
HAL Id: hal-03372005
https://laas.hal.science/hal-03372005

Submitted on 9 Oct 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Combining Monte Carlo Tree Search and Depth First
Search Methods for a Car Manufacturing Workshop

Scheduling Problem
Valentin Antuori, Emmanuel Hébrard, Marie-José Huguet, Siham Essodaigui,

Alain Nguyen

To cite this version:
Valentin Antuori, Emmanuel Hébrard, Marie-José Huguet, Siham Essodaigui, Alain Nguyen. Com-
bining Monte Carlo Tree Search and Depth First Search Methods for a Car Manufacturing Workshop
Scheduling Problem. International Conference on Principles and Practice of Constraint Programming,
Oct 2021, Montpellier (on line), France. �10.4230/LIPIcs.CP.2021.14�. �hal-03372005�

https://laas.hal.science/hal-03372005
https://hal.archives-ouvertes.fr

Combining Monte Carlo Tree Search and Depth1

First Search Methods for a Car Manufacturing2

Workshop Scheduling Problem3

Valentin Antuori !4

Renault, LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, France5

Emmanuel Hebrard ! �6

LAAS-CNRS, Université de Toulouse, CNRS, ANITI, Toulouse, France7

Marie-José Huguet !8

LAAS-CNRS, Université de Toulouse, CNRS, INSA, Toulouse, France9

Siham Essodaigui !10

Renault, France11

Alain Nguyen !12

Renault, France13

Abstract14

Many state-of-the-art methods for combinatorial games rely on Monte Carlo Tree Search (MCTS)15

method, coupled with machine learning techniques, and these techniques have also recently been16

applied to combinatorial optimization. In this paper, we propose an efficient approach to a Travelling17

Salesman Problem with time windows and capacity constraints from the automotive industry. This18

approach combines the principles of MCTS to balance exploration and exploitation of the search19

space and a backtracking method to explore promising branches, and to collect relevant information20

on visited subtrees. This is done simply by replacing the Monte-Carlo rollouts by budget-limited21

runs of a DFS method. Moreover, the evaluation of the promise of a node in the Monte-Carlo search22

tree is key, and is a major difference with the case of games. For that purpose, we propose to evaluate23

a node using the marginal increase of a lower bound of the objective function, weighted with an24

exponential decay on the depth, in previous simulations. Finally, since the number of Monte-Carlo25

rollouts and hence the confidence on the evaluation is higher towards the root of the search tree, we26

propose to adjust the balance exploration/exploitation to the length of the branch. Our experiments27

show that this method clearly outperforms the best known approaches for this problem.28

2012 ACM Subject Classification Mathematics of computing → Combinatoric problems; Math-29

ematics of computing → Combinatorial optimization; Computing methodologies → Planning and30

scheduling; Computing methodologies → Discrete space search31

Keywords and phrases Monte-Carlo Tree Search, Travelling Salesman Problem, Scheduling.32

Digital Object Identifier 10.4230/LIPIcs.CP.2021.5433

1 Introduction34

The assembly floor of our car manufacturer partner contains several machines, each producing35

a certain type of components and as many machines consuming those components. The36

process of moving components across the workshop, from the point where they are produced37

to the point where they are consumed is a major bottleneck for the production rate of the38

plant. The resulting transportation problem can be seen as a repetitive single vehicle pickup39

and delivery problem with time windows and capacity constraint. The repetitive aspect comes40

from the fact that over a weekly schedule, the pickups and deliveries between the same41

pairs of machines is repeated at a given frequency, and for the same reason, both tasks are42

constrained in time. Finally, the capacity comes from the specific trolleys used by operators,43

© Valentin Antuori, Emmanuel Hebrard, Marie-José Huguet, Siham Essodaigui, Alain Nguyen;
licensed under Creative Commons License CC-BY 4.0

27th International Conference on Principles and Practice of Constraint Programming (CP 2021).
Editor: Laurent D. Michel; Article No. 54; pp. 54:1–54:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:vantuori@laas.fr
mailto:hebrard@laas.fr
https://orcid.org/0000-0003-3131-0709
mailto:huguet@laas.fr
mailto:siham.essodaigui@renault.com
mailto:alain.nguyen@renault.com
https://doi.org/10.4230/LIPIcs.CP.2021.54
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

54:2 Combining MCTS and DFS for a Car Manufactoring Workshop Scheduling Problem

which can be stacked in trains of a bounded length.44

The method used in the industrial context is a large scale scheduling model solved45

using local search solver. A range of approaches relying on reinforcement learning (RL)46

were recently proposed in [2]. A simple stochastic branching policy (a linear model over47

some problem-specific parameters) is learned via RL, and used either to guide a constraint48

programming approach with rapid restarts, a constraint approach with limited discrepancy49

search, or a multistart local search method. All three methods vastly outperform the50

industrial method both on real and synthetic data sets.51

In this paper, we introduce a new approach, combining Monte-Carlo Tree Seach (MCTS)52

with budget-limited Depth First Search (DFS). MCTS was initially designed for solving AI53

games [6], and, over the last few years, MCTS combined with reinforcement learning and54

deep learning has enabled a breakthrough in the resolution of many combinatorial games55

