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A new scheme for fault detection based on
Optimal Upper Bounded Interval Kalman

Filter
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∗ LAAS - CNRS, Université de Toulouse, CNRS, UPS, France,
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Abstract: This paper deals with a sensor fault detection approach using the Optimal Upper
Bounded Interval Kalman Filter (OUBIKF) and an adaptive degree of freedom χ2-statistics
method. It is devoted to discrete time linear model subjected to mixed uncertainties in terms of
observations and noises. Mixed uncertainties mean both bounded and stochastic uncertainties.
The degrees of freedom of this χ2 hypothesis test method are adaptively chosen thanks to
amplifier coefficients improving the detection of the sensor faults. The proposed approach is
an extension of a result developped in Lu et al. (2019). Application on a vehicle bicycle model
highlights the efficiency of the proposed approach. Comparisons with other efficient estimation
and fault detection strategies are provided to discuss the accuracy of the obtained results.

Keywords: FDI for linear system, Filtering and estimation.

1. INTRODUCTION

Fault detection and diagnosis are important for all system
engineering problems. Several methods for fault detection
in dynamic systems are mentioned in Willsky (1976),
including the innovation-based method in which a χ2-
statistic hypothesis testing was used. This last method
is applied appropriately with the standard Kalman filter
(Kalman (1960)) to process the linear dynamic system
with deterministic coefficient matrices. In Sainz et al.
(2002), for example, an approach to generate envelopes
based on interval techniques of the modal interval analysis
is proposed. In Puig (2010), set-membership methods in
fault diagnosis (FD) and fault tolerant control (FTC) are
reviewed, these methods aim at checking the consistency
between observed and predicted behaviour by using simple
sets to approximate the exact set of possible behaviour.

In Tran (2017), a fault detection approach is presented
and this approach combines a χ2-statistics hypothesis test
with the Upper Bound Interval Kalman Filter (UBIKF).
An upper bound for all positive semi-definite matrices
belonging to an interval matrix is proposed. This upper
bound aims to overcome the singularity of the inverse
of interval matrices. Based on the concept of UBIKF,
a filter using optimal upper bounds for this class of
problems, named OUBIKF, is introduced in Lu et al.
(2019). The contribution of the later consists in a rigorous
mathematical framework for an optimal upper bound
(in the sense of operator norm minimization) providing
tight estimate intervals containing all actual states of the
dynamic system.

In this paper, an adaptive hypothesis test method is
developed to detect sensor faults applied to a linear
discrete time dynamic system with assumptions requiring
the use of interval computations. The proposed scheme
for fault detection combines the developed hypothesis test

(based on a χ2-statistic with degrees of freedom (d.f.)
adaptively chosen thanks to amplifier coefficients) and the
OUBIKF.

The paper is organized as follows: Section 2 provides some
preliminaries including principles and OUBIKF algorithm.
In Section 3, the proposed scheme for fault detection
is developed and some evaluation indicators are given.
An application in simulation of the proposed approach is
presented in Section 4. The application model comes from
automotive domain. A comparison with other method (see
Raka and Combastel (2013)) is given. Conclusions and
some ideas for future works are provided in Section 5.

2. PRELIMINARY

2.1 Optimal upper bound of all positive semi-definite
matrices belonging to an interval matrix

A real positive semi-definite matrix M is denoted by

M � 0. Denote also S(n)
M
=
{
M ∈ Rn×n : M = MT

}
and

S+(n)
M
= {M ∈ S(n) : M � 0}.

Let M,N be two real squared matrices of the same size.
An order between M and N denoted by N �M is defined
if and only if M −N � 0. M is called an upper bound of
N , or says N is dominated by M or M dominates N .
For Hermitian matrices, this order is known as the Loewner
(partial) order (Pukelsheim (2006); Zhan (2002)).

This partial order is extended to the notion of bounds for
a non empty set Ω of real squared matrices as follow. If a
real squared matrix K satisfying M � K, ∀M ∈ Ω then
K is an upper bound of Ω, denoted Ω � K. If K and L
are two upper bounds of Ω, then K is said better than L
if ‖K‖ ≤ ‖L‖ depending on the choice of matrix norm ‖.‖.
A real interval matrix, denoted by [M ], is a matrix with
real interval components (of the type [a, b] with a, b ∈ R



and a ≤ b). The components of [M ] are denoted [M ]ij
(ith row and jth column). Write M ∈ [M ] to indicate
a punctual matrix M belonging to [M ], i.e. ∀i, j, Mij ∈
[M ]ij . Let [M ] be an n× n real interval matrix. Denote:

a) S([M ])
M
=
{
M ∈ [M ] : M = MT

}
,

b) S+([M ])
M
= {M ∈ S([M ]) : M � 0},

c) BS+([M ])
M
= {K ∈ S+(n) : S+([M ]) � K}.

