DR%	NDR%	FAR%	EFF%
	0	0	3.34	96.66	1.90	1.44
	5	13.8	3.08	96.92	2.36	0.72
	10 27.5	19.24	80.76	2.41	16.83
	15 41.3	82.48	17.52	2.18	80.30
	20 55.0	94.74	5.26	2.48	92.26
	25 68.8	98.66	1.34	2.28	96.38
	30 82.5	99.88	0.12	2.37	97.51
	In Table 3, DR and EFF indexes are not necessarily in-
	creasing functions w.r.t. b but their main trends are always
	ascending. The FAR index is also stable in [1.9 , 2.5](%). In
	comparison with the one in Table 1 (FAR ∈ [1.0, 1.5](%)),
	we see that FAR is rather greater in scenario 2 than in
	scenario 1. This means that FAR is more affected by
	random noises than by the position of error range. The
	adjustment procedure eliminates more than 18% of FAR
	indexes comparing Table 4 and Table 3. It has also positive
	effect or negative effect for EFF index according to the
	fault value b being greater or smaller than 15.
	Comparison with method B: The method B consists
	in applying interval observer for linear continuous time
	dynamic system with additive and multiplicative distur-
	bances to compute adaptively upper bounds (ub t ) and
	lower bounds (lb				

t ) of residuals r t , and the fault detection rule is that a fault is detected if 0 / ∈ [lb t , ub t ].

Table 4 .

 4 Adjusted fault detection table for scenario 2 with a fixed error range.

	b	τ	DR%	NDR%	FAR%	EFF%
	0	0	2.8	97.20	1.44	1.36
	5	13.8	2.16	97.84	1.84	0.32
	10 27.5	14.06	85.94	1.97	12.09
	15 41.3	82.42	17.58	1.62	80.80
	20 55.0	96.96	3.04	1.82	95.14
	25 68.8	99.8	0.20	1.71	98.10
	30 82.5	100	0	1.89	98.11

Table 5 .

 5 Method B of[START_REF] Raka | Fault detection based on robust adaptive thresholds: A dynamic interval approach[END_REF] versus the Proposed FD scheme.

		DR%	NDR%	FAR%	EFF%
	Method B	8.14	91.86	5.64	2.50
	Proposed method	98	2	0.12	97.88