(such as Go, with AlphaGo and AlphaGo Zero[22, 23]). Monte-Carlo Tree Search [6] offers a56

good generic strategy to tackle combinatorial problems. The expected outcome of a subtree57

is evaluated via Monte-Carlo simulation: starting from an open node of the search tree, a58

complete solution is built using a randomized heuristic policy. The outcome of the rollout59

is back-propagated to that node and all its ancestors down to the root by computing an60

average. Then, the next node to expand is selected by traversing the search tree from the61

root using multi-armed bandits algorithms (e.g., Upper Confidence bounds applied to Trees,62

UCT [11]) until reaching a node that has not been expanded yet. Without requiring built-in63

domain knowledge, Monte-Carlo rollouts provide good guidance, and the expansion phase64

gives guarantees on the compromise between exploration and exploitation. We show that65

in our problem, replacing the Monte-Carlo rollouts by randomized, limited-budget DFS is66

effective.67

Several hybridizations with combinatorial optimization frameworks have been proposed.68

MCTS has been combined with constraint programming (CP) in [13], where the simulation69

phase stops at first fail, and the authors do not allow backtracking. Moreover, in order to70

allow restarts, instead of keeping an evaluation of every open node, this is done on pairs71

variable/value, in a way inspired by the RAVE (Rapid Action Value Estimation) heuristic72

used in Go [8]. Finally, took advantage of the fact that Gecode [7] uses copying instead73

of trailing, to open every search node visited during a rollout. In the field of Boolean74

satisfiability (SAT), MTCS has been has been combined with SAT solver [17], however, in75

this case without including the defining characteristics (clause learning, VSIDS, ect.) of76

modern SAT solvers. In [9], the authors propose to hybridize MCTS with local search to77

solve the MAX-SAT problem. They use a fixed limited-budget stochastic local search in place78

of the rollouts. Finally, in [21], the UCT algorithm has been used in mixed integer linear79

programming (MILP), although replacing Monte-Carlo rollouts by a lower bound obtains80

with the Linear Programming (LP) relaxation.81

We are not aware of MCTS approaches using DFS rollouts. However, this is closely82

related to the Hybrid Best First Search (HBFS) algorithm introduced in [1] where limited83

DFS is interleaved with BFS, although the choice of leaf to expand is not based on the same84

principles. Besides using DFS, we propose two adaptations of MTCS method designed to be85

effective on our problem, but directly applicable in any combinatorial problem.86

First, since the goal of a Monte-Carlo rollout is to evaluate a single decision, and since87

each subsequent heuristic decision reduces the relative impact of that first decision, we argue88

that the definition of the overall reward should reflect this form of “diminishing returns”.89

Therefore, we propose to define the outcome of a rollout as the sum of the marginal increments90

of the lower bound at each step, weighted by a coefficient in]0, 1[that exponentially decreases91

V. Antuori, E. Hebrard, M-J. Huguet, S. Essodaigui and A. Nguyen 54:3

with the depth. When the coefficient tends towards 1, the outcome tends towards the overall92

objective value of the solution, and when it tends towards 0, the short term growth of the93

lower bound weigh more and more. Observe that this scheme is generic, it only requires a94

lower bound of the objective function which is monotonically non decreasing at each decision.95

Second, in the multi-armed bandit algorithm, the tradeoff between exploration and96

exploitation is controled by a constant factor c for the exploration term. As the tree becomes97

deeper, the number of iterations of the multi-armed bandit along a branch grows. Therefore,98

the probability that it will deviate from the best branch so far grows exponentially with99

the depth of the branch. To offset this, we apply an exponential decay to the parameter c100

towards the root, so that the likelihood of deviating at the root decreases rapidly when the101

depth of the tree grows.102

The paper is organized as follows. First, in Section 2 we describe the problem of routing103

vehicle components in car manufacturing workshops and we give a detailed overview of the104

standard MCTS algorithm in Section 3. Then, we present the novel aspects of our approach105

in Section 4. Finally, we give the specific implementation details for the considered problem106

in a MCTS framework in Section 5, and we report the results of extensive experiments on107

both industrial and synthetic data in Section 6. These experiments show that our adaptations108

of the MCTS method significantly outperforms previous methods, including the local search109

approach currently used in the industry.110

2 Problem Description111

The industrial assembly line consists of a set of m components to be moved across a workshop,112