Other standard notations and computations related to
interval analysis are referred to Jaulin et al. (2001).

For any n×n matrix A, we use the notations σi(A), λi(A)
(i = 1, ..., n) to indicate respectively the singular values
and eigenvalues of A among which σmax(A) and λmax(A)
are the corresponding maximum values. It is referred to
Zhan (2002) for vector and matrix norm definitions.

In the following two theorems, let [M ] be an n × n real
interval symmetric matrix and assume that S+([M ]) 6= ∅.
Theorem 1. (Existence of Optimal upper bounds).
The following properties hold:

i) α∗
M
= supM∈S+([M ]) {λmax(M)} <∞ and

S+([M ]) � αI if and only if α ≥ α∗.
ii) α∗I is the optimal upper bound of S+([M ]) in the set

BS+([M ]) in the sense of operator norm minimiza-
tion.

iii) Let Ω =
{
K ∈ BS+([M ]) : n−1

∑n
i=1 λi(K) ≥ α∗

}
.

α∗I is the optimal upper bound of S+([M ]) in Ω in
the sense of nuclear norm minimization.

α∗ is said the optimal value of BS+([M ]).

Theorem 2. (Bounds of Optimal value α∗).
The following properties hold:

i) E M
= {M ∈ S+([M ]) : diag(M) = diag(sup([M ]))} is

the non empty set of maximal elements of S+([M ]).
ii) There exists a matrix N∗ ∈ E s.t. λmax(N∗) = α∗.
iii) Let Max([M ]) = (Maxij) be a matrix determined by

Maxij =

{
sup([M ])ij , if mid([M ])ij ≥ 0
inf([M ])ij , otherwise .

(1)

then α∗ ≤ supM∈[M ] {‖M‖F } ≤ ‖Max([M ])‖F .

If Max([M ]) � 0 then
λmax(Max([M ])) ≤ α∗ ≤ ‖Max([M ])‖F .

Remark 1. α∗I is the simplest upper bound of S+([M ]) to
use both in practice and theory. Its existence and optimal-
ity are stated in Theorem 1. Theorem 2 provides a simple
way to localize the optimal value α∗ (via Max([M ])).

More details and proofs can be found in Lu et al. (2019).

2.2 Mixed uncertainty linear discrete-time dynamic system
for state estimation and fault detection

Consider the following linear discrete time dynamic system{
xk = Akxk−1 +Bkuk + wk ,

yk = Ckxk +Dkuk + vk ,
k ∈ N∗, (2)

in which the notations are usual for the standard Kalman
filter: xk ∈ Rnx and yk ∈ Rny represent state variables and
measures respectively, uk ∈ Rnu inputs, wk ∈ Rnx state
noises, vk ∈ Rny measurement noises.

Assumptions (H): Matrices Ak, Bk, Ck, Dk are un-
known, deterministic and belonging to a given bounded
interval matrices [A], [B], [C], [D] respectively. wk, vk are
centered Gaussian vectors with covariance matrices Qk
and Rk belonging respectively to given interval matrices
[Q] and [R]. The initial state x0 is also Gaussian with mean
µ0 and covariance matrix P0. In addition, x0, {w1, ..., wk}
and {v1, ..., vk} are assumed to be mutually independent.

Toward achieving efficient sensor fault detection, OUBIKF
has been introduced and Algorithm 1 is the devoted
algorithm. The filter focuses on state estimation of system
(2) and can be used to get residual intervals [rk] ([rk] =
yk − [ŷk], [ŷk] = [C][x̂k|k−1] + [D]uk) where [x̂k|k−1] is the
predicted state estimate and [ŷk] the measure estimate.

Algorithm 1 OUBIKF ALGORITHM

Initialization: [x̂0|0],P0|0, [A], [B], [C], [D], [Q], [R], p,
uk, yk, k = 1, 2, ..., N .

