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Abstract

The knowledge of dynamic parameters of robotic systems is essential to applications and re-

search such as model-based controlling, simulating a robot, or planning motions. The dynamic

identification process stands out as one of the most efficient and widely used method to esti-

mate dynamic parameters. In this process, a dynamic model of a robot is created. Thanks

to its linearity to dynamic parameters, an identification model is derived from the dynamic

model. The identification model is applied to a sufficient data points obtained from specially

defined trajectories in order to construct an over-determined linear system. Linear regression

techniques such as least square estimation are utilized in order to identify dynamic parameters.

Finally, the identified parameters must be validated by direct validation or cross validation.

This thesis’s work aims to develop a standard open-source toolbox that provides all functions

and methods of dynamic identification for robotic systems, in general, and for anthropometric

systems, in particular.
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Introduction

In the robotics field, dynamic parameters such as mass, center of mass, inertia tensor are basic

building blocks that construct a model for almost every application ranging from control, system

simulation to motion planning. Consequently, they have been always of interest to be obtained

with highest accuracy, specially in cases where the system is highly sensitive to uncertainties

and errors. Theoretically, this intrinsic physical knowledge of a system is assumed to be either

measurable by measuring devices done separately part by part, or known by CAD designers

before manufacturing and assembling. However, by measuring separately, the accumulative

errors apparently would be significant enough to have negative impacts on the performance

of a system. More over, measuring part by part is time consuming with complex robots and

might be inaccurate with inertia tensor values. For many applications, CAD data is normally

considered as a reliable reference. Yet, not all the dynamic parameters given by CAD data are

not reliable due to several factors. First, the designing process is done before actual manufacture

and assemble procedures, so errors typically appearing during the manufacturing would cause a

deviation in actual values compared to reference values. Second, CAD data cannot provide us

dynamics effects such as friction which could only happen when robots are deployed in actual

operation. In short, dynamic parameters are crucial to every robotic applications, and it is

necessary to have a reliable, relatively simple method to estimate correctly.

Dynamic identification is considered to be a more practical method than theses above

mentioned methods to recognise the actual parameters thanks to its simplicity of experimental

settings, while keeping high level of precision for obtained values. The dynamic identification

method can be shortly explained as: the estimation of dynamic parameters of a robot is done by

minimizing the difference between measured values and predicted values from a mathematical

model, through analyzing the input/output of the robot after tracking specifically defined

trajectories, often referred as optimal exciting motions (optimal trajectories)[1].

Over decades, researcher have thoroughly investigated this method and implemented it in

not only various industrial applications , academic research in robotics but also in bio-mechanics

with human bodies. In recent years, this approach has been used in order to identify effective

dynamic parameters in complex anthropometric robotic system and obtained significant results
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with innovative solution deriving from the fundamental dynamic identification method.

0.1 Motivation

This thesis is motivated by the fact that the field has been missing a toolbox that allows to

identify accurate dynamic parameters given any kind of structures despite the proven maturity

of the dynamic identification methodology. In practice, the benefits of obtaining accurate dy-

namic parameters have been provenly essential in various tasks such as performing model-based

control, closing the simulation-to-reality gap or estimating values which cannot be directly mea-

sured. However, in practice, mostly dynamic identification procedure is developed customizing

for specific robots. It means that the reusability would be limited. Therefore, a general pipeline

using the developed toolbox would benefit researchers and engineers. Secondly, these proce-

dures did not take the advantages of excellent existing libraries such as dynamic modeling,

trajectory planning and so on; or instead utilize independent libraries with difficulties of ver-

sion control. Leveraging the existing tools within a common framework will not only reduce

the amount of time to develop but also would be adding more values to the existing framework.

With all the consideration above, making dynamic identification become a straight-forward and

common practice to all general applications in robotics motivates me to carry out this thesis.

The work of this thesis is to fulfill the gap between the need of a practical and open-source

identification toolbox to both industrial applications and academic research and the lack of a

standard pipeline. It is worth mentioning that the development of this dynamic identification

toolbox is closely supported by expertise of a strong research group in legged robotics, the

Geppeto team at LAAS-CNRS, Toulouse, and a leading robotics company in Europe, PAL

Robotics, Spain. The Geppeto team over years has continuously contributed to the robotics

community with their notable research results including open-source software for robotics such

as: Stack of Tasks, a framework for controlling redundant robots which includes popularly

used libraries like Pinocchio, a rigid multi-body dynamics library. In addition to that, the

work is provided opportunities to develop, test and implement on state-of-the-art hardwares

manufactured by PAL Robotics. Such robots like human-sized humanoid robot TALOS [2],

mobile manipulator Tiago by PAL Robotics have been widely received and deployed in research

as part of collaborations with renowned research centers in many EU-funded projects.

0.2 Objectives

As mentioned above, the goal of the thesis is to develop a standard open-source toolbox of

dynamic identification using in robotic systems in general and more particularly focused on
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anthropometric systems. In order to achieve this goal, several specific objectives to be accom-

plished are proposed as following

• To develop a package providing robot model and dynamic algorithm: This package is

built on top Pinocchio library to inherit its robot modeling and dynamic algorithms;

converting robot MDH format modeling to a more modern and universal URDF format.

• To develop a package generating optimal exciting motions: This package’s main func-

tionalities includes: providing a wide range of trajectory planners; optimizing trajectories

which would maximally excite dynamic parameters while respecting systems’ geometrical

and dynamical limits by solving non-linear optimization problem with IPOPT library.

• To develop a package providing standard identification methods: This package consists of

modules whose functionalities: creating identification model; pre-processing input data;

solving estimation problems; validating identified results.

• To unit-test, evaluate and validate each individual package’s functionalities.

• To integrate, implement and document the use of the toolbox on actual robots in order

to verify its performance.

0.3 Structure overview

This report is organized into 4 chapters:

• Chapter 1 presents the state of the art approaches in dynamic identification.

• Chapter 2 provides technical details of packages in the identification toolbox.

• Chapter 3 describes actual implementations on available robots and discusses the results

obtained from these implementations.
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Chapter 1

State of the art

This chapter will present the state of the art approaches in dynamic identification. Dynamic

identification is a procedure which contains cascading steps corresponding respectively to what

model is chosen to represent the relationship between independent variables and dependent

variables, how experimental data is generated based upon predefined criterion, how the gener-

ated experimental data is preprocessed and analyzed in order to estimate dynamic parameters.

Theoretical background is the backbone of every step above through out the identification pro-

cedure. Therefore, they will be introduced here in great details. Following the theory, most

common techniques that researchers have used to advance towards in dynamic identification

will be shown and compared. Even though there are many innovations in research of dynamic

identification in recent years, only most appropriate approaches to our toolbox that are taken

into consideration of our work are presented in the chapter.

1.1 Overview of dynamic identification

Generally, parametric model expressing the relationship between input and output is of interest

to most of applications. In the case of robotic applications, dynamic model that are constructed

by dynamic parameters are crucial. Dynamic identification is a procedure to identify these pa-

rameters to build an accurate dynamic model. Mathematically, dynamic identification is a

regression analysis problem. Unlike problems with unverified models, dynamic identification

usually comes with a well-established model which could be dynamic model or, in some cases,

power model. From the dynamic model or power model, the identification model, intuitively

the regression model, is extracted. After the identification model is decided, data genera-

tion/collection is proceeded. Due to the characteristics of a physical system, data needs to

be observed from specially designed experiments which would stimulate the dynamics of all

parameters. This process is often done by solving an trajectory optimization problem. And

then, the identification algorithm, mostly inherited from regression techniques, will be ap-

plied to estimate the parameters of the identification model. The last step of this procedure
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is to analyze the errors and to validate the obtained model in direct/cross validation. The

procedure could be repeated until the validating criterion are satisfied. With an intuition as

such, an over scheme showing how a complete procedure of dynamic identification is presented

in the following figure.

Figure 1.1: A generalized scheme of identification procedure

1.2 Identification model

Dynamic identification in robotics takes the advantage of linearity in inverse dynamic model of a

robot with respect to its dynamic parameters. A common approach of building an identification

model is to derive the inverse dynamic model. Then, by applying this model to a sufficient

number of sample data points from specifically designed trajectories, we can obtain an over-

determined linear system of equations. In general, a specific link of a robot only moves in a

limited number of axes (degree of freedom). As a result, not every standard dynamic parameters

would have effects on dynamics model. Hence, those ones are redundant, not identifiable, and

can be excluded from the model without changing its dynamics. Secondly, as links are connected

to each other by joints, when a link moves, it will have a dynamic impact on its precedent links.

Thus, a number of dynamic parameters are bound together as a linear combination to represent

the correlation between dynamics of links. This is our identification model.

1.2.1 Dynamic model

a) Dynamic model is the relationship between kinematic variables of the motion and the

cause of the motion. In the literature, different methods can be deployed to derive the dynamic

model such as: Newton-Euler method, Lagrange formulation, and virtual work principle. The

13



dynamic model can expressed as:

M(q)q̈ + H(q, q̇) + G(q) = τ (1.1)

where:

• q, q̇, q̈ are joint positions, velocities, accelerations;

• τ are joint forces/torques;

• M(q) is the symmetric positive definite inertial matrix;

• H(q, q̇) is the matrix representing Coriolis and centrifugal forces;

• G(q) represents gravitational force.

This is the most common form of dynamic model that can be found in literature. In the

dynamic model, elements of matrices M, H, G are standard dynamic parameters: mass, first

moment of inertia, inertia tensor. The data of joint positions is collected and sampled from

measures of encoders and the data of joint forces/torques is estimated from actuator current

in most cases, or obtained from torque sensors, which is less frequently available in most of

robots.

b) Dynamics of base link

In the previous dynamic model above, the dynamics of base link is excluded. It is common

that many applications use industrial robots with fixed base. Therefore, it is trivial to consider

the dynamics of the base link. However, in more general cases such as free-floating base robots

like legged robots, mobile robots or mobile base manipulators which contact with environment,

the dynamics of the contacts between base link and/or links with their environment needs to

be taken into account.

The dynamic equations that describes a system contacting with its environment can be

rewritten in a form as below:[
Mωω Mωc

Mcω Mcc

][
q̈ω

q̈

]
+

[
Bω(qω, q̇ω)

Bc(q, q̇)

]
=

[
0

τ

]
+

Nc∑
k=1

[
JT
ωk

JT
ck

]
Fk (1.2)

where:

• subscript ω and c indicates parameters corresponding to the contacting links and the

non-contacting ones, respectively;

• M: inertial matrices;
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• q̈: joint accelerations;

• B: representing centrifugal, Coriolis and gravity forces;

• Fk: contact forces system with environment at k-th contact point amongst Nc contact

points;

• J: Jacobian matrices that maps these contact force into joint space.

If we assume that the robot does not have any other contact rather the ground contact

at the base link, the dynamic equations of base link could actually represent the dynamics of

the whole robot. This is true because as mentioned above, dynamics from end-effector link

transferred down to the precedent link until the base link. Researchers [3] have utilized this

property to apply in applications where a fast, simple dynamic identification required for a

complex robot. Another application is that when measurement of force/torque at joint are

unfeasible such as in human mechanic study, or measuring sensors are unreliable due to noise,

a simple 6-axis force plate at the base link can be a good solution for dynamic identification

problem.

c) Inclusion of joint drive chain friction and inertia

Despite the inevitable existence in almost every moving physical system, friction is com-

monly ignored in the dynamics equations. One may argue that the effect of friction having

on overall dynamics of the system is negligible. However, poor performance in model-based

control due to this ignorance proved otherwise as friction and inertia in joint drive chain may

have a significant impact on the dynamics. Modeling of the effects of joint drive chain friction

and inertia can be described as below.

