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Abstract. Structured safety argument based on graphical representa-
tions such as GSN (Goal Structuring Notation) are used to justify the
certification of critical systems. However, such approaches do not deal
with uncertainties that might affect the merits of arguments. In the re-
cent past, some authors proposed to model the confidence in such ar-
guments using Dempster-Shafer theory. It enables us to determine the
confidence degree in conclusions for some basic GSN patterns. In this
paper, we refine this approach and improve the elicitation method for
expert opinions used in previous papers.

Keywords: Safety cases · Goal Structuring Notation (GSN) · Demp-
ster–Shafer theory (DST) · Belief elicitation · Confidence assessment.

1 Introduction

GSN (Goal Structuring Notation) is a graphical formalism used to represent ar-
gument structures (assurance cases, dependability cases, etc). Originally, GSN
structures do not include a representation of uncertainty in the arguments. Sev-
eral independent works, e.g., [2, 13] proposed to augment this approach to ar-
gumentation with confidence assessment methods. They design numerical confi-
dence propagation models for some GSN patterns. However, in [2, 15], the data
collection method, that enable these mathematical models to be fed with ini-
tial confidence values, allowing the computation of the overall confidence in the
system, needs improvement. The previous elicitation methods also present some
technical defects. In this paper, after reviewing previous work in Section 2, we
introduce an extensive confidence propagation method in Section 3, starting with
a brief description of argument types. In Section 4, we present an improved ex-
pert opinion elicitation method. Finally, in section 5, we illustrate our approach
on a small example.

2 Related work

The issue of confidence assessment in argument structures has been addressed
in multiple works. Safety cases, which represent one type of such structures, aim
at proving the safety of a system by producing several pieces of documented
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evidence. In this paper, we focus on safety cases modeled by the so-called Goal
Structuring Notation (GSN) defined in [9]. Safety argumentation is a core activ-
ity in safety critical systems development. Such an argumentation can be carried
out using structured notations. It decomposes the safety requirements of the sys-
tem into elementary pieces as presented in Figure 1, called goals. Strategies are
the components that justify this decomposition. Each goal is supported by one
or multiple pieces of evidence called Solutions. The example of GSN in Figure 1,
is a classical pattern of an argument that treats the hazards existing in a system,
and listed in the context box. However, many other patterns exist. This type of
representation does not consider the uncertainty that may pervade each premise
or the support relation between solutions and goals. Moreover, it is important
to note that GSN models are non formal, and no explicit formal logical relations
is expressed between elements.

In [6], we compared some works that deal with confidence assessment in
GSN and give some recommendation to improve these methods. For instance,
we showed why it is more adequate to use implication instead of equivalence
(used in [13–15]) to represent argument types. We also discussed why Dempster
rule of combination is more suitable for combining evidence, in our case, than
other methods used in [2] for instance. Building such a confidence model relies

C1
 List of identified 
hazards for {System X}

G1
 {System X} is 
acceptably safe 

G3
 {Hazard H2} has been 

addressed
…

Gn
 {Hazard Hn} has been 

addressed

{Hazard H1} has 
been removed.

Sn1  
A given 

prevention risk 
control is 

implemented.

Sn2  
A given 

protection risk 
control is 

implemented.

Sn3

 {Hazard H1} has been 
addressed

G2

S1
 Argumentation by claiming 

addressed all identified 
plausible hazards 

Fig. 1. GSN example adapted from Hazard Avoidance Pattern [10]

on input values, usually provided by experts in qualitative form, and transformed
into quantitative values. Such an activity could be called “Expert opinion elicita-
tion”. This method is more often used with probabilistic models. For instance, in
[3], authors used an expert elicitation procedure in a risk assessment approach
in fault trees. However, it can also be used in evidence theory. Ben Yaghlane
et al. [16], generate belief functions from a preference relation between events
provided by experts. In relation to our framework, few authors augmented their
confidence assessment method by such a data elicitation procedure in order to
provide quantitative values for their models. Only some authors such as [2, 15]
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used an elicitation method that transforms expert opinions given in the form of
qualitative values, into quantitative ones.