from the point where they are produced to where they are consumed. Each component is113

produced and consumed by two unique machines, and it is carried from one to the other114

using four dedicated trolleys. Initially, there are two trolleys standing at the production point115

and two trolleys at the consumption point. On each side, one of them is full and the other is116

empty. However, the empty trolley at the production point is being filled, and the full trolley117

at the consumption point is being emptied. The full trolley at the production point must be118

brought to the consumption point before the initially full trolley there has been emptied,119

and symmetrically, the empty trolley at the consumption point must be brought to the120

production point before the initially empty trolley there has been filled. A production cycle121

is the time ci taken to produce (resp. consume) component i, that is, to fill (resp. empty) a122

trolley. The two pickups and the two deliveries (of empty and full trolleys) described above123

must then be done whithin this time window. The end of a production cycle marks the start124

of the next, hence there are ni =
⌊

H
ci

⌋
cycles over a time horizon H for the component i.125

P1

C1

P2

C2

P3

C3

(a) Machines and routes in the workshop

H

(b) Time cycles for each component

Figure 1 Illustrative example

CP 2021

54:4 Combining MCTS and DFS for a Car Manufactoring Workshop Scheduling Problem

The problem is illustrated on a small example in Figure 1. In this example, there are 3126

components having their own production and consumption machines, denoted by Pi and Ci127

in Figure 1(a). The lines between the machines represent the routes in the assembly line.128

The time cycles of each component and the time horizon (H) are given in Figure 1(b). In129

this example, there are 3 time cycles for the yellow component, 4 time cycles for the red130

component and 2 for the blue one.131

For each component i, for each of its cycles k, there are two pickups and two deliveries:132

the pickup pek
i and delivery dek

i of the empty trolley from the consumption area to the133

production one, and the pickup pfk
i and delivery dfk

i of the full trolley from production134

to consumption. The processing time of an operation o is denoted pto and the travel time135

between operations o and o′ is denoted tto,o′ .136

Let O be a set of all pickup and delivery operations with |O| = n. The problem is137

to compute a sequence ω : {1, . . . , n} 7→ O of the operations O, where ω(j) is the j-th138

operation in the sequence, and χ = ω−1 its inverse. The sequence ω must satisfy the139

following constraints:140

Routing: For every 1 < j ≤ n, operation ω(j) must be given a start time sω(j) (and141

end time eω(j) = sω(j) + ptω(j)) taking into account duration and travel time: sω(j) ≥142

sω(j−1) + ptω(j−1) + ttω(j−1),ω(j) (and sω(1) = 0).143

Time windows: An operation o occurring at period k for component i is given a release144

date ro = (k − 1)ci and a due date do = kci, with ro ≤ so and eo ≤ do.145

Precedences: Pickups must precede their deliveries in the same period.146

χ(pfk
i) < χ(dfk

i) ∧ χ(pek
i) < χ(dek

i) ∀i ∈ [1, m] ∀k ∈ [1, ni] (1)147

Train length: The operator may assemble trolleys into a train (trolleys can be extracted148

out of the train in any order), so a pickup need not be directly followed by its delivery.149

However, the total length of the train of trolleys must never exceed a length Tmax.150

Notice that there are only two possible orderings for the four operations of a production151

cycle. Indeed, since the first delivery (which can be either the full or the empty trolley since152

they happen in parallel) and the second pickup take place at the same location, doing the153

second pickup before the first delivery is dominated: the train will needlessly contain both a154

full and an empty trolley for the same component, and this delivery will need to be done155

eventually and can only incurs further time loss.156

This industrial problem is a repetitive single vehicle pickup and delivery problem with157

time windows and capacity constraint. In this problem, the production-consumption cycles of158

each component entail a very particular structure: the four operations of each component159

must take place in the same time windows and all of these operations are repeated for every160

cycle. In addition, all operations are mandatory and there is no objective function for the161

industrial application, instead, feasibility is hard. As a result, the efficiency of the Large162

Neighborhood Search approaches proposed in [19] for such routing problems, are severely163

hampered since they rely on the length of the tour as the objective to evaluate the moves and164

the insertion of relaxed requests is often very constrained by the specific precedence structure.165

This problem was previously introduced in [2], and both exact and heuristic methods were166

proposed to solve it. These approaches rely on a fine tuned heuristic, and it was observed167

for some instances that greedy dives of the solvers were able to find a solution. The main168

motivation for a MCTS approach comes from this observation as the algorithm strongly rely169

on greedy dives, and is entirely guided by them.170

V. Antuori, E. Hebrard, M-J. Huguet, S. Essodaigui and A. Nguyen 54:5

3 The Monte-Carlo Tree Search Method171

In this section, we give some overview of the Monte-Carlo Tree Search method, and we172

introduce notations that will be used in the following.173

MCTS is a tree search heuristic method based on multi-armed bandit principles to guide174

the tree expansion and to ensure a compromise between exploration and exploitation. This175

method was widely studied in the context of games but also for solving optimization problems176