τg = τ + q̇fv + sign(q̇)fc + Ia(q̈) (1.3)

where:

• τg: general expression of joint force/torque

• τ : joint force/torque without friction and actuator inertia effects

• fv: viscosity coefficient

• fc: Coulomb coefficient

• Ia: actuator inertia

Authors at [4] demonstrated how a full set dynamic parameters including friction, actuators,

joint torques offset should be identified. In a further step of developing this approach, drive
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gain which is used to estimate joint torques can be also identified accurately. The work of this

technique is presented in the following publication [5].

d) Joint coupling

In manipulators, joints near the end-effector being mechanically coupled are common. This

coupling could be done a couple of face gears or a set of gears. It is important to include

the coupling in the dynamic model as it changes the values of actual joint velocities and joint

torques compared to the values out of motors.

1.2.2 Identification model

A set of standard inertial parameters of a link i contains 10 values including: mass mi, first

moment of inertia [ mxi
myi mzi ] and 6 values that form 3x3 inertial tensor [ IXXi IY Y i IZZi

IXY i IY Zi IZXi ]. If we rewrite the equation 1.2 as regrouping these parameters as variables,

we may have:

WΦ =

[
0

τ

]
+

Nc∑
k=1

[
JT
ωk

JT
ck

]
Fk (1.4)

where:

• W is the observation matrix;

• Φ is a vector of standard inertial parameters;

• τ , J , Fk are defined as in above equations.

The model above gives us two possibilities with or without the availability of joint torque

values. When the joint torques are not available, the upper part of the equation can be utilized

in the identification process since only measurements of contact wrench at the base link are

needed. If the joint torque information can be accessible, the identification can proceed based

on the lower part of the equation.

a) Identifiability of the dynamic parameters

The authors [1] pointed out that dynamic parameters can be divided into three groups:

fully identifiable, identifiable in linear combination, and completely unidentifiable. As a result,

the observation matrix can be rank deficient, in other words, not a full rank column matrix.

Therefore, in that case, to obtain a unique solution for standard parameters is not possible.

It is obvious that one should consider to exclude the trivial, non-effectual parameters, and

obtain a minimal set of identifiable parameters by linearly regrouping the identifiable standard

parameters. These linear combinations are called base parameters (BP).

b) Regrouping standard parameters to form base parameters
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There are two main ways to obtain the symbolic expression of base parameters. Authors at

[6] suggested that symbolic forms of the base parameters can be manually found by applying a

certain set of formulas based on dynamics rules. He demonstrated in obtaining base parameters

of a serial PUMA robot. However, this method may become tedious and error-prone once the

studied system is complex.

A second way to obtain the expressions of base parameters is to use numerical methods [7].

One of the most common techniques in literature is pivoted QR decomposition. QR decompo-

sition is a process for decomposing a matrix into two matrices: the first one, matrix Q, is an

orthogonal column basis of the matrix; the second one, matrix R, represents the corresponding

magnitudes of each column of the matrix projected onto vectors of the basis matrix Q. Thus, in

dynamic identification, using QR decomposition to decompose an observation matrix is actu-

ally evaluating the impact of each column in the whole dynamics of the system, in which each

column of the observation matrix stands for the dynamic impact of one standard parameter.

Following the decomposing process, the columns of the observation matrix can be rearranged

by the descending order of their corresponding values on the diagonal of matrix R which in-

dicate their magnitudes of impact on the over dynamics. This process is called pivoting. The

columns with zero values on the diagonal of matrix R are so-called dependent parameters. In

contrast, the ones with positive values are independent parameters. Acquiring this information

would help to simplify the dynamic model by regrouping the dependent parameters into lin-

ear combinations with independent parameters. Eventually, we would obtain a minimal set of

parameters, or base parameters, which can fully describe the dynamics of the system.

c) Identification model for base parameters

After obtaining the expression of base parameters, we can construct an over-determined

linear system of equations:

Y(τ, fext) = WB(q, q̇, q̈)ΦB + e (1.5)

where:

• Y(τ, fext) is a vector containing joint force/torques and/or contacting wrench at base link;

• WB(q, q̇, q̈) is the regressor matrix that has a size of mxn, m is number of data points, n

is number of base parameters, m >> n;

• e is the vector of residual error between measured values and estimated values.
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1.3 Identification algorithm

Identification algorithm involves in estimating dynamic parameters using numerical methods,

particularly regression analysis. This section introduce two mainly used algorithms in dynamic

identification. More over, a technique to estimate standard dynamic parameters from identified

base parameters is presented here. Finally, an approach that attempts to simplify the identifi-

cation problem by categorizing dynamic parameters as ”static” and ”dynamic” referring to the

ones not involving in movements and the ones that are, respectively.

1.3.1 Estimation methods for base parameters

a) Ordinary Least Square Estimation

In the identification model above, the vector e represents measurement noise and modelling

errors are perturbed, or so called residues. The error e is assumed to have zero mean. The goal

is to find a solution that will minimize the sum of residue norms.

The principle of ordinary least square estimation is to find a set of coefficients of a model by

minimizing the sum of norms of the residues which represents the difference between measured

entities and its corresponding estimated ones from the model. In linear algrebra, when we

have a problem of ordinary least square estimation where one side is a product of 2 vectors/-

matrices and the other side is a vector, and with the matrix confirmed full rank, an ordinary

least square solution is simply calculating pseudo-inverse which can be done be Singular Value

Decomposition (SVD) or QR decomposition.

If the regressor matrix WB having column full-rank, the vector of base parameters ΦB can

be directly estimated by the ordinary least square approach in a linear algebra manner.

Φ̂B = argmin(||e||2) (1.6)

In another word,

Φ̂B = (WT
BWB)−1WB

TY = WB
+Y (1.7)

where WB
+ is the pseudo-inverse matrix of WB.

b) Weighted Least Square Estimation

In the ordinary least square estimation, one assumption was made, that is the measurements

was uncorrelated and have different uncertainties. However, in fact, the measurements in

dynamic identification might be highly correlated in some cases, thus, the estimated results

of ordinary least square may not present an appropriate estimation solutions. In this case,

weighted least square (WLS) can be seen an alternative. In order for taking the account

of correlation, a weighted sum of residues should be computed where the weights are the
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reciprocal of the variances of measurements. The authors at [5] chose the inverse of a diagonal

covariance matrix ΩΩΩ calculated from ordinary least square estimation as the weighting matrix.

Consequently, the new solution obtained from WLS is:

Φ̂BWLS = (WT
BΩΩΩ−1WB)−1WT

BΩΩΩ−1Y (1.8)

1.3.2 Estimation methods for standard parameters

Now supposing that we obtained the BP above, but the main interest is to obtain the values

of standard dynamic parameters. However, it can be problematic if some of them falls into

null space of the regressor, hence being unidentifiable. In recent studies, the main approach

to solve for standard parameters is to solve a constrained quadratic programming optimization

fitting the estimated ground reaction force and moments to measured ones, at the same time

minimizing the difference between the estimated values and the reference values such CAD data

[8], [5] or AT values for human body, and it is described as:

Find Φ̂ such that

min ‖Y −WΦ‖2 + ‖ΦCAD − Φ‖2 (1.9)

However, the function above does not guarantee an appropriate result since no physically mean-

ingful constraint has been introduced. In [9], it demonstrated this effect where the final results

of some positive parameters turned out negative which are impossible. We consider the follow-

ing inequality constraints in order to obtain consistent standard parameters:

• all masses must be positive;

• CoM has to be bounded in a defined range;

• Inertial matrix must be positive definitive.

Now, the complete constraint QP optimization problem is defined as below:

Φ̂ = argmin(‖(F −WΦ)‖2 + ‖(ΦCAD − Φ)‖2) (1.10)

subject to:

• mi > 0;

• CoM− < CoM < CoM+;

• for any non-zero vector v satisfied vT Iv > ε with ε = 1e− 3.
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1.3.3 Decoupling parameters influenced by static postures and dy-

namic motions

Up to this point, it is very interesting to see that the problem can be actually decoupled into

two separate cases: static and dynamic cases. In [10], the base parameters involved in the

static cases such as mass and center of mass of each link were estimated assuming that static

postures are achieved, meaning no velocities and acceleration. It can be as simple as:

PCoM = Rb(q)Φb (1.11)

where: PCoM is x, y components of CoM of the whole body estimated by COP, Rb is the

regressor, Φb is the BP.

On the other hand, [5], [11] estimated both static parameter (mass and CoM) and dynamic

ones (inertia) in a decoupling fashion, in which such parameters: mass and CoM are identified

by exciting static postures while other inertial parameters are identified by exciting motions

joining the previous static postures.

1.4 Optimal trajectory

The least square estimation or, more generally linear regression problem of identification above

requires a large amount of data, a rule of thumb is that it should be at least 10 folds of numbers

of estimated parameters. However, in addition to a large amount of data, in order to improve

the convergence rate in the linear regression problem, the motions that generated the data need

to excite the dynamics of the system. Such a trajectory generating data for identification is

called optimal exciting trajectory. In short, finding optimal exciting trajectories is solving a

constrained non-linear optimization problem.

1.4.1 Trajectory Optimization Problem

a) Objective function

One criterion to justify the excitation of postures/motions that has been extensively used

in the literature [12] is the condition number of the regressor matrix. A large condition number

shows a sign of a large sensitivity to data errors or noise [13]. In short, the aim of this motion

generating process is to find a set of motions that minimizes the condition number of the

observation matrix by solving an optimization problem.

In general, the use of condition number as an optimizing criteria can provide robust results

in least square estimation, only it satisfies one important condition: well-equilibrated, meaning

its rows (columns) share the same length in some norm. However, it is common that a robot
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often have very large links with large inertia near the base and much lighter links at the end-

effector. The scenario creates an bad-equilibrated regressor matrix for dynamic identification

problem. As result, besides using condition number as the main criteria, one must consider

some weighting factors in order to eliminate the illed-equilibration of the regressor matrix.

b) Constraints

Mechanical constraints

It is essential to take into account several constraints, which are joint limits, maximum

velocities, and maximum effort tolerance. Each joint has its own range of motion, which is

physically impossible to violate. Also, in any either static posture or dynamic motions, the

balance of robot needs to be satisfied. Other constraints can be defined upon the specific

configuration of the system or conditions of subject that are experimented on.

Self-collision constraints

Even though, most of robots these has a default mode of control to prevent self-collision by

halting the operation, we do not want self-collision to be ignored while planing our trajectories.

Therefore, an addition constraint on self-collision must be added to the optimization problem.

The self-collision normally involves with high cost of computation if the structure of robot’s

links is complex. One must pay attention to use a simplified collision model to reduce the

computation cost for the trajectory optimization problem.