Uncertainty propagation can be addressed by standard existing belief func-
tion software based on results in [11] (e.g., the belief function machine imple-
mented in MatLab), but the GSNs we study have a particular tree-like structure
that enable an explicit symbolic calculation of the belief function on the conclu-
sion space. The explicit formulas, that can be obtained from approaches such as
the one we propose, make the calculation more efficient and we can predict the
effect of changing selected inputs, thus better explaining the obtained results,
and validating the approach.

3 Argument types

In this section, we define the argument types used in our confidence assess-
ment method. Remember that an argument type represents the relationship
between premises and a conclusion. For instance, in Figure 1, (G2) to (Gn) are
the premises of (G1) and they are all necessary to support it. This logical relation
could be assimilated to the strategy component in a GSN (e.g., S1). When adopt-
ing a logical viewpoint [6], we then speak of a rule. Unlike the types of arguments
proposed in [14], which use the equivalence connective to model such rules, we
decided to break down this equivalence into two implications. Each implication
brings a single piece of information about the conclusion, given premises. For in-
stance, in the case of a single premise (P ) supporting one conclusion (C), P ⇒ C
(that we call direct rule) can only infer the acceptance of the conclusion if the
premise is true. On the other hand, the rule ¬P ⇒ ¬C (that we call reverse
rule) can only infer the rejection of the conclusion when the premise is false.
We believe that, when assessing uncertainty of the relationship between P and
C, this separate handling makes the resulting models more accurate and easy
to assess. We also decided to associate a simple support mass function to each
rule to avoid dependence in the confidence between premises. Below are uncer-
tainty propagation formulas for various argument types; all calculation details
are available in [7].

D-Arg (Disjunctive): In this situation, each premise can support alone the
whole conclusion. We formally define this argument by : ∧ni=1(pi ⇒ C). Rules
that infer the rejection of the conclusion (¬C) can be deduced from this argument
type by reversing this rule to obtain : (∧ni=1¬pi)⇒ ¬C. To get formulas (1) and
(2), we first assign to each rule a simple support mass function (resp. mi

dir for
pi ⇒ C and mrev for the reverse rule). We also assign one mass function mi

p to
each premise pi. This function uses three masses on pi, ¬pi and the tautology
(>) summing to one. Then, we combine, using DS rule of combination, all masses
on premises together (mp = m1

p ⊕m2
p ⊕ ... ⊕mn

p ) and masses on rules together
(mr = [m1

dir ⊕ m2
dir ⊕ ... ⊕ mn

dir] ⊕ mrev). Finally, we combine the resulting
masses on the rules and premises (m = mp ⊕mr). We obtain degrees of belief
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and disbelief in C:

BelC(C) = 1−
n∏

i=1

[1−Belip(pi)Bel
i
⇒(pi ⇒ C)] (1)

DisbC(C) = Bel⇐(∧ni=1[¬pi]⇒ ¬C)

n∏
i=1

Disbip(pi). (2)

We can notice that (1) expresses a “Multivalued Disjunction”. To have maximal
belief in the conclusion, it is enough that the degree of belief in one single premise
equals 1 (assuming that the mass on the direct rule also equals 1). Formula (2), in
contrast, expresses a ‘ ‘Multivalued Conjunction”. To have a maximal disbelief
in the conclusion, all the disbelief degrees on premises should be equal to 1,
supposing that the mass on the reverse rule equals 1 too. We can also notice
that, when BelC(C) is maximal, DisbC(C) is minimal.

C-Arg (Conjunctive): This argument type describes the situation when two
premises or more are jointly needed to support a conclusion. Following the
same reasoning as in the previous type, we define it formally by two rules :
(∧ni=1pi) ⇒ C and its reverse ∧ni=1(¬pi ⇒ ¬C). Following the same calculation
in the disjunctive type, we get the formulas below :

BelC(C) = Bel⇒([∧ni=1pi]⇒ C)

n∏
i=1

Belp(pi) (3)

DisbC(C) = 1−
n∏

i=1

[1−Disbip(pi)Bel
i
⇐(¬pi ⇒ ¬C)] (4)

We can notice that, in contrast with formulas obtained for D-Arg, (3) and (4) re-
spectively express a “Multivalued Conjunction” and “Multivalued Disjunction”.