Find n0 the number of non zero radius of [C]
Find γ s.t. S+([R]) � γI
for k = 1, 2, 3, ...N do

Prediction step:
[x̂k|k−1] = [A][x̂k−1|k−1] + [B]uk
[Pk|k−1] = [A]Pk−1|k−1[A]T + [Q]
Find αk s.t. S+([Pk|k−1]) � αkI

Correction step:
βk = 1/(2αpk) ; σk = βk/n0
Vk = mid([C])mid([C])T + γk

αk(1+n0/βk)
I

+ βk+n0σk

1+n0/βk
diag{rad([C])rad([C])T }

Kk = mid([C])V −1k
[x̂k|k] = (I −Kk[C])[x̂k|k−1] +Kk(yk −Dkuk)
Pk|k = (I −Kkmid([C]))αk(1 + n0/βk)

end for
where S+([Pk|k]) � Pk|k, Kk = argmin{tr(Pk|k)}.

In this paper, fault detection approach is based on the
one hand Algorithm 1 and on the other hand a statistical
hypothesis testing. Therefore, it is vital to investigate care-
fully the stochastic properties of related terms of the sys-
tem (2), otherwise the fault detection test for the interval
case cannot be derived. In this study, it can be proved that
state xk, measure output yk, estimator x̂k|k, estimation
error εk and residual rk are all Gaussian vectors, in which
rk ∼ N (0, Sk), rk is a function of {x0, w1:k, v1:k} and Sk
is the covariance matrix of estimation error.

Key property (K): Assuming Sk is non singular and

let ηk = S
−1/2
k rk = (ηk,1, ..., ηk,ny ). Then ηk ∼ N (0, I),

that is ηk,i’s are N (0, 1)-distributed and independent
each other. Furthermore, being a transformation of rk,
ηk is then a function of {x0, w1:k, v1:k}, write ηk =
ηk(x0, w1:k, v1:k). Therefore, for any 1 ≤ t ≤ s, ηt =
ηt(x0, w1:t, v1:t) and ηs = ηs(x0, w1:t, wt+1:s, v1:t, vt+1:s)
are not independent. The same holds for rt and rs.

2.3 Sensor fault detection using the χ2-statistics in the
literature

The measure yk affected by an additive fault vector fsk is
given by

yk = Ckxk +Dkuk + vk + fsk ,



where fsk is a sensor fault vector belonging to Rny . The
fault vector fsk can be composed by multiple or single
faults:

-first type: some (or all) sensors are faulty,
-second type: only one sensor is faulty.

In the literature, using the χ2-statistics test for sensor
fault detection is a kind of Innovation approach mentioned
in Mehra and Peschon (1971). In Willsky et al. (1974)
and Willsky et al. (1975), this method is applied for fault
detection problems in which the following statistic is used

νk =

k∑
i=k−W+1

ηTi ηi =

k∑
i=k−W+1

rTi S
−1
i ri , (3)

where W is a window size (W ≤ k). This statistic
is used as χ2 -distributed random variable with Wny
degrees of freedom. A rule for the fault detection test was
established: (H0) νk ≤ δ, no error occurred; (H1) νk > δ,
an error occurred, where δ is a threshold determined by
P(χ2(Wny) > δ) = α with α a chosen significance level (P
is a probability measure).

Clearly, any ηTk ηk follows the distribution χ2(ny) since,
by property (K), ηTk ηk is the sum of ny independent
Gaussian components. Also by property (K), ηt and ηs
are not independent for all t 6= s, so

∑k
i=k−W+1 η

T
i ηi ∼

χ2(Wny) does not hold exactly. Nevertheless, this test
worked rather well as an alarm (detection) to faults and
was a simple one among others tests. This statistic νk
might be approximated reasonably by a χ2(Wny). We
distinguish a statistic T following exactly a distribution
F and being approximated by another statistic T̃ with
distribution F . Any statistic can be used as estimator for
a quantity of interest with different accuracies.

3. SENSOR FAULT DETECTION BASED ON
OUBIKF AND ADAPTIVE DEGREES OF FREEDOM

χ2-STATISTICS

Considering system (2) and assumptions (H). Measures
yk and interval matrices [A], [B], [C], [D], [Q], [R] are
known. The following terms are obtained by computation:
measure estimate intervals [ŷk] = [C][x̂k|k−1] + [D]uk,
residual intervals [rk] = yk − [ŷk] and the interval matrix
[Sk] = ([C][A])[Pk−1|k−1]([C][A])T+[C][Q][C]T+[R] which
contains all residual covariances Sk.