Self-balance constraints

Furthermore, unlike healthy human subjects who can keep balance by themselves, humanoid

robots are prone to bad self-balance. In another word, it actually creates an extra constraint

to the non-linear optimization problem. The Zero-Moment-Point (ZMP) is the point where the

tangent components of ground reaction moment is zero. The humanoid robot is guaranteed to

be stable when this ZMP stays inside the support polygon. In [5], [11], a balance controller was

proposed along with identification process, where the choice of links to used in balancing task

and identification task is thoroughly considered and made in order to simplify the optimization

problem. Therefore decoupling has not only been done by type of parameters as in the previous

section, but also by link when different configuration giving different sub-regressors. And now,

Figure 1.2: The ZMP and the support polygon during single support and double support

it is clearly seen that the generation of optimal exciting postures/motions is to solve another
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constrained QP optimization problem.

c) Optimization Problem Formulation

With all objective functions, constraints and decision variables chosen, generating the opti-

mal trajectories is equivalent to solve a constrained non-linear optimization. The criteria that

this problem tries to satisfy is to find trajectories that create an well-conditioned observation

matrix. Along with constraints being discussed, the problem can be mathematically presented

by:

q̂ = argmin(cond(WB)) (1.12)

subject to:

• joint limits: qi
− < qi < qi

+;

• velocity limits: |q̇i| < q̇imax;

• effort limits: |τ | < τmax;

• self collision avoidance: d(q) > 0;

• self balance: ZMP− < ZMP < ZMP+;

In the case of considering weighting the regressor matrix, the criterion is described as:

C = cond(WBdiag(Z)) (1.13)

Z is the matrix of a priori knowledge of dynamic parameters which represents relative effect

of each link’s dynamic parameters. For instance, it could the weight of links which can be either

already know from CAD model.

1.4.2 Other approaches

a) Static postures

Prior to the knowledge of the author, only 2 studies [10], [8] has attempted to estimate

inertial parameters using static postures. In the earlier study, measurements were the x, y

component of center of pressure (CoP) and joint angles measured by incremental encoders. In all

the robot static postures used for measurements, necessary constraints were taken into account.

Those are: joint’s mechanical limits, the balance condition of robot, feet are not intersected,

fixed feet configuration for several postures. Then, exciting postures were generated by setting

randomly and manually certain variables such as position and orientation of the support foot,

the height of CoM as well as the angle of waist level. This pool of postures was then applied
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to the optimization problem that minimizes the condition number of the observation. The

experiment failed to obtained enough numbers of exciting postures despite such an amount of

effort being put in.

Figure 1.3: Torque-free mounting applied on the humanoid robot

In the second study, as mentioned above, an interesting idea of using torque-free mounting,

illustrated in the figure 1.3 allowed to estimate important parameters such mass and CoM using

only static postures. Data were collected from Inertial Measurement Unit (IMU) attached on

upper body, and joint angle from encoders. Unlike the previous study, the author utilized the

generic algorithm (GA) to search for optimal exciting static postures. First, within the working

space of each joint, the angle was quantized into discrete positions equally distributed all over

the working space. This resulted in a large set of different combinations for joint angles. Then,

this is where the GA algorithm came in and searched for optimal exciting postures with criterion

that is the ratio of largest singular value over the smallest singular value of the regressor matrix

thanks to its linear independence characteristic. The steps of GA are generally described as:

random selection from initial population, cross over, mutation, exit when condition is fulfilled.

This method successfully generate a pool of exciting postures required for identification process.

b) Optimal trajectories generation using visual feedback

In order to estimate inertia of a system, dynamic motions are mandatory. Earlier, [9]

proposed a method to estimate standard parameters of human body segments using real-time

visual feedback. The approach intended to derive the standard parameters from the BP by

solving QP problem, but without taking into account several important constraints. Instead

of generating off-line a set of optimal exciting motions, this study proposed to utilize a visual

feedback system, where an actor is visualized on screen along with modeled segments and colors

that indicates how much that segment has been excited by the motion. When all the segments

are considered excited enough for identification, the measurements of geometric parameters and

external ground reaction force were performed by motion capture and force plate. Additionally,

an extra weigh was added to different location of body with a purpose of generate new set of
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base parameters. This approach did definitely have an advantage of real-time online motion

generation, but it depended largely on the accuracy of prior standard parameters.

Figure 1.4: Diagram of the identification process using visual feedback

c) Improvement in solving the optimization problem of generating optimal trajec-

tories

More recently, several research works have developed a significant improvement on perfor-

mance of estimating standard parameters using optimal exciting motions. In the first study

[14], the authors particularly aimed for a fast and reliable method to estimate some fundamen-

tal human body segment inertial parameters. Therefore, the choice of a simplified model with

3 planar segments to model the human body was determined. Taking into account of human

body biomechanical constraints, a set of optimal exciting motions was obtained by using visual

biofeedback system where 4 markers being tracked by Kinect camera and a feature-tracking

software. The joint angles were also accurately obtained from this system despite being poorly

estimated without markers. External GRF and resultant moments were measured by balance

board. This approach did provide a good set of exciting motions for estimating, but it has a

significant drawbacks such as motions are strictly limited to planar, simplified model would not

be helpful for other purposes.

In [5], a more generalized approach was proposed, taken into account most of aspects in

standard parameters estimation. In this approach, it had to deal with a complex model with

large number of parameters. Instead of solving a tedious, giant nonlinear QP optimization

problem, the author proposed to decouple the generation of optimal exciting motions by dividing

into 2 processes: generating a set of static postures that excites static parameter such as

mass and CoM, and then between two consecutive postures a optimal trajectory using B-

spline interpolation technique to excite dynamic parameters i.e. inertia. These two processes

correspond to two constrained optimization problems, taken into account all mechanical limits

and dynamic balance. The criterion for excitation is still the condition number of each regressor

24



matrix but now it is modified by weighting to scale of each link’s mass so that even small mass

link can still be excited enough for the identification. [1]

1.5 Validation and application

Validating the identified parameters is a very important step which determines the success of

the identification. There are many ways to evaluate the success of a model. It could direct

validation or cross validation.

1.5.1 Direct validation

To justify the accuracy of the estimated BP, the relative standard deviation is calculated and

assessed. Assuming that WB is deterministic and e is zero mean with standard deviation σ.

The variance-covariance matrix of the estimation error can be given as:

CΦ̂B
= E[(ΦB − Φ̂B)(ΦB − Φ̂B)T ] = σ(W T

BWB)−1 (1.14)

The absolute standard deviation of a ith parameter can be found out as:

σi =
√
CΦ̂B

(i, i) (1.15)

From the expression above, the relative standard deviation of the parameter to justify the

accuracy of the identification is obtained by:

σi% = 100%

√
CΦ̂B

(i, i)

Φ̂Bi

(1.16)

A threshold of minimum percentage of relative standard deviation is often to be defined to

justify the accuracy of the estimated parameters. Most of the cases, it should be 10%, other

wise the set data is considered to be not usable for identification. Then the process needs to

be revised and repeated until it satisfy the threshold.

1.5.2 Cross validation

A more intuitive to validate a model is to perform experiments on the model obtained from

identified parameters and compare with other measured results. The following methods have

been seen in the literature: (1) carrying out experiments on different trajectories rather than

optimal trajectories trajectories, then compared the values obtained from the identified model
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with measured joint torques/measured ground reaction forces/measured joint positions; (2)

re-identifying the parameters with the robot with known addition load added.
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Chapter 2

Main Features of Dynamic
Identification Toolbox - Figaro

This chapters will outline the main features of the dynamic identification toolbox, named

Figaro, along with its main functions. The toolbox is arranged into three packages: modeling

package, optimal trajectory package, identification algorithm package. Figaro is written in

Python, using the common scientific library, Numpy; Rigid Body Dynamics Analysis software,

Pinocchio; Flexible Collision Library, FCL; Interior Point Optimizer library, Ipopt; library for

creating smooth cubic splines, NDCurves. The project is still actively in the developing phase;

therefore, some of coding has not been applied with best practices in software development.

2.1 Modeling package

Inheriting methods and data structure from Pinocchio library, modeling package will provide

users methods in a more adequate way adapting to identification problem.

2.1.1 Creating a robot object

The Pinocchio library allows to create the model of a robot by import files under urdf format

or python code. One can create a robot object by calling:

Robot(path to urdf)

A fundamental point of a robot object is that it is of two main classes: Model, which

includes physical description of the robot (kinematic tree, reference inertial parameters) and

should not be modified; and Data, which contains all the values to be used for computation

(positions, velocities, acceleration,...) and varying at any time of computation. With this basis,

any algorithm in Pinocchio will start in a form of:

algorithm(model, data, arguments)
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Figure 2.1: Class diagram of modeling package

2.1.2 Building dynamic model

a) Getting basic observation matrix

Thanks to the functionalities from Pinocchio, building a basic dynamic model can be done

simply by calling:

build basic regressor(N,model, data, q, v, a)

• Arguments: data points of given joint configuration.

• Output: an observation matrix of dynamic model corresponding standard parameters

parsing from urdf file.

b) Adding friction

To add friction to the dynamic model of the robot, one can call the function:

add friction(robot, N)

• Arguments: robot object, N number of data points

• Output: updated observation matrix
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c) Adding actuator inertia

To add actuator inertia to the dynamic model of the robot, one can call the function:

add motor inertia(robot, N)

• Arguments: robot object, N number of data points

• Output: updated observation matrix

d) Adding joint coupling

It is not always a case in robots, but in some robots, there is a mechanical joint coupling

between links. Therefore, accounting this effect in dynamic model is necessary. One can call a

function which is now only available for robot Staubli TX40, or create a function based on the

template of this function for his/her specific robots.

add coupling(robot, N, cpl joints)

• Arguments: robot object, number of data points, coupling joints

• Output: updated observation matrix

e) Eliminating non-affecting parameters To eliminating the columns and standard pa-

rameters that have no effects the dynamics of the robot, one can call function:

eliminate non dynaffect(robot, W)

• Arguments: robot object, observation matrix

• Output: reduced observation matrix

2.1.3 Building identification model

a) Getting base parameters symbolic expression

After obtaining observation matrix with desired options, one can get the symbolic expression

of base parameters by calling function:

get index base(W e, params r)

• Arguments: reduced observation matrix, list of reduced standard parameters

• Output: list of index of base parameters

b) Build base regressor

The base regressor is the main matrix that we will work with throughout the identification

procedure. One can obtain the regressor matrix by calling:

build base regressor(W e, index base)

• Arguments: reduced observation matrix, index of base parameters

• Output: base regressor matrix
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2.2 Optimal trajectory generation package

The package contains two main parts: trajectory planner and optimization solver. Firstly, we

introduces trajectory planning modules that allow users to choose appropriate planners upon

their application’s needs, these including trapezoidal, double S curves, polynomial and cubic

splines. The second part of the package presents the optimization solvers adopted from Ipopt

library.

Figure 2.2: Class diagram of optimal trajectory generation package

2.2.1 Trajectory planner

In robotics, a trajectory refers to a sequence of points in either task space or joint space matching

with a desired time history . Generating trajectories is to compute the reference for the control

system as a function of time so that a robot can track the desired path. The technique to find
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this function is called interpolation. Different types of interpolation between 2 points or via

several intermediate points are presented in the following.