H-Arg (Hybrid): This argument describes the case when it is difficult to
choose between the conjunctive or disjunctive types. Each premise supports the
conclusion to some extent, and the conjunction of the premises does it to a larger
extent. We obtain degrees of belief and disbelief in C:

BelC(C) =Bel⇒([∧ni=1pi]⇒ C)×
n∏

i=1

Belip(pi)[1−Beli⇒(pi ⇒ C)]

+ {1−
n∏

i=1

[1−Belip(pi)Bel
i
⇒(pi ⇒ C)]}. (5)

DisbC(C) =Bel⇐([∧ni=1¬pi]⇒ ¬C)×
n∏

i=1

Disbip(pi)[1−Beli⇐(¬pi ⇒ ¬C)]

+ {1−
n∏

i=1

[1−Disbip(pi)Bel
i
⇐(¬pi ⇒ ¬C)]}. (6)
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We can notice from (5) and (6) that these formulas subsume those in con-
junctive and disjunctive types. On the one hand, if masses on pi ⇒ C are zero,
it becomes the formula of the conjunctive type. On the other hand, if the mass
on [∧ni=1pi]⇒ C is zero, we get the disjunctive type formula.

This argument provides a general framework that allow as to calculate belief
and disbelief values in different situations. D-Arg and C-Arg represent extreme
cases where the value of some rules is null.

Note that moving away from these extreme cases may lead to encounter
situations of conflict. A contradiction may appear when we have opposite opin-
ion about two premises along corresponding direct and reverse rules. Formally,
it always takes the form of a combination of four items of the form: {pi, pi ⇒
C,¬pj ,¬pj ⇒ ¬C}. The sum (BelC(C)+DisbC(C)) is then greater than 1. This
may indicate something wrong in the GSN or in the way the experts replied ques-
tions, or yet on the reported experiments. Equation (7) represents the conflict
calculation formula :

m(⊥) =

n∑
i=1,j 6=i

[Belip(pi)Bel
i
⇒(pi ⇒ C)×Disbjp(pj)Bel

j
⇐(¬pj ⇒ ¬C)] (7)

To address this issue, we choose to subtract the mass of the conflict m(⊥)
from BelC(C) and DisbC(C) in (5) and (6), and get contradiction-free degrees
bel(C) = BelC(C)−m(⊥) and disbC(C) = DisbC(C)−m(⊥). We choose not to
normalize the results (dividing by 1−m(⊥)) as proposed in the usual DS rule of
combination because this operation will eliminate the conflict and proportion-
ally increase the contradiction-free degrees of beliefs and disbelief belC(C) and
disbC(C) in a misleading way in the case of strong conflict. On the other hand,
keeping m(⊥) and subtracting it from BelC(C) and DisbC(C) will legitimately
increase uncertainty (i.e., belC(C)+disbC(C) is small) and show that the system
is not that safe because of the presence of a conflict.

4 Expert opinion elicitation

In the previous section, we defined three argument types and proposed analytical
formulas to calculate the belief and disbelief degrees in conclusions. However,
using these models requires the presence of two types of information: belief
degrees in premises (e.g., Belip) and the belief degrees for rules (e.g., Beli⇒).
In this section, we are first going to see how we can transform an expert opinion
about a premise into belief, uncertainty and disbelief degrees. Then, in the second
part, we provide some hints on how we can identify masses on rules.

4.1 Elicitation of belief and disbelief on premises

In order to directly obtain belief and disbelief degrees in a premise p from an
expert, authors in [2] consider asking two pieces of information : one, called
decision index Dec(p), describes which side the expert leans towards, acceptance
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or rejection of p; the other, called confidence Conf(p), reflects the amount of
information an expert possesses that can justify his opinion. Namely Dec(p) = 1
(resp., 0) indicates the certainty that p is true (resp false), while Conf(p) = 1
(resp., 0) indicates the expert has full (resp. no) information supporting the
choice of Dec(p). This is represented on Fig. 2.