3.1 Description of the approach

In the literature, to use the χ2-statistics test, a standard

normal distribution form (ηk = S
−1/2
k rk ∼ N (0, I)) is

needed. A similar form but for the interval vector [rk]
is meant to match our goals, and thus the singularity
problem of [Sk] is an impediment. To overcome this
impact, it is proposed in Tran (2017) to use the upper
bound of S+([Sk]) instead of [Sk] and a better choice of
this upper bound is applied thanks to properties in Section
2.1.

The following strategy is proposed in the present work:

+ Find Σk such that S+([Sk]) � Σk. This upper bound
matrix is of the form Σk = akI (ak ∈ R∗+) using
properties in Section 2.1.

+ Compute:

[η̃k] = Σ
−1/2
k [rk] = [rk]/

√
ak,

[ξk] = [η̃k]T [η̃k] = [rk]TΣ−1k [rk] = [rk]T [rk]/ak.
+ Compute abs([ξk]), the absolute operator applying for

[ξk], since ξk = η̃Tk η̃k ≥ 0, ∀ξk ∈ [ξk] whilst during
interval computations, most of the time 0 ∈ [ξk].

abs([a , b]) =

{
[min(|a|, |b|) ,max(|a|, |b|)] , 0 /∈ [a , b]

[0 ,max(|a|, |b|)] , 0 ∈ [a , b].

+ Let Uk = sup(abs([ξk])). The statistic Uk will be used
in hypothesis testing for which it is approximated by
a χ2(κkny) random variable (some details are given
in the next paragraph).
κk is called an adaptive amplifier coefficient.

Some remarks can be made immediately as follows: ∀k ≥ 1,

• 0 ≤ ξk ≤ ηTk ηk ∼ χ2(ny) (since Sk � Σk for any Sk
in S+([Sk])),
• 0 ≤ ξk ≤ Uk,
• E[χ2(ny)] = ny � Uk most of the time.

It is reasonable to consider ξk as a χ2-distributed random
variable with a d.f. smaller than ny, but this statistic
is actually unknown. The statistic Uk is obtained by
computation. Based on previously mentioned remarks, it
is proposed to approximate this statistic Uk by a χ2-
distributed random variable with an adaptive d.f. κkny
(κk > 1) where κk is an adaptive amplifier coefficient
(a.a.c.). Thanks to this a.a.c., adaptive thresholds are built
and help to detect faults.

The rule for the fault detection test is similar to this one
presented previously: (H0) Uk ≤ δk, no error occurred;
(H1) Uk > δk, an error occurred. δk is an adaptive
threshold determined by P(χ2(κkny) > δk) = α with α
is a chosen significance level.

The proposed approach is summarized in Algorithm 2.

Algorithm 2 FAULT DETECTION ALGORITHM

Initialization: [x̂0|0],P0|0, [A], [B], [C], [D], [Q], [R], p,
α, uk, yk, k = 1, 2, ..., N .

for k = 1, 2, 3, ...N do
Implementation:

Use Algo.1 to get : [x̂k|k],Pk|k, [x̂k|k−1], [Pk|k−1].
[rk] = yk − [C][x̂k|k−1]− [D]uk
[Sk] = [C][Pk|k−1][C]T + [R]
Find ak according to theorem 2 s.t.: S+([Sk]) � akI.
Uk = sup{abs([rk]T [rk]/ak)}
κk = mean{sup([rk])− inf([rk])}
Find δk s.t.: P(χ2(κkny) > δk) = α
Detection signal : πk = I(Uk > δk)

end for
where I(x) equal 1 if x holds true and null otherwise.

After test running, an adjustment procedure is proposed
to obtain detection signals more accurately. That is, in
a window of size w, if the number of consecutive error
occurrences is smaller than w, we consider that these errors
(if exist) don’t cause serious effects and will be dismissed.
Furthermore, since error is often detected with a delay, all
detection signals will be shifted to the left bw/2c steps (b.c
is the floor function).



3.2 Evaluation indicators

To evaluate the fault detection performance, some indi-
cators are introduced. Assume that system(2) is applied
for N iterations among which faults occur in a region R
with length l (0 ≤ l ≤ N). The region R may be a range
or union of ranges. For simplicity, hereafter we call R an
error range. Knowing that the detection signal has value 1
or 0, we call right detected signal the 1-value detection
signal situated inside the error range and false detected
signal the 1-value detection signal situated outside the
error range. Furthermore,

+ Detection Rate (DR) is determined by the number
of right detected signals over the length l of error
range.