The NDCurves library allows user to create polynomial and cubic splines with various

choices. In many applications of dynamic identification, trapezoidal and double S curves are

also desired, as they have a segment of constant velocity in their velocity profile. This property

specially becomes useful in investigating friction effects and how dynamics differs from each

level of speed. Presented below are the functions covering all cases in planning a trapezoidal

or double S curve.

One can create a desired trajectory by calling:

trajectory(robot, N, f, trajectory boundaries)

• Arguments: robot object, number of data points, frequency, boundaries

• Output: trajectory

a) Trapezoidal

One of the desire features of any trajectories is to have the continuity in position and

velocity. Trapezoidal is an effective interpolating method to satisfy this criterion. In this

method, the velocity profile consists 3 parts: accelerating, constant velocity, and decelerating.

Accordingly, the profile of acceleration contains a non-zero constant acceleration duration, then

a zero acceleration duration and finally a constant acceleration with an opposite sign of the

first duration’s one. As a result, the function of position is quadratic type blended with linear

type.

Let’s say a robot has:

• a number of joints defined as njoints

• a number of waypoints defined as nwaypoints

• an starting configuration q0, dq0 as initial position, velocity

• a desired total runtime tf for the whole trajectory

Now, in order to generate trapezoidal trajectories for all joints, the following parameters

need to be defined:

• acceleration corresponding to 3 phases in a trapezoidal profile: a1,a2, a3

• time duration of 3 phases: δ1, δ2, δ3
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Figure 2.3: A trapezoidal trajectory between 2 points

By tuning these parameters, we can find desired trajectories upon the required criterion.

For instance, we are to create a trapezoidal trajectory between 2 points for joint i within a

runtime δf and the starting configuration q0i and qd0i. First of all, in the second phase, velocity

maintains to be constant, so:

a2 = 0 (2.1)

Secondly, the change of velocity during the first phase and the third phase should be equal

in term of magnitude. Consequently, we obtain a condition:

a1δ1 = −a3δ3 (2.2)

A third condition is the overall time amount:

δ1 + δ2 + δ3 = δf (2.3)

Started with 6 parameters to be tuned, we only need to vary 3 parameters which are: either

a1 or a3 and 2 values from δ1, δ2, δ3. Then, the trajectory between two points for joint i is
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presented as below:
qi(t) = q0i + qd0i ∗ (t− ti) + 1/2 ∗ a1 ∗ (t− ti)2

qi(t) = q0i + qd0i ∗ δ1 + 1/2 ∗ a1 ∗ δ1
2 + (qd0 + a1 ∗ δ1) ∗ (t− ti − δ1)

qi(t) = q0i + qd0i ∗ (δ1 + δ2) + 1/2 ∗ a1 ∗ (δ1
2 + 2 ∗ δ1 ∗ δ2)

+ (qd0 + a1 ∗ δ1) ∗ (t− ti − δ1 − δ2) + 1/2 ∗ a3 ∗ (t− ti − δ1 − δ2)2

(2.4)

for 3 following phases, respectively:


for ti ≤ t ≤ ti + δ1

for ti + δ1 ≤ t ≤ ti + δ2

for ti + δ1 + δ − 2 ≤ t ≤ ti + δf

Joint limits, velocity, acceleration/torque constraints

While choosing the values of accelerations and time duration, we need to respect the limits

of joint position, velocity and acceleration. For a joint i, the maximum absolute value of

acceleration is aMi, then |a1| and |a3| should be smaller than this value. Similarly, the absolute

value of velocity should be smaller than the maximum value vMi, and position should stay

inside the range of joint limits [qM
−, qM+]. These limits form a set of constraints as following:
|a1i|, |a3i| ≤ aMi

|qd0i + a1i ∗ δ1i| ≤ vMi

qM
− ≤ qi(t) ≤ qM

+

(2.5)

Implementation and testing

Details of the code cen be found in the appendix section. The figure 2.4 shows an example

of 3 trapezoidal trajectories of which each visits 4 waypoints.

b) Double S curves

A trapezoidal planner allows users to generate trajectories with continuity of velocity, but

not with acceleration. A discontinue acceleration motion, which results in impulsive jerks, may

cause mechanical stress and harms to the system, which normally results in undesired vibration.

As a result, adopting a continuous acceleration profile into trajectories is demanded. A natural,

evolving way from trapezoidal planners is to blend at the ends of accelerating/decelerating phase

of velocity profile with parabolic blends. The resultant of this modification is illustrated in the

figure 2.5. The shape of the velocity profile gave it the name of ”double S”[15].

We detail a double S profile between two waypoints into 3 parts similar to the trapezoidal

profile. Without losing the generality of the problem, we assume the final position is larger than

the initial position. Indeed, the vice-versa case will be discussed at the end of the subsection.

Boundary conditions as well as some assumption for the simplicity are presented below:
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Figure 2.4: A trajectory for 3 joints with 4 waypoints

• Initial and final positions: q0 < q1

• Initial and final velocities: v0, v1

• Initial and final accelerations a0, a1 are set to zero.

• Maximum values of velocity, acceleration and jerk are vmax, amax, jmax.

• Assume that the initial time is t0 = 0.

• Assume that minimum values of velocity, acceleration, and jerk are vmin = −vmax, amin =

−amax, jmin = −jmax.

Depending on values of boundary conditions, a double S trajectory may have all 3 phases

or only 1 or 2 phases below:

• Accelerating phase: 0 < t < Ta, acceleration increases linearly from zero, reaches its

limits and maintains, then decreases linearly to zero within a duration of Tj1 same as its

increasing part.

• Constant velocity phase: Ta < t < Ta + Tv, acceleration is zero.

• Decelerating phase: T−Td < t < T = Ta+Tv+Td, opposite with the profile of accelerating

phase with Tj2 as the duration that acceleration changes linearly.
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Figure 2.5: A double S curve

Checking feasibility of a double S trajectory: First of all, given those boundary conditions

and constraints on kinematic limits, before looking for a solution of double S profile, we need

to check if such an profile ever exists. For instance, a given displacement q1− q0 is too small to

perform a change of velocity from v0 to v1, as the area below the velocity profile with respect

to time should be equal the magnitude of displacement.

Therefore, taking a minimal case of a double S profile where there is only one accelera-

tion/deceleration phase as our limit case, as in figure 2.6, the given displacement should be

larger or equal the area under this velocity profile. Otherwise, we can conclude a double S

trajectory is not feasible to perform between two given waypoints with given conditions.

q1 − q0 >


√
|v1−v0|
jmax

(v1 + v0) , if
√
|v1−v0|
jmax

≤ amax

jmax

1
2
(amax

jmax
+ |v1−v0|

amax
)(v1 + v0) , if

√
|v1−v0|
jmax

> amax

jmax

(2.6)
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Figure 2.6: A minimum feasible case of double S curve

Checking if maximum velocity is reachable

An approach to check whether maximum velocity is reached or not is to calculate the

duration of constant velocity, Tv, with the assumption of vmax reached. Thus, if Tv is smaller

than zero, meaning maximum velocity is never reached, and vice-versa.

Checking if maximum(minimum) acceleration is reachable

For acceleration, we need to check for 2 phases. One is whether maximum acceleration

is reached in accelerating phase and the other is whether minimum acceleration is reached in

decelerating phase. The inequality conditions are:

amax is reached, if (vmax−v0)
jmax

≥ amax
2

amin is reached, if (vmax−v1)
|jmin| ≥ amin

2
(2.7)
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Cases of double S profiles

These expressions below are general expression for all cases considered above, where:

vlima, vlimd :highest/lowest values of velocities no matter it reached maximum/minimum values or not

alima, alimd :highest/lowest values of accelerations no matter it reached maximum/minimum values or not

Figure 2.7: 4 cases with vmax reached

Case 1: In figure 2.7, vmax is reached + amax reached/not reached + amin reached/not

reached, all 3 phases

If amax is reached, duration of accelerating phase is calculated as:

Tj1 =
amax

jmax

and Ta = Tj1 +
(vmax − v0)

amax

(2.8)

otherwise as,

Tj1 =

√
|vmax − v0|

jmax

and Ta = 2Tj1 (2.9)

If amin is reached, duration of decelerating phase is calculated as:

Tj1 =
amax

jmax

and Ta = Tj1 +
(vmax − v1)

amax

(2.10)
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Figure 2.8: 2 cases with vmax not reached

otherwise as,

Tj1 =

√
|vmax − v1|

jmax

and Ta = 2Tj1 (2.11)

Duration of constant velocity phase then would be computed as:

Tv =
q1 − q0

vmax

− Ta
2

(1 +
v0

vmax

)− Td
2

(1 +
v1

vmax

) (2.12)

Case 2: In figure 2.8, vmax is not reached, only 2 phases, if amax/amin not reached (blue plot)

, reduce value of amax iteratively and repeat until both reached (red plot)

Since vmax is not reached, Tv = 0. Duration of accelerating phase and decelerating phase

can be computed as below,



Tj1 = amax

jmax

Ta = 1
2amax

(
amax

2

jmax
− 2v0

+
√

amax
4

jmax
2 + 2(v0

2 + v1
2) + amax(4(q1 − q0)− 2amax

jmax
(v0 + v1))

) (2.13)
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

Tj2 = amin

jmin

Td = 1
2amax

(
amax

2

jmax
− 2v1

+
√

amax
4

jmax
2 + 2(v0

2 + v1
2) + amax(4(q1 − q0)− 2amax

jmax
(v0 + v1))

) (2.14)

Case 3: In figure 2.8, vmax is not reached, only 1 phases, deciding whether it is acceleration

or deceleration.

If only accelerating phase is performed, then Tv = 0 and Td = 0, Ta is calculated as:Tj1 =
jmax(q1−q0)−

√
jmax(jmax(q1−q0)2−(v1+v0)2(v1−v0))

jmax(v1+v0)

Ta = 2(q1−q0)
v1+v0

(2.15)

If only accelerating phase is performed, then Tv = 0 and Ta = 0, Td is calculated as:Tj1 =
jmax(q1−q0)−

√
jmax(jmax(q1−q0)2−(v1+v0)2(v1−v0))

jmax(v1+v0)

Ta = 2(q1−q0)
v1+v0

(2.16)

Add a flowchart

Position, velocity, acceleration and jerk as functions of time in 3 phases:

Once a duration profile of double S curve has been defined,[Tj1, Tj2, Ta, Tv, Td], we can define

the largest/lowest values of velocity and acceleration of the profile.

vlima = v0 + alima(Ta − Tj1)

vlimd = v1 − alimd(Td − Tj2)

alima = jmaxTj1

alimd = jminTj2

(2.17)

Then, position, velocity, acceleration and jerk can be express as functions of time through

3 phase as following,

• Accelerating phase

t ∈ [0, Tj1] 

q(t) = q0 + v0t+ jmax
t3

6

q̇(t) = v0 + jmax
t2

2

q̈(t) = jmaxt

q(3)(t) = jmax

(2.18)
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t ∈ [Tj1, Ta − Tj1] 

q(t) = q0 + v0t+ alima

2
(3t2 − 3Tj1t+ Tj1

2)

q̇(t) = v0 + alima(t− Tj1

2
)

q̈(t) = alima

q(3)(t) = 0

(2.19)

t ∈ [Ta − Tj1, Ta]

q(t) = q0 + (vlima + v0)Ta

2
− vlima(Ta − t)− jmin

(Ta−t)3
6

q̇(t) = vlim + jmin
(Ta=t)2

2

q̈(t) = −jmin(T − a− t)

q(3)(t) = jmin

(2.20)

• Constant-velocity phase

t ∈ [Ta, Ta + Tv] 

q(t) = q0 + (vlima + v0)Ta

2
+ vlima(t− Ta)

q̇(t) = vlim

q̈(t) = 0

q(3)(t) = 0

(2.21)

• Decelerating phase

t ∈ [T − Td, T − Td + Tj2]

q(t) = q1 − (vlim + v1)Td

2
+ vlim(t− T + Td)− jmax

(t−T+Td)3

6

q̇(t) = vlimd − jmax
(t−T+Td)2

2

q̈(t) = jmax(t− T + Td)

q(3)(t) = jmin

(2.22)
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t ∈ [T − Td + Tj2, T − Tj2]

q(t) = q1 − (vlimd + v1)Td

2
+ vlimd(t− T + Td)+

alimd

6
(3(t− T + Td)

2 − 3Tj2(t− T + Td) + Tj2
2)

q̇(t) = vlimd + alimd(t− T + Td − Tj2

2
)

q̈(t) = alimd

q(3)(t) = 0

(2.23)

t ∈ [T − Tj2, T ] 

q(t) = q1 − v1(T − t)− jmax
(T−t)3

6

q̇(t) = v1 + jmax
(T−t)3

2

q̈(t) = −jmax(T − t)

q(3)(t) = jmax

(2.24)

Implementation

The flowchart in the figure 2.9 illustrate the algorithm of generating a double S curve.