The problem is then to define the belief and disbelief degrees in a proposition
p in terms of Dec(p) and Conf(p). In [2], it is proposed to let Bel(p) = Dec(p) ·
Conf(p) and Disb(p) = (1−Dec(p)) · Conf(p), which implies a natural result:

Conf(p) = Bel(p) +Disb(p). (8)

However, it also implies that Dec(p) = Bel(p)
Bel(p)+Disb(p) . Note that this formula,

presents a discontinuity in case of no information (Bel(p) + Disb(p) = 0). The
expression is then completed by assuming Dec(p) = 1 [2] or 0 [15], in this case,
which sounds arbitrary.

It is more convincing to use the Pignistic transform [12] that turns a mass
function m on a set Ω (the frame of discernment) into a probability, changing
the focal sets into uniform distributions. When Ω = {p,¬p} has two possible
states, Dec(p) is the midpoint between belief and plausibility of p, which reads :

Dec(p) =
1 +Bel(p)−Disb(p)

2
(9)

Note that when Bel(p) = Disb(p) = 0, we get Dec(p) = 1/2.
Some authors suggest to defineDec(p) by renormalising the pair (Pl(p), P l(¬p),

where Pl(p) = 1−Bel(p), dividing them by Pl(p) + Pl(¬p) (plausibility trans-
formation method [1]). This method is in agreement with Dempster rule of com-
bination. However, we do not get the midpoint between belief and plausibility,
which is intuitively surprizing, and in case of more than 3 elements in the frame,
such a transformation may give probability values outside the range [Bel, P l][5].

Using equations (8) and (9) and the knowledge of Dec(p) and Conf(p),

we can calculate belief and disbelief values : Bel(p) = Conf(p)−1
2 + Dec(p),

Disb(p) = Conf(p)+1
2 −Dec(p). Viewing Bel(p) as a lower probability, the pig-

nistic transformation computes the center of gravity of the convex set of proba-
bilities {P : P ≥ Bel}.

However, the pignistic transform also presents one issue for the elicitation
procedure. Some values of the pair (Dec,Conf) provided by the expert may lead
to negative values of belief Bel(p) or disbelief degrees Disb(p), which makes no
sense. This is because there are constraints relating Conf(p) and Dec(p): (8)
and (9) imply 1 − Conf(p) ≤ min(2Dec(p), 2(1 − Dec(p)), which is known as
Josang triangle [8]. To fix this problem, we can express the range of Dec(p) for
a given confidence level as:

1− Conf(p)

2
≤ Dec(p) ≤ 1 + Conf(p)

2
(10)

For instance, a strong decision (full acceptance or rejection) should only be
made when we have a very high level of confidence, since when Conf(p) = 1,
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Fig. 2. Expert opinion extraction matrix

G

G1 G2

P1 P2 P3

C-Arg

D-Arg

Fig. 3. GSN toy example

Dec(p) is not constrained and ranges on [0, 1]. In contrast, under ignorance
Conf(p) = 0 enforces Dec(p) = 1/2. So, when the pair (Dec(p), Conf(p)) is sit-

uated outside the triangle, and Dec(p) < 1−Conf(p)
2 (rejection: black dots on Fig.

2), we set Dec(p) = 1−Conf(p)
2 . On the other hand, when Dec(p) > 1+Conf(p)

2

(acceptance: grey dots on Fig. 2), we set Dec(p) = 1+Conf(p)
2 . Choosing scales

for (Conf,Dec) and translating such pairs into numerical degrees is not trivial,
we thus make the equidistance assumption for simplicity and to be comparable
to previous works.

4.2 Determination of belief weights for rules

Now, consider the mass functions for rules. Unlike belief and disbelief degrees
in premises, belief degrees in rules are more difficult to obtain directly from
an expert. Remember that a rule is representing a support relation between a
conclusion and its premises. As a first approach, Wang et al. [14] proposed to
exploit this relation so as to identify these masses. To this end, they propose
certain values of the pair (Dec,Conf) on premises, as inputs for the model, and
ask the expert his opinion about the conclusion using the matrix of Figure 2.
Then, for each type of argument, they use a non-linear least square method to
estimate the values of parameters (belief in rules).
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A second approach, which is under study, aims to determine these masses
and the argument type (C, D or H-Arg) through a series of questions, assuming
clear-cut knowledge for premises (Bel = 1 or 0 and Disb = 1 or 0). For example,
If decision and confidence on a premise are maximal (acceptable for sure), what
is your decision and confidence on the conclusion ? When belief or disbelief in
premises are maximal, the mass on the conclusion is the mass of the rule. For
instance, if in (3) we let ∀i, Bel(pi) = 1, then BelC(C) = Bel([∧ni=1pi] ⇒ C) is
obtained from the expert.