+ No Detection Rate (NDR) is determined by
NDR = 1−DR.

+ False Alarm Rate (FAR) is determined by the
number of false detected signals over N − l, the
cardinal of the region outside the error range.

+ The Efficiency (EFF) of the detection is determined
by EFF = DR− FAR.

More details on indicators (with slight differences) can be
found in Chen and Patton (1999).

3.3 Choice of the a.a.c. κk

A χ2 distributed random variable has the cumulative
distribution function with d.f. k:

F (x, k) = P(χ2
k ≤ x) =

∫ x/2
0

t
k
2−1e−tdt∫∞

0
t
k
2−1e−tdt

. (4)

In the literature, k is a positive integer. However, from the
analysis point of view, F (x, k) is a continuous function of
k (k > 0) at any positive value of x (since the Gamma
function Γ(z) =

∫∞
0
tz−1e−tdt is continuous for all z > 0).

Consequently a positive real d.f. κkny is used.

For an accurate choice of a.a.c. κk, some conditions are
required:

• It must be sensitive to the fault occurred.
• It must be large enough to get a small FAR (e.g.
≤ 5%) in the fault free case.
• Being a distribution parameter of statistic Uk, it is

highly recommended that the chosen κk is related to
the Uk’s construction.

Concretely, by writing residual intervals in the form [rk] =
mid([rk]) + [− 1

2 ,
1
2 ] ∗ width([rk]), the statistic Uk is ex-

pressed as

Uk = ‖width([rk]) + 2 ∗ abs(mid([rk]))‖2/(4ak) , (5)

a function of mid([rk]) and width([rk]) where the later is
more sensitive to the fault than the former. The residual
width is a major factor influencing the Uk’s computation
and, furthermore, reflects the performance of the model
and algorithm. Consequently it is reasonable to chose κk
as a function of residual width.

Which function of residual width will be chosen is a hard
problem due to many impacts, for instance:

• no further information about width([rk]) and mid([rk])
is available,

• κk and corresponding threshold δk are both unknown;
it exists only a relation represented via the quite
complex function (4) so that F (δk, κkny) ≥ 1− α,

• the yielded δk (by κk) must satisfy the fault detection
constraint: δk ≥ Uk when no error occurs and δk < Uk
otherwise.

Therefore, an additional requirement for the chosen κk is
that it must (while being sufficiently large in the fault free
case as aforementioned) not increase as fast as Uk when
an error occurs and affects on the width([rk]).

Combining all constraints and noticing that, in general,
identifying analytically degrees of freedom for a test prob-
lem is always not evident, the following a.a.c. is proposed:

κk =

ny∑
i=1

(sup([rk])i − inf([rk])i) /ny. (6)

Simulation results in section 4.2 favored this choice by
showing that it provides a small FAR and also satisfies
all other requirements aforementioned.

Being not unique, the a.a.c. can be chosen differently, e.g.
by a scale of (6) so that it becomes κ̃k = λkκk, where
λk > 0 is a scale parameter. This choice would be a scope
in our perspective research.

4. APPLICATION

In this section, the strategy developed previously is applied
in simulation to a model taken from automotive domain
(Fergani (2014)). This model is a nonlinear continuous-
time model which has been discretized/linearized and thus
given under the form (2). The results are compared with
those obtained by the method proposed in Raka and
Combastel (2013) (called method B in the next).

4.1 Simulation procedure

A discretization phase with a sampling time T = 0.05s is
applied to the considered continuous model to get matrices
Ad, Bd, Cd, Dd (non interval and independent of time
instant k) according to equations in (2). Then, interval
matrices [A], [B], [C], [D] are generated as follow: for
M ∈ {Ad, Bd, Cd, Dd}, let M = mid([M ]) and choose the
radii rad([M ]) at random in [0 ,max rad] with max rad =
0.5. The covariance matrices [Q] and [R] are generated in
the same way, their diagonal elements being intervals of
positive real numbers. Inputs uk are simulated according
to a dynamic change for N = 864 iterations. The initial
state is chosen at x0 = (0, 0)T . At each step k, generate Ak,
Bk, Ck, Dk, Qk, Rk according to uniform distribution in
corresponding interval matrices and so that Qk ∈ S+(nx)
and Rk ∈ S+(ny). Then wk and vk are simulated. Finally,
{xk, yk}k∈1:N are computed according to system (2).