Details of the code can be found in appendix section.

Figure 2.9: The flowchart of generating a double S curve
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2.2.2 Optimization Problem

Ipopt is an Interior Point Optimizer which is best to be used in non linear problem with large

size. This is also the reason why the author chose this library for finding optimal trajectory.

One should expect a large number of data points, thus, a large size of a problem that an

optimization solver needs to deal with. Therefore, the practice of minimizing unnecessary

variables/constraints needs to be kept very well in mind. Also, a sound understanding of

how Ipopt works is suggested when dealing non linear problem, so that the user can properly

determine the objective function and initial guess. A sample of Ipopt problem is followed.

1 class Problem_cond_Wb:

2 def __init__(self , Ns , vel_wps , acc_wps ,

3 wp_init , vel_wp_init , acc_wp_init , W_stack ,

stop_flag):

4 self.W_stack = W_stack

5 self.wp_init = wp_init

6 self.vel_wp_init = vel_wp_init

7 self.acc_wp_init = acc_wp_init

8 self.vel_wps = vel_wps

9 self.acc_wps = acc_wps

10 self.stop_flag = stop_flag

11

12 def objective(self , X):

13 return objective_func(

14 Ns , X, self.vel_wps , self.acc_wps , self.wp_init ,

W_stack_=self.W_stack

15 )

16

17 def gradient(self , X):

18 def obj_f(x): return self.objective(x)

19 grad_obj = nd.Gradient(obj_f)(X)

20 return grad_obj

21

22 def constraints(self , X):

23 constr_vec = get_constraints_all_samples(Ns, X, self.

vel_wps , self.acc_wps ,

24 self.wp_init , self.

vel_wp_init , self.acc_wp_init)

25 return constr_vec

26

27 def jacobian(self , X):

28 def f(x): return self.constraints(x)

29 jac = nd.Jacobian(f)(X)

30 return jac
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31

32 def hessian(self , X, lagrange , obj_factor):

33 return False

34

35 def intermediate(

36 self ,

37 alg_mod ,

38 iter_count ,

39 obj_value ,

40 inf_pr ,

41 inf_du ,

42 mu,

43 d_norm ,

44 regularization_size ,

45 alpha_du ,

46 alpha_pr ,

47 ls_trials ,

48 ):

49

50 iter_num.append(iter_count)

51 list_obj_value.append(obj_value)

52 if self.stop_flag:

53 return False

54

55

Listing 2.1: Ipopt problem

2.3 Identification algorithm package

2.3.1 Data preprocessing

Raw input data are usually very noisy, so a filtering step is needed especially in order to estimate

velocity and acceleration by numerical difference. Numpy library and Scipy library provides

various filtering methods to filtering out noise and outliers. The details of types and the set up

of filters can be customized for specific robot. Therefore, one must explore by himself on this

step. Even though, a sample filtering process is demonstrated on actual experimental with the

robot Staubli TX40.

2.3.2 QR decomposition

Users have two options of implementing QR decomposition.
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Figure 2.10: Class diagram of identification algorithm package

a) QR pivoting

The QR pivoting method will implement QR decomposition and sorting the columns of the

matrix as order of the values on diagonal of the decomposed matrix.

QR pivoting(W e, tau, params r)

• Arguments: reduced observation matrix, vector of joint efforts, list of base parameters

• Output: a dictionary of base parameters and its identified values

Note: This method would not respect the numbered order of joints, hence, the regrouping

expression of base parameters can be different from symbolic expression obtained the following

QR technique.

b) double QR

The double QR methods actually apply QR decomposition twice. First, QR decomposition

is implemented in order to create symbolic expression of base parameters. After obtaining the

base parameter expression and its corresponding base regressor, QR decomposition is applied

second time to obtain the ordinary least square solution.

double QR(W e, tau, params r)
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• Arguments: reduced observation matrix, vector of joint efforts, list of base parameters

• Output: a dictionary of base parameters and its identified values

2.3.3 Least Square Estimation

Numpy library provides different method to do least square estimate such as QR decomposition,

SVD decomposition or pseudo-inverse solution.

get base params(W b, Q, R, option)

• Arguments: base regressor matrix, matrix Q, matrix R , option of OLS or WLS

• Output: base parameter values and their standard deviation
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Chapter 3

Implementations and Experiments

In this chapter, the functionalities of the dynamic identification toolbox will be tested and

verified. The first section will show an identification procedure in simulation with a simple 2

DOF model. After that, a more complete procedure of dynamic identification will be presented

using provided experimental data with verified results for performance comparison on an in-

dustrial robot. Lastly, a standard pipeline including all steps in dynamic identification will be

demonstrated with experimentation and analysis on a mobile base manipulator.

3.1 A simple simulation - 2 DOF manipulator

In this section, an identification method using QR decomposition with pivoting on a 2 DOF

robot is presented. The theory of dynamic model as well as identification algorithms on how to

handle rank deficiency using QR decomposition are detailed. Sample kinematic data on which

the the identification process performs are randomly selected from an uniform distribution

within a specific range. Following the theory, the implementation code and results of testing

are also included.

3.1.1 Experiment designs

The Pinocchio library allows to import and specify the properties of a robot as well as define

environment parameters regarding the interaction of the robot with environment. The geo-

metric parameters including kinematic structure, number of links, joint types, location of joint

frames, dynamic parameters such as mass, COM, inertia tensor, damping, and friction can be

defined in URDF files.

a) Frames and transformation

Robot is a multi-body system which is described by multiple coordinate frames.

• There is a global frame which is fixed permanently.
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• Attached to it is the base link Bo , which can have a fixed connection, free-floating w.r.t

the global frame, with its reference frame called local reference frame.

• Similarly, any following link Bi is connected to its parent, the antecedent link Bi−1 by

joint Ji with its local reference frame.

• Inertial, visual, and collision frames are defined upon the local reference frame, serving

to the calculation of dynamics, visualization and collision analysis.

Transformation from a base to a link or from a link to a link can be done by multiplying

recursively transformation matrices between two consecutive frames.

Figure 3.1: Frame structure of 2 DOF robot

b) Links and joints

The 2 DOF robot consist 3 identical box-shaped rigid links sizing of 0.25 × 0.25 × 0.5

(h× w × l). The link B1 is mounted on the edge of base link B0 by a revolute joint, following

that is the link B2 connects with link B1 at the edge by another revolute joint. The two revolute

joints are in the same direction and parallel with the y axis of the global frame as well as local

reference frames, as illustrated in the figure 1.1.

If friction and inertia of actuators are not taken in account, dynamic properties of a

single link can be described by its mass, its first moments of inertia and its inertia ten-

sor. These values construct a set of standard inertial parameters for each link i : Φ =

{mi,mX i,mY i,mZi, IXXi
, IXY i

, IY Y i
, IXZi

, IY Zi
, IZZi

}.

c) Miscellaneous parameters and notation

Vector gravity: g =

 0

0

−9.81

 (m/s2).
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Velocity and acceleration of link i:

[
vi

ωi

]
and

[
v̇i

ω̇i

]
.

Unit vector of frame i : {xi,yi, zi}

Wrench of a joint is defined as:

[
fi

τi

]
An robot object that contains information mentioned above can be called by:

robot = Robot(double pendulum.urdf)

Model and data structure of the robot can be called by: model = robot.model and data =

robot.data.

Names and reference values of standard parameters can be accessed by: params std =

model(params std)

3.1.2 Methodology

In the inverse dynamic model of a system, the equations of motions clearly show that the

output force/torque are actually linear with the inertial parameters such as mass, center of

mass, inertia tensor. Thanks to the linearity of dynamic model in a rigid body system, one

can take the advantage to create the identification model to identify inertial parameters. This

model then would be used to form a linear least square problem. Solving the linear least square

problem provides us the estimation of inertial parameters.

a) Dynamic model

Calculating velocities and accelerations in terms of generalized coordinates

For each link, velocities and accelerations are defined in its local reference frame.

For link B1: v1 = 0

ω1 = q̇1y1

(3.1)

v̇1 = 0

ω̇1 = q̈1y1

(3.2)

For link B2: v2 = dO0O2

dt
= v1 + lO1O2 q̇1z1

ω2 = (q̇1 + q̇1)y2

(3.3)
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
v̇2 = lO1O2(q̈1z1 − q̇2

1y1)

= lO1O2((q̈1 cos q2 + q̇2
1 sin q2)z2 + (q̈1 sin q2 − q̇1

2 cos q2)x2)

ω̇2 = (q̈1 + q̈1)y2

(3.4)

Recursive Newton-Euler algorithms

The dynamic model can be derived from either Lagrange formalism or Newton-Euler prin-

ciples. For ith body, the equation of motion w.r.t to frame ith can be described as below using

Newton-Euler principle. In a tree-structure or serial robot like this 2 DOF robot, Newton-Euler

equations can be started from the free end link where no external forces are exerted on, then

recursively following down the kinematic tree to the base link.