5 Toy example

We apply our approach in this section to a simple GSN example presented in
Figure 3, including two types of arguments. It presents a top goal (G) supported
by two sub-goals (G1) and (G2). (G1) is supported by two premises (P1) and (P2).
On the other hand, (G2) is supported by a single premise (P3). For simplicity,
we chose a C-Arg for the argument type used to calculate (G) and a D-Arg in
the calculation of (G1).

In order to see how the variation of belief and disbelief degrees in the premises
affect the conclusion, we show six different configurations in table 1, where we
set for each premise (P1, P2 and P3) a qualitative pair (decision, confidence)
(and the corresponding pair (Bel, Disb)), and calculate the conclusion (G) by
means of formulas (1), (2), (3) and (4). We also set the values of the masses on
the rules to 1. As a result, the values of belief and disbelief in the conclusion will
depend only on the masses on the premises.

Table 1. Qualitative (decision, confidence) and quantitative (belief, disbelief) pairs for
the example (see Fig. 2 for the meaning of symbols)

1st 2nd 3rd 4th 5th 6th

P1
(R;C6) (A;C5) (A;C5) (T;C5) (A;C5) (T;C6)
(0 ; 1) (0.8 ; 0) (0.8 ; 0) (0.65 ; 0.15) (0.8 ; 0) (0.75 ; 0.25)

P2
(R;C5) (A;C6) (R;C5) (T;C6) (A;C6) (T;C1)
(0 ; 0.8) (1 ; 0) (0 ; 0.8) (0.75 ; 0.25) (1 ; 0) (0 ; 0)

P3
(R;C6) (A;C6) (A;C6) (O;C6) (A;C2) (T;C6)
(0 ; 1) (1 ; 0) (1 ; 0) (0.25 ; 0.75) (0.2 ; 0) (0.75 ; 0.25)

G
(R;C6) (A;C6) (A;C5) (O;C6) (A;C2) (T;C4)
(0 ; 1) (1 ; 0) (0.8 ; 0) (0.23 ; 0.76) (0.2 ; 0) (0.56 ; 0)

We can notice, on Table 1, that when we have either three rejectable or three
acceptable premises with high levels of confidence (1st and 2nd columns), the
models maintain the same decision with the same high level of confidence. On
the other hand, when we have divergent opinions on the premises, either by
opposite decisions (3rd and 4th columns) or opposite confidence levels (5th and
6th columns), the results will depend on the nature of the argument involved.
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In the 3rd and 6th column, decision levels (resp. acceptable and tolerable) were
maintained because the divergence is located in a D-Arg. Due to its disjunctive
nature, this argument favors the propagation of the premises that maximally
support the conclusion. However, confidence levels were slightly decreased be-
cause of a C-Arg, which cumulates the uncertainty present in each premise and
propagates it to the conclusion. In the 4th and 5th columns the divergence is
located in a C-Arg. Unlike D-Arg, this argument favors the propagation of the
premises that support the conclusion with the least strength. Thus, we end up
with a mildly negative (“opposable”) decision level in the 4th column and a very
low level of confidence in the 5th column.

6 Conclusion

In this article, we propose a method for confidence assessment in GSN. It covers
both the definition of argument types (belief propagation formulas) and data
transformation (from elicited qualitative data to belief and disbelief pairs). We
also illustrate this approach on a toy example. First results show that it was
possible to improve previous work on uncertainty propagation and elicitation is-
sues. We still need to conduct a full experiment for assessing beliefs in rules. We
will investigate the expert questionnaire. We also want to propose an approach
for automatic rule type identification. In the long range, we also plan to do
away with the qualitative to quantitative transformation that contains some ar-
bitrariness, by developing the purely qualitative approach to information fusion
outlined in [4], and compare it to the quantitative one.
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