Sensor faults are generated in term of bias vector bk ∈ Rny

added to yk for all k in a range R with length l. Each
sequence of yk’s components, e.g. {yk(i)}k∈1:N for some
i = 1, ..., ny, is called a chain. In this simulation, bk = b.1
where 1 is the all-ones vector in Rny .

Apply Algorithm 2 for N steps. The following choices
are applied inside the algorithm: starting point [x̂0] =
([−0.5, 0.5], [−0.5, 0.5])T , initial error covariance bound



P0|0 = max{diag(sup([Q]))}I, p = 3, upper bounds ωkI
of any set S+([M ]) identified by ωk = ‖Max([M ])‖F .

The window size is fixed at w = 5 (see 3.1).

Using the previously defined sampling period T , the fol-
lowing discrete matrices are obtained:

Ad =

(
0.9126 0.0446
−0.17 0.9081

)
, Cd =

−1.737 0.9768
1 0

−3.723 −1.837
0 1

 ,

Bd =

(
0.05652 0.0005351 0.001124 −0.001124
0.6177 0.0222 0.04661 −0.04661

)
,

Dd =

0.8686 0 0 0
0 0 0 0

13.03 0.4653 0.9772 −0.9772
0 0 0 0

 .

4.2 Simulation results

The following simulations are to be considered as first re-
sults and a preliminary study to highlight the consistency
and the efficiency of the proposed method by simulating
two scenarios. Other insights are being investigated in the
authors ongoing studies.

General implementation: Let bk = b.1 be identical for
all k in an error range R with length l = 50. Let b vary in
0 : 5 : 30. According to each scenario and for each value
of b, do L = 100 times of fault detection. Indicators are
computed for each of L simulation times and their means
are yielded afterward.

Remark 2. Let τ = b/Max width where Max width is the
maximum width of the diagonal elements of [Q] and [R].
This quantity gives an idea of how large is the actual fault
value b w.r.t. some known quantity causing the fault and
propagating according to the dynamic system, that is the
maximum covariance of noises.

Scenario 1: Fix variable simulation {yk}k∈1:N . For each
fault value b, choose randomly error range R and do L
times error generations. This scenario helps us to consider
the method performance in term of fault values b and
the positions at which errors occur (in R) w.r.t. a given
measurement sample {yk}k∈1:N .

Table 1. Fault detection table for scenario 1
with a fixed data {yk}k=1:N .

b τ DR% NDR% FAR% EFF%

0 0 1.26 98.74 1.03 0.23
5 13.8 5.34 94.66 1.04 4.30
10 27.5 21.12 78.88 1.04 20.08
15 41.3 67.28 32.72 1.17 66.11
20 55.0 94.94 5.06 1.26 93.68
25 68.8 98.64 1.36 1.36 97.28
30 82.5 99.84 0.16 1.42 98.42

Table 1 shows that DR has ascending trend as well as b
increases while FAR is rather stable in [1.0 , 1.5](%). This
means that the larger the fault value b, the better the fault
detection procedure is performed and, conversely, the b
change hardly affects the false alarm rate FAR. This also
means that the current choice of a.a.c. κk is appropriate
for a fault detection eliminating well false alarms and

dismissing almost all non clear signs of error existence (a
prudent fault detection). For different purposes of fault
detection, κk can be adjusted.

Seeing more, EFF represents the effectiveness of the fault
detection procedure taking into account both DR and
FAR. It has also ascending trend according to b. Starting
at b = 15 (≈ 41×Max width) EFF begins to achieve
remarkable value (66.11%).

Table 2. Adjusted fault detection table for
scenario 1 with a fixed data {yk}k∈1:N .

b τ DR% NDR% FAR% EFF%

0 0 0 100 0 0
5 13.8 3.30 96.70 0.01 3.29
10 27.5 17.70 82.30 0.02 17.68
15 41.3 63.54 36.46 0.05 63.49
20 55.0 96.36 3.64 0.06 96.30
25 68.8 99.96 0.04 0.15 99.81
30 82.5 100 0 0.38 99.62

Table 2 shows that the adjustment procedure eliminates
almost all FAR indexes (at least 73% comparing to those
in Table 1). Additionally, this procedure yields a positive
effect with large fault value (b > 15) and a negative effect
otherwise for EFF indexes.