For link B2, the equations are described as: f2 +m2g = m2v̇2 +mS2 × ω̇2 + ω2 × (ω2 ×mS2)

τ2 +mS2 × g = I2ω̇2 +mS2 × v̇2 + ω2 × (I2ω2)
(3.5)

For link B1, the dynamic equations are as below:

 f1 − f2 +m1g = m1v̇1 +mS1 × ω̇1 + ω1 × (ω1 ×mS1)

τ1 − τ2 −
−−−→
O1O2 × f2 +mS1 × g = I1ω̇1 +mS1 × v̇1 + ω1 × (I1ω1)

(3.6)

A basic dynamic model of the 2 DOF robot can be easily built by:

W = build basic regressor(N,model, data, q, v, a)

b) Identification model

Substituting expressions of velocities and acceleration from (1.1) − (1.4), the equations in

generalized coordinates can be obtained. Since both revolute joints have the direction along

the y-axis of global frame, only y component of joint torque vectors remains of interest. The

expressions of them in generalized coordinates and standard inertial parameters,

WΦ = τy (3.7)

,are presented as below:
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Figure 3.2: Diagram of 2 DOF robot

[
a1 a2 a3 a4 a5 a6 a7

0 0 0 0 b1 b2 b3

]


mX1

mZ1

IY Y1

m2

mX2

mZ2

IY Y2


=

[
τ1

τ2

]
(3.8)
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where:

a1 = g cos q1

a2 = −g sin q1

a3 = q̈1

a4 = lO1O2

2q̈1

a5 = lO1O2 cos q2(2q̈1 + q̈2)− lO1O2 sin q2(q̇2
2 + 2q̇1q̇2) + g cos (q1 + q2)

a6 = −lO1O2 sin q2(2q̈1 + q̈2)− lO1O2 cos q2(q̇2
2 + 2q̇1q̇2)− g sin (q1 + q2)

a7 = q̈1 + q̈2

b1 = lO1O2(q̈1 cos q2 + q̇2
1 sin q2) + g cos (q1 + q2)

b2 = −lO1O2(q̈1 sin q2 − q̇2
1 cos q2)− g sin (q1 + q2)

b3 = q̈1 + q̈2

Now, if we generate a trajectories that produces N samples of (q, q̇, q̈). We can obtain an

identification model W̄Φ = τ̄ which has a form as:


W11 W21 . . . W(m−1)1 Wm1

. . . . . . .

. . . . . . .

. . . . . . .

W1n W2n . . . W(m−1)n Wmn





ϕ1

ϕ2

.

.

.

ϕm−1

ϕm


=



τ1

τ2

.

.

.

τn


(3.9)


Wb11 Wb21 . . . Wb(l−1)1

Wbm1

. . . . . . .

. . . . . . .

. . . . . . .

Wb1n Wb2n . . . Wb(l−1)n
Wbln





ϕb1

ϕb2

.

.

.

ϕb(l−1)

ϕbl


=



τ1

τ2

.

.

.

τn


(3.10)
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

a11 a21 a31 a41 a51 a61 a71

. . . . . . .

. . . . . . .

. . . . . . .

a1N a2N a3N a4N a5N a6N a7N

0 0 0 0 b11 b21 b31

. . . . . . .

. . . . . . .

. . . . . . .

0 0 0 0 b1N b2N b3N





mX1

mZ1

IY Y1

m2

mX2

mZ2

IY Y2


=



τ11

.

.

.

τ1N

τ21

.

.

.

τ2N



(3.11)

Identification model with the inclusion of joint frictions

If we consider the friction at revolute joints can be modeled as:

τF = q̇fv + sign(q̇)fc (3.12)

where: fv : viscosity coefficient and fc : Coulomn coefficient.

then, the dynamic model in equation (1.8) becomes:

[
a1 a2 a3 a4 a5 a6 a7 a8 a9 0 0

0 0 0 0 b1 b2 b3 0 0 b4 b5

]



mX1

mZ1

IY Y1

m2

mX2

mZ2

IY Y2

fv1

fc1

fv2

fc2



=

[
τ1

τ2

]
(3.13)

where:

a8 = q̇1

a9 = sign(q̇1)

b4 = q̇2

b5 = sign(q̇2)
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To add friction to the existing dynamic model, one can simply call:

add friction(robot, N)

Identification model w.r.t external wrench at the base link

In multi-body systems where the base link is not permanently fixed to the ground, such

as humanoids, 6 equations of motion of the base link is sufficient to describe the dynamics

of the whole system. This characteristic came from the fact that thanks to the recursivity of

tree-structure system’s dynamics where the children link can pass its dynamics to its parent’s

dynamic equations, consequently the base link as the final in that structure would include all

of its children links’ dynamics.

Therefore, the base link’s dynamics can be used to identify base dynamic parameters of

the system. Instead of using measurements of joint torques, it only requires 6 components of

external wrench where the base link makes contact with environment.

Assuming in the case of 2 DOF robot, we can obtain the external wrench acting on the base

link at the origin of base link’s local reference frame. And if we assume that the base link is

free-floating and stationary, the equations of motion for the base link B0 are: f0 − f1 +m0g = 0

τ0 − τ1 −
−−−→
O0O1 × f1 +mS0 × g = 0

(3.14)

In generalized coordinates, the equations can be described as a linear system of equations

below.

Wo(6×30)Φ(30×1) =

[
f0(3×1)

τ 0(3×1)

]
(3.15)

Since the equations of motion of the base link involves in all axes, we expect that there are

more dynamic parameters presented in the identified results.

c) Identification algorithms

N samples of kinematic data are randomly chosen from a uniform distribution within a

specific range, forming a sample trajectory. After that inputting the trajectory, Pinocchio

library’s dynamic algorithms allows users to calculate joint torques which correspond to the

right side of equation (1.8) and generate a regressor matrix in agree with the matrix W̄ on the

left side, accordingly.

Followed by previous steps, to get the identification model with regressor matrix and ex-

pression of base parameters. One can use the functions.

• To eliminate non-effect parameters: W e, params r = eliminate non dynaffect(robot,W)

• To get the base parameters expression: index base = get index base(W, params r)
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• The regressor matrix of base parameters is: W b = build base regressor(W e, index base)

• Finally, the identified results can be obtained by: params b = QR pivoting(W b, τ ,

params r)

Eliminating columns that has no effects on dynamics

By computing the L2 norm of column vectors of the regressor, one can determine if a column

has no effects on dynamics by comparing with a tolerance, σ, which is close to zero.

The diagonal of the product W̄TW̄ would give the L2 norm of columns vector. All columns

that have L2 norm smaller than tolerance, diag[i] < σ, will be eliminated. The initial regressor

with 20 columns linking to 20 standard inertial parameters is expected to be reduced to 7

columns as W̄ in the symbolic equation (1.8).

QR decomposition with pivoting

The regressor in the identification problem does not guarantee column-linear independence,

meaning there are columns as linear combination of other columns. By regrouping parameters

according to this linear combination of corresponding columns, we create a minimum set of

parameters, called base parameters. QR decomposition with pivoting is in favor to solve rank

deficiency because it can provide an exact numerical rank of the rank-deficient regressor. Thus,

by QR with pivoting, we can determine which columns to be deleted and how parameters can

be regrouped.

The regressor W̄ can decomposed into 2 matrices Q and R. A binary, unitary matrix P

multiplying with W̄ so that the values on diagonal of matrix R decrease.

W̄P = Q

[
R

0(2N−7)×7

]
(3.16)

W̄: the regressor, (2N × 7)

P : a permutation matrix, (7× 7)

Q : an orthogonal matrix, (2N × 2N)

R : an upper triangular matrix, (7× 7)

By setting a threshold σr, one can determine the numerical rank by:

rank(W̄) = k : Rkk = min(Rii) < σr (3.17)

The threshold σr is determined as σr = 2N ∗max(Rii) ∗ eps eps: machine epsilon.

Regrouping standard parameters into base parameters

The numerical rank k is also the number of base parameters. According, the matrices can be

divided into two parts corresponding to linearly independent columns and linearly dependent

columns as following:
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W̄P =
[
W1 W2

]
=
[
Q1 Q2

] [ R1 R2

0(2N−7)×k 0(2N−7)×7−k

]
=
[
Q1R1 Q1R2

]
(3.18)

Let W2 = W1β, then equation (1.7) becomes:

[
W1 W2

] [Φ1

Φ2

]
=
[
W1Φ1 W1βΦ2

]
= W1(Φ1 + βΦ2) = τ̄ (3.19)

From the above equation, we can obtain the base regressor Wb = W1, and base parameters

as linear combination ΦB = Φ1 + βΦ2. The coefficient β can be defined by:

W2 = W1β ⇔ Q1R2 = Q1R1β ⇔ β = R1
−1R2 (3.20)

Finally, the identified values of base parameters are the solutions of linear least square on

WB:

ΦB = R1
−1Q1

T τ̄ (3.21)

3.1.3 Result and discussion

A test performed on a trajectory with 1000 samples is shown below. As expected, the base

parameters are correctly estimated compared with the standard values from 3D model. In addi-

tion, details of the regrouping are presented which indicates the advantage of this identification

method.

a) Comments on results identification using joint torques measurement

• The identified base parameters did not include the mass of link 1. The reason is that the

gravity effect which mass of link 1 contributes to the dynamics is already included in the

first moment of inertia.

• The mass of link 2 is regrouped with all identified parameters of link. This indicates the

dynamic effect of link 2 on link 1. The value 0.25 ∗m2 in mz1 + 0.25 ∗m2 and 0.5 ∗m2

in mx1 + 0.5 ∗m2 are the product of link 2’s mass and distance from origin of frame F2

to origin of frame F1 along z and x axis. The value 0.3125 ∗m2 in Iyy1 + 0.3125 ∗m2 is

equal to (0.52 + 0.252) ∗m2.

b) Comments on results identification using external wrench

• The identified base parameters using external wrench showed that it is not possible to

identify masses of links separately. This is because the gravity force of 3 links are accu-

mulated in the base dynamic equations.
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Standard Parameters Value
1 m0 1.000000
2 mx0 0.000000
3 my0 0.000000
4 mz0 0.125000
5 Ixx0 0.026042
6 Ixy0 0.000000
7 Iyy0 0.041667
8 Ixz0 0.000000
9 Iyz0 0.000000
10 Izz0 0.026042
11 m1 1.000000
12 mx1 0.250000
13 my1 0.000000
14 mz1 0.125000
15 Ixx1 0.026042
16 Ixy1 0.000000
17 Iyy1 0.104167

Standard Parameters Value
18 Ixz1 -0.031250
19 Iyz1 0.000000
20 Izz1 0.088542
21 m2 1.000000
22 mx2 0.250000
23 my2 0.000000
24 mz2 0.125000
25 Ixx2 0.026042
26 Ixy2 0.000000
27 Iyy2 0.104167
28 Ixz2 -0.031250
29 Iyz2 0.000000
30 Izz2 0.088542
31 fv1 0.050000
32 fc1 0.010000
33 fv2 0.050000
34 fc2 0.010000

Table 3.1: Standard inertial parameters of links B0, B1, B2, and friction coefficients

Base Parameters Value
1 mx2 0.250000
2 mz2 0.125000
3 mx1 + 0.5*m2 0.750000
4 mz1 + 0.25*m2 0.375000
5 Iyy2 0.104167
6 Iyy1 + 0.3125*m2 0.416667

(a) Without the inclusion of friction model

Base Parameters Value
1 mx2 0.250000
2 mz2 0.125000
3 mx1 + 0.5*m2 0.750000
4 mz1 + 0.25*m2 0.375000
5 Iyy2 0.104167
6 fc2 0.010000
7 fc1 0.010000
8 Iyy1 + 0.3125*m2 0.416667
9 fv2 0.050000
10 fv1 0.050000

(b) With the inclusion of friction model

Table 3.2: Identified base parameters

• Unlike the identified base parameters using joint torques, there are parameters in all axes

involved. The reason is that we took into account the dynamics on all 6 axes at the base

link.

• Identified base parameters did not include the friction coefficients. This confirmed that

joint frictions are reaction force/torque between two consecutive links, and they are can-

celed in the dynamics of the base link.
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Base Parameters Value
0 m2 + 1.0*m0 + 1.0*m1 3.000000
1 my0 + 1.0*my1 + 1.0*my2 -0.000000
2 mx0 - 0.25*m0 -0.250000
3 mz2 0.125000
4 mx2 0.250000
5 mz1 - 0.25*m0 - 0.25*m1 -0.375000
6 mx1 - 0.5*m0 - 0.5*m1 -0.750000
7 Ixy2 -0.000000
8 Iyz2 0.000000
9 Iyy2 0.104167
10 Ixy1 - 0.5*my2 0.000000
11 Iyz1 - 0.25*my2 0.000000
12 Iyy1 - 0.3125*m0 - 0.3125*m1 -0.520833

(a) Without friction inclusion

Base Parameters Value
0 m2 + 1.0*m1 + 1.0*m0 3.000000
1 my0 + 1.0*my1 + 1.0*my2 0.000000
2 mx0 - 0.25*m0 -0.250000
3 mz2 0.125000
4 mx2 0.250000
5 mz1 - 0.25*m1 - 0.25*m0 -0.375000
6 Ixy2 0.000000
7 Iyz2 -0.000000
8 mx1 - 0.5*m1 - 0.5*m0 -0.750000
9 Iyy2 0.104167
10 Ixy1 - 0.5*my2 -0.000000
11 Iyz1 - 0.25*my2 0.000000
12 Iyy1 - 0.3125*m1 - 0.3125*m0 -0.520833

(b) With friction inclusion

Table 3.3: Identified base parameters using external wrench

3.2 Implementation on given data - Staubli TX40

Staubli TX40 is a classical 6 DOF industrial manipulator robot, which has been a popular re-

search platform for dynamic identification. In this section, the author will introduce a complete

identification procedure using the developed toolbox with given experimental data. The given

experimental data was generated and analyzed by other researchers. Identified parameters were

obtained with validation and published in the literature. The aim of this section is to repro-

duce the identification procedure and compared with identified results of other researchers in

literature.
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3.2.1 Experiment designs

a) Robot description

Figure 3.3: Staubli TX40 and its kinematic structure

The robot TX40 consists of 6 revolute joints, in which joint 5 and joint 6 are mechanically

coupled. At each joint, encoder can measure and sample at high frequency ( 5kHZ) which

gives an advantage of collecting data. The robot is not equipped with torque sensors, so joint

torques values are estimated from actuator current references. Details of working space, joints

limits,gear reduction ratio can be found in the catalogue of the manufacture Staubli.

b) Experimental data collection

The experiment was carried at Ecole Centrale de Nantes, by M. Gautier [4]. In the exper-

iment, the robot followed an optimal S curves trajectory within a duration of 8 seconds. As

illustrated below, the collected raw motor angle data is presented. Beside it are the estimated

values of motor torques from current references of the current amplifiers which supply brushless

motors.

3.2.2 Methodology

In the subsection, a step-by-step procedure of dynamic identification for Staubli TX40 will be

introduced.

a) Converting MDH modeling format to urdf format

Since the modeling of TX40 was done with modified Denavit-Hartenberg convention, it is

necessary to convert to urdf format in order to be utilizable in Pinocchio library. The table below
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presents the MDH table for the robot TX40. Followed by the specific rules of MDH convention,

the zero position of MDH modeling is different from the robot’s default zero. Meanwhile, urdf

format provides exactly modeling matching actual structure of the robot including reference

parameters such as joint limits, velocity limits, effort limits, and so on.

With the toolbox, users can input the MDH table and additional information of the robot,

then the toolbox would generate the appropriate urdf format of robot modeling.

Figure 3.4: Modified DH table for robot TX40

Figure 3.5: Transformation table for robot TX40

After converting mDH format to urdf format, a robot object of TX40 in Pinocchio can be

instantiated by:

TX40 = Robot(TX 40.urdf)

model = TX40.model and data = TX40.data

A dictionary contains names and reference values of 87 standard parameters can be found

through the function:

params std = model.params std

b) Dynamic model
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In term of dynamic model, in addition to the basic dynamic model, with TX40 we considered

additional factors which might contribute to the dynamics of the robot such as friction, actuator

inertia, offset of joint effort and coupling effect at the wrist between joint 5 and 6.

With that given consideration, the full dynamic model of TX40 as followed:

M(q)q̈ + H(q, q̇) + G(q) + Fvq̇ + Fssign(q̇) + Foff + Iaq̈ = τ (3.22)

where:

• q, τ are joint positions and joint forces/torques, respectively,

• M(q) is the symmetric positive definite inertial matrix,

• H(q, q̇) is the matrix representing Coriolis and centrifugal forces,

• G(q) represents gravitational force.

• Fv is viscous friction constants vector.

• Fs is Coulomb friction constant vector.

• Foff is off joint effort vector.

• Ia is actuator inertia vector.

The coupling effect was included in the formula calculating joint torques and joint velocity

as following [4].

Figure 3.6: Coupling effect of robot TX40

The friction induced by the coupling effect is presented as:

In conclusion, in addition to 10 standard inertia parameters {m, mX , mY , mZ , IXX , IXY

, IXZ , IY Y , IY Z , IZZ} representing for mass, first of moments of inertia, inertia tensor, we
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Figure 3.7: Dynamics of coupling joints

included 4 more parameters for each joints {fv, fs, foff , Ia}, 3 parameters of coupling effects

{Iam6, fvm6, fsm6}. Overall, the robot TX40 has 87 standard parameters dynamic parameters.

In the toolbox a full dynamic model of TX40 can be obtained by:

W = build full regressor(N, model, data, q, v, a)

Or, it can be built by calling a basic dynamic model, then calling individual effects that are

necessary.

c) Identification model

To obtain a identification model, one need obtain two things which are a set of base pa-

rameters and its corresponding regressor matrix. These are all derived from dynamic model

presented above.

As stated in the state of the art chapter, there are two ways to obtain linear combination

of dynamic parameters, which is referred as base parameters. One is to manually derive from

symbolic formulas, one is to use numerical method. For the sake of the generality, the toolbox

only utilizes the latter method.

The details of applying QR decomposition to obtain base parameters are introduced above.

Similarly, with a step by step approach, random data is generated. Then, the data is used to

construct the observation matrix by substituting to the dynamic model. After that, columns

with zero magnitude will be eliminated. These columns corresponded to the non-effect pa-

rameters to the dynamics of the robot which explained the zero magnitude. In general, this

is set with threshold of 10−6. After this step, we obtained reduced observation matrix. Next,

QR decomposition is applied, separating the reduced observation matrix into two matrices.

Mathematically detailed above, we obtained the regressor matrix and the expressions of base

parameters.

We obtained a set of 61 base parameters. This is a minimal set of dynamic parameters that

can fully describe the dynamics of robot TX40.

d) Data preprocessing

Data preprocessing is a process to remove the unwanted data so that only should more

valuable and meaningful information be extracted from the collected data. As dynamic iden-

tification relies on statistical estimating techniques, noisy data oftentimes could be one of the

biggest obstacles. Therefore, data preprocesing is a crucial step of dynamic identification. In

literature, some practical guide lines for tuning filters and for avoiding a biased estimation
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Figure 3.8: Expressions of base parameters of TX40 (1)

of velocities and accelerations, taking advantages of non-causal off-line pass band filtering are

presented in [16].

Median filter

Data from encoders and actuator current are collected and sampled at high frequency.

As it can be seen in the figure below, there are noise and uncertainties in the signal. Since

the data from encoders will be used to estimate joint velocities and joint accelerations by

numerical difference, it is essential to eliminate out-liers and smoothen the noisy data. In order

to eliminate out-liers, a median filter was applied on the position data. A median filter functions

by a principle of replacing the current value by the median value of a batch of consecutive values

including that current value.

Median filter can be called from scipy.signal library by: scipy.signal.med filt()

Low-pass filter

Secondly, the sampling frequency was 5 kHz for encoders, apparently noise will be pick up

with a high frequency like that. Furthermore, a dynamical system does not actual operate at

that high frequency. Hence, a low-pass filter that only allows to pass certain signal under a

specific frequency. For data from TX40,a zero-phase Butterworth low-pass filter was applied.

A zero-phase low-pass filter can be found in scipy.signal library by scipy.signal.filtfilt()
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Figure 3.9: Expressions of base parameters of TX40 (2)

Figure 3.10: A median filter

Truncating trivial data

One needs to pay attention to trivial data. Normally, when data is recorded, there is

trivial data at the beginning and ending part. This data should not be counted as data in-

put.Furthermore, the data at the ends of sequences should be removed after filtering as they

have been distorted by filtering.
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Figure 3.11: Motor angles measured at 5 kHz

Figure 3.12: Motor torques estimated from current references

Zero-crossing velocity elimination

Near-zero velocity of the motion, the friction is contributed by a non linear effect called

Stribeck effect as seen in the figure 3.8. Modeling this non linear effect could be difficult and it
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Figure 3.13: Stribeck friction effect

usually is ignored by only considering Coulomb friction. As a result, to keep the identification

from this non linear effect, better should we keep this term out of the equation. Hence, data

associating near-zero velocities should be eliminated. This is a small amount of data compared

to the total collected data.

Parallel decimation

Similar to the data collected by encoders, the data from actuator currents also contained

noises. We need to apply a low-pass filter to the joint torques data estimated from actuator

currents. Morever, due to high frequency recording, we can pick up meaningful data points

without taking the cost of computation by downsampling. Combining low-pass filter and down-

sampling, a parallel decimation filter can be applied. It should be noted that the filter should

be applied on not only the joint torques vector but also the columns of observation matrix.

Since they are in a linear relation, thus, our estimation would not be affected by the filter.

Decimation data can be done by function: scipy.signal.decimate().

e) Identification algorithm

After obtaining necessary preprocessed data and identification model, we can proceed the

next step which is estimating the dynamic parameters values. Similar to working steps with

2DOF robot, the steps to obtain base parameters are following:

• To eliminate non-effect parameters: W e, params r = eliminate non dynaffect(robot,W)

• To get the base parameters expression: index base = get index base(W, params r)

• The regressor matrix of base parameters is: W b = build base regressor(W e, index base)
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• Finally, the identified results can be obtained by: params b = double QR(W b, τ , params r)

Weighted Least Square Estimation

The results are above is of ordinary least square estimate. In order to obtain results with

weighted least square estimate, one must call for ordinary least square, then get the results and

variance of estimated values.

Calling an additional function, we can get the results from WLS estimate: params wls =

get wls(params b, stddev) with stddev = get stddev(τ , W b, params b).

3.2.3 Result and discussion

The figures below has shown the identified results, the ones marked with ”thanh” are identified

by the toolbox, the ones marked with ”prof gautier” are provided from literature [4].

a) Comparison with identified results

While the provided results has been verified with cross validation by being used to track

a test trajectory and matched closely with the measurement of torques, the toolbox has given

identified results which are close in a group of base parameters, not in another group. One can

clearly see that the closely matched parameters have large inertia, but the diverge results are all

with large deviation,corresponding to not identifiable parameters. This lead to the introduction

of another set of parameters, namely essential parameters which are presented in the following

paragraph.

The details of comparison can be found the appendix with full description.