Scenario 2: Fix error range R. For each fault value b, do
L times variable simulations to get measurements yk. This
scenario aims to show the effects of different measurement
samples {yk}s (k = 1 : N, s = 1 : L) on the fault detection
procedure for a given error range R. Specifically, these
effects come from random noises existing inside of yk since
the later is a function of {x0, w1 : wk, vk}.

Table 3. Fault detection table for scenario 2
with a fixed error range.

b τ DR% NDR% FAR% EFF%

0 0 3.34 96.66 1.90 1.44
5 13.8 3.08 96.92 2.36 0.72
10 27.5 19.24 80.76 2.41 16.83
15 41.3 82.48 17.52 2.18 80.30
20 55.0 94.74 5.26 2.48 92.26
25 68.8 98.66 1.34 2.28 96.38
30 82.5 99.88 0.12 2.37 97.51

In Table 3, DR and EFF indexes are not necessarily in-
creasing functions w.r.t. b but their main trends are always
ascending. The FAR index is also stable in [1.9 , 2.5](%). In
comparison with the one in Table 1 (FAR ∈ [1.0, 1.5](%)),
we see that FAR is rather greater in scenario 2 than in
scenario 1. This means that FAR is more affected by
random noises than by the position of error range. The
adjustment procedure eliminates more than 18% of FAR
indexes comparing Table 4 and Table 3. It has also positive
effect or negative effect for EFF index according to the
fault value b being greater or smaller than 15.

Comparison with method B: The method B consists
in applying interval observer for linear continuous time
dynamic system with additive and multiplicative distur-
bances to compute adaptively upper bounds (ubt) and
lower bounds (lbt) of residuals rt, and the fault detection
rule is that a fault is detected if 0 /∈ [lbt,ubt]. Fig.1
presents the simulation of this method applying to bicycle
model with an as similar as possible setting with that



Table 4. Adjusted fault detection table for
scenario 2 with a fixed error range.

b τ DR% NDR% FAR% EFF%

0 0 2.8 97.20 1.44 1.36
5 13.8 2.16 97.84 1.84 0.32
10 27.5 14.06 85.94 1.97 12.09
15 41.3 82.42 17.58 1.62 80.80
20 55.0 96.96 3.04 1.82 95.14
25 68.8 99.8 0.20 1.71 98.10
30 82.5 100 0 1.89 98.11

used for our method. The setting is that: 1-dimension
multiplicative and additive disturbances (q = 1, δt = dt =
sin(2πt)) are used, a bias sensor fault with value b = 20
is added to all chains of measurements yt in a time range
[te1, te2]. This error range is determined correspondingly
to the discrete error range [300 : 350] used in the simula-
tion of our method. Some remarks can be pointed out:

(i) method B takes the fault detection chain by chain.
(ii) to compare with the method presented in this paper,

detection signals of method B in all chains are
combined in one, i.e. new detection signal is 1 if there
is any detection signal in any chain getting value 1.

(iii) Table 5 shows that the proposed method obtains
much better indexes vis-a-vis method B in the con-
text of the implementation simulation.
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Fig. 1. Method B - Residual for the system with distur-
bances and bias sensor fault b = 20.

Table 5. Method B of Raka and Combastel
(2013) versus the Proposed FD scheme.

DR% NDR% FAR% EFF%

Method B 8.14 91.86 5.64 2.50
Proposed method 98 2 0.12 97.88

5. CONCLUSION AND PERSPECTIVE

A new scheme for fault detection combining OUBIKF
and an hypothesis test method using χ2-statistics with
adaptive degrees of freedom is proposed in this paper.
Theoretical framework is developed. The proposed ap-
proach is then applied to a bicycle vehicle model and it
is compared to two others methods. The results obtained
in simulations highlight the potential of this approach.
Simulation results show that the current choice of a.a.c. κk,
in (6), is appropriate for fault detection eliminating well
false alarms and dismissing almost all non clear signs of

error existence (a prudent fault detection). The possibility
of adjusting the a.a.c. according to different purposes of
fault detection is a scope of future works. Furthermore, the
modified EFF index proposed by EFF = c1×DR−c2×FAR
with c1, c2 two constants in [0, 1] can be applied to control
the importance of the two indexes DR and FAR so that a
compromise between them is achieved. This index, in turn,
might affect the choice of the a.a.c.

Also, the great flexibility of this method by adjusting
tuning factors makes it suitable to multiple applications.
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