Figure 3.14: Comparison of identified parameters of TX40 with results from literature - close
values

b) Essential parameters
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Figure 3.15: Comparison of identified parameters of TX40 with results from literature - diverge
values

It has not been the focus in the dynamic identification of robotics, but essential parameters

can be seen a more practical results that one should look for. Essential parameters are a group

of base parameters which are dominant the dynamics of the system, why keeping the model

of the system more simpler. In the case of TX40, the number of essential parameters is 28,

compared to 61 base parameters, while the sum of residual error between estimated torques

from two models by essential parameters and base parameters remain less than 2%.

Figure 3.16: Comparison of identified essential parameters of TX40 with results from literature
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The algorithm of obtaining essential parameters can be described as followed.

• After performing weighted least square estimation, check if the ratio between the largest

deviation and smallest deviation is large than a threshold.

• If yes, remove the parameter with the largest deviation, then repeat step 1 until the ratio

becomes equal or smaller than the threshold.

Reasoning for this algorithm is pretty straight forward. The parameter with large deviation,

meaning its estimation has been spread over the space. In other word, the parameter has not

actually contribute much in dynamics of the robot so that it could form a clear linear relation

that should be realized by linear regression technique such as least square estimation. In the

table of comparison of identified results, one may easily recognise that those parameters with

large deviation have small magnitude which explains their slight impact on dynamics.

In the toolbox, the step of finding essential parameters is repeating WLS estimation. There-

fore, it is straight forward to implement with a while loop.

3.3 A complete procedure - TIAGo

In the first section of the chapter, the dynamic identification on a simulated manipulator has

shown how the basic methods should be called and what output would be expected from each

method. However, it had excluded such a significant effect of uncertainty from obtaining data

from actual system. Therefore, the second section had naturally transitioned to the next step

of dealing with these uncertainties by implementing toolbox on a set of raw experimental with

well documented data. The final step to complete the whole procedure of dynamic identification

is to generate exciting trajectories that would produce experimental data for analysis. This

is the main purpose we aimed to achieve in the experimentation with TIAGo, a mobile base

manipulator.

3.3.1 Experiment designs

a) Robot descriptions

TIAGo is a mobile base manipulator composing of a mobile base, a torso, an arm with

a wrist, an end-effector and head. This experimentation will focus on identifying dynamic

parameters of the torso and the arm and and the wrist’s parameters. The torso is mounted

on the mobile base and allows to attach the arm and the head on it. It contains of 1 lift joint

with a stroke of 35 cm which permits the translational up and down motion. The arm and

wrist has 7 revolute joints with a reaching range of 87 cm. The last two joints at the wrist

are coupled and driven by a differential face gear set. The following figure and table gives the
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detail specification of the robot TIAGo. About software, TIAGo can be controlled utilizing

ROS system and data recording is also done by reading sensor data from bag files.

Figure 3.17: TIAGo robot main components

Figure 3.18: TIAGo’s software

b) Experiment setup

The experimentation on TIAGo is to generate necessary data for the analysis step of dynamic

identification later. In this experiment setup, the torso’s lift joint and 7 joints of 7 DOF arm
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will be controlled and tracking a pre-designed trajectory. Other joints such as the mobile base

and the head are not of interest to this experimentation, hence there are kept fixed during the

experiments.

Figure 3.19: Kinematics tree structure of TIAGo Steel robot

The detailed steps of the experiments are presented as following:

• Robot startup: robot is started up with the initial position of the links near the starting

position of the trajectory. The low-level controller will make an additional motion to

move the links to the exact starting position later.

• Reference trajectory load-up: The reference points of the trajectory is saved in text file

with a timeline at a frequency of 50 HZ which is in range of the controller’s frequency.

• Trajectory tracking: The low-level controller will track the loaded trajectory.

• Data recording: The joint data such as positions, velocities and efforts are record in the

bag files, a data structure of ROS system which allows to replay the motion and inspect

the data in details.

• Validating obtained data: Finally, the obtained data will be plotted to spot abnormal out-

liers or failures of tracking or saturation. If none of these issues happens, the obtained

data is validated to proceed to the analysis step.
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3.3.2 Methodology

In this methodology sub-section, similar to steps done with the robot TX40 above, first dynamic

model of the robot will be derived, then an identification model of interested links will be

determined. After that, the methods of creating trajectories that optimizes certain criterion

will be shown. Collected data from experimets tracking these trajectories will preprocessed.

Finally, the pre-processed data will be analyzed by identification algorithms. Afterwards, the

estimated parameters for the analysis process will be validated.

a) Dynamic model

First of all, a robot object will be instantized by calling:

tiago robot = Robot(tiago.urdf)

model = tiago robot.model and data = tiago robot.data

Similar to implementation on TX40, the dynamic model can be built by calling the function:

W = build full regressor(N, model, data, q, v, a)

The matrix W is the observation matrix containing full dynamic modeling of the TIAGo

robot with inclusion of friction, offset, and joint couplings.

b) Identification model and identification algorithm

Thanks to the generality of the function, an identification model and the values of base

parameters can be obtained for the robot TIAGo by calling the same functions as following:

• To eliminate non-effect parameters: W e, params r = eliminate non dynaffect(robot,W)

• To get the base parameters expression: index base = get index base(W, params r)

• The regressor matrix of base parameters is: W b = build base regressor(W e, index base)

• Finally, the identified results can be obtained by: params b = double QR(W b, τ , params r)

c) Data preprocessing

Although, data preprocessing is normally customized for a specific series of robots. However,

the basic filtering and preprocessing steps used with TX40 in the above section could be con-

sidered as a general pipeline. Applying the same processes to TIAGo, we would obtain ”clean”

and reliable data ready for analysis. The figure 3.20 is showing an example of acceleration

estimates before and after filtering and preprocessing.

d) Optimal trajectories generation

The main difference, also the advance of the dynamic identification procedure for TIAGo

comparing to the one for TX40 is to generate optimal exciting trajectories. In this imple-

mentation, the trajectory profile chosen is the cubic spline profile. The optimizing criteria is

the condition number of the base regressor. The decision variables are the control points of
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Figure 3.20: Accelerations of the lift joint and 7 arm joints before and after filtering

cubic spline curve. Constraints of joint position limits, velocity limits and joint effort lim-

its are imposed. More over, the self collision is also taken into account to the consideration

of constraints. With the information above, we could formulate an optimization problem for

generating optimal exciting trajectory.

Stacking technique

An optimizing technique is adopted from literature by V. Bonnet [11]. Considering the fact

that a cubic spline CB is a series of cubic polynomials {cb1, cb2, ...cbk, ...cbn} which share the

end-points, we could create an optimal exciting cubic spline trajectory by consecutively impose

n optimization problems on n segments of the cubic spline.

• 1st repetition: we would have obtained a sub-regressor Wb1 which has minimum condition

number corresponding to first segment cb1. At this point, our main base regressor WB is

equivalent to the first sub-regressor Wb1.

• 2nd repetition: we would generate the second cubic polynomial segment cb2 which would

produce a sub-regressor Wb2. We would stack the sub-regressor Wb2 to our main base

regressor WB, then solves the optimization problem for the minimum condition number

of the current WB with only searching variables of the second segment.

• kth repetition: we would repeat the procedure above. At the step, we would obtain a new

main base repressor WB stacked by a sub-regressor Wbk. We repeat this process until the

nth time which signals the deviation of optimized condition number is relatively small

compared to its previous repetition.
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This technique would help to reduce significant amount computing time for a contrained

nonlinear optimization problem.

Algorithm 1 ”Stacking” regressor optimization

Input : robot model
ε← 0.05
CB ← [ ]
WB ← [ ]
while ∆ ≥ ε do

var ← cubic spline() . var is control points of an individual cubic polynomial segnent.
cb← NLP.solve(var) . NLP is an optimization solver object.

if cb is not constraint-violated then
CB ← stack(CB, cb)
WB ← stack(WB,Wb)

∆← |cond(WB)−cond prev|
cond(WB)

cond prev ← cond(WB)
else

CB ← CB
WB ← WB

end

end
Output: A optimal exciting cubic spline CB

3.3.3 Result and discussion

a) Optimal trajectories

The figure 3.21 has shown the evolution of the condition number of main base regressor.

We can observe that it reduces over the optimizing iteration counts and stacking repeats.

Generating optimal exciting trajectories has been remaining one of the most challenging

obstacles in dynamic identification. The problem with optimization approach lies with its large

size, non-linearity and highly constrained boundaries. Therefore, it has not only made the

problem difficult to solve but also unsolvable in some cases.

Stacking technique has made one significant progress in solving this problem. It has divided

the optimization into sub-problem and solving one by one. The quickly descending change of

condition number over repetition can be interpreted that in the first segments, the solver has

tried to optimizing on parameters with large magnitudes. As it proceeded forward, the solver

shifted its focus on the smaller magnitude parameters.

b) Comparison of reconstructed measured values of joint torques

Based on the results we obtained by reconstructing joint efforts from identified base param-

eters and standard reference parameters, we could make some observations as follow:
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Figure 3.21: Optimizing condition number using stacking technique

• For the lift joint, both joint efforts constructed by identified parameters and reference

parameters provided similar ”shape” to measured values, but clearly the reference one

has missed out an significant offset which identified model has been able to addressed.

The interpretable reason could be that the lift joint has not been well-calibrated.

• For arm joint 1, 2, 3, 4, the joint efforts by standard reference parameters are very

questionable as they deviated largely from measured values. Meanwhile, the constructed

joint efforts by identified parameters have delivered much more closely estimated values.

• For arm joints 5, 6, 7 which correspond to the wrist, both reconstructed values did not

succeed resembling the measured values. Identifying these three joints have remained

a challenging problem. Firstly, it needs to address the hardware difficulty with joint

couplings between joint 6 and joint 7. Joint coupling affected only the joint effort data

but also the joint position and velocities. These effects changed the estimated final results.

Secondly, end-effector’s light weight and its position at the end of a long arm made it

prone to jerky vibration during the experiment which brought in unexpected noise and

disturbance to the data. Finally, inaccurate drive gain could be a factor that magnifies

the deviation in the final estimated parameters.

Due to the time limit of this internship, the fore mentioned problems remain to be resolved

in a further study.
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Figure 3.22: Comparison of re-constructed joint efforts by reference parameters and identified
parameters with measured values 75



Conclusion

In this thesis report, the development of a standard open-source dynamic identification was

presented. Firstly, an overview on the state of the art in dynamic identification was introduced

in the first chapter. The theory background was given in details along with major approaches

by researchers in recent years in dynamic identification. This chapter lays the foundation of

the toolbox. Main features and functions of the toolbox were explained chapter 3. The toolbox

was built on top of the Rigid Body Dynamic library, Pinocchio and utilized popular computing

libraries. In order to verify the functionalities of the toolbox, a full description of identification

procedures on simulation and on actual robots was presented in chapter 4. Even building a

toolbox based on theory mostly means translating conceptual ideas to practical tools, a pipeline

of how step-by-step these tools should be used is also very important. Therefore, the chapter

of implementation plays a critical role in this report. The development of the toolbox was able

to deliver main functionalities for dynamic identification in robotics. However, future works

remains open to expand the toolbox to geometric calibration, real-time identification as well as

to optimize the performance of the toolbox with best practices.
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Appendix A

Additional tables
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