[21, 20, 16, 14, 15, 5]. For a detailed survey on the MCTS method, the reader may refer177

to [4]. In a nutshell, the MCTS method develops a search tree where a node corresponds to a178

state of a given problem, with final states being solutions. Each node is associated with a set179

of feasible actions leading to child nodes in the tree. The aim is to find a path from the root180

node to a final state maximizing a reward. The MCTS method is based on four principles:181

1. a reward can be computed at each final state;182

2. a simulation process, also called rollout, is used to produce a path from a given node to a183

final state (for instance based on random sampling);184

3. a backpropagaton method to update node information after each new rollouts;185

4. a selection mechanism, usually based on multi-armed bandit [12], for guiding the tree186

expansion and insuring a compromise between exploitation (select the most promising187

node) and exploration (visit different parts of the tree).188

Let A be a set of actions. A state σ ∈ A∗ is a sequence of actions, and |σ| denotes its189

length. We note σ|a the state reached when applying action a in state σ, A(σ) denote the190

set of possible actions in state σ, and p(σ) the parent state of σ. The MCTS method stores191

in memory the tree T it has already explored, and for every state σ, it stores the triplet:192

⟨N(σ), P r(σ), V (σ)⟩, where N(σ) is the number of time (σ) has been visited, Pr(σ) is the193

prior probability or prior preferences to choose the state σ from its parent state p(σ), and194

V (σ) is the expected value of subtrees rooted at σ, and computed by averaging the outcomes195

of Monte-Carlo rollouts. Notice that Pr(σ) was introduce in the MCTS in [22] but was not196

in the original form of MCTS.197

The algorithm iterates over the four following phases until some stopping criteria are met.198

Selection199

The selection phase begins at the root node of T , and finishes when we reach a node that has200

not yet been explored. At each node σ ∈ T , an action is selected according to the statistics201

stored in σ:202

a∗ = arg max
a∈A(σ)

Ṽ (σ|a) + c ∗ U(σ|a) (2)203

204

where Ṽ (σ|a) is the exploitation term (based on the value of node V (σ|a)), U(σ|a) is the205

exploration term, and c is a parameter which represents the balance between the two terms.206

This process continues from the state σ|a∗ until a non-visited node is reached , i.e. a leaf of207

the subtree T .208

In adversarial games, the value V of a node is the expected outcome, e.g., 1 for a win and209

0 or −1 for a loss. In the context of combinatorial optimisation, however, several definitions210

have been used. A first possibility is to simply store the expected objective value, although211

this technique entails that rollouts must be complete, even when they are suboptimal early212

on. In [16] and [14], the authors consider a solution whose objective value is within a factor213

α of the best known solution as a “win” (the effective value is in [0, 1] depending on the214

CP 2021

54:6 Combining MCTS and DFS for a Car Manufactoring Workshop Scheduling Problem

quality of solution) and all other outcomes as loss (0). The parameter α must therefore215

be carefully chosen, and the likelihood of a positive reward decreases when the best known216

solution improves. In [13], the MCTS is frequently restarted (and hence the MCTS tree lost),217

then the authors store the outcomes of the rollouts on variable/value pair instead. In this218

technique the rollouts are depth first search calls stopped on the first fail, and the expected219

relative failure depth is stored for each variable/value pair instantiated in the selection phase.220

Finally, in [21], instead of a rollout, the lower bound of the LP relaxation is backpropagated221

instead.222

Observe that it is important to normalize the value V stored on the node, to make the223

choice of the balance exploitation/exploration parameter c more robust. A state value σ|a224

ending on the action a can be normalized in [−1, 1] as follows:225

Ṽ (σ|a) =
{

2 ∗ V +−V (σ|a)
V +−V − − 1 if N(σ|a) > 0

0 otherwise
(3)226

227

Where V + = max{V (σ|a) | a ∈ A(σ), N(σ|a) > 0} and V − = min{V (σ|a) | a ∈228

A(σ), N(σ|a) > 0} are, respectively, the maximum and minimum values of any explored229

sibling state.230

Finally, the exploration term is [22]:231

U(σ) = Pr(σ)
√

N(p(σ))
N(σ) + 1 (4)232

233

The rationale is to select the action a that maximizes Ṽ (σ|a) plus a bonus that decreases234

with each visit in order to promote exploration. The prior probability Pr(σ) biases the initial235

exploration by the knowledge we have on the state. The square root term could be replaced236

by a logarithmic term which is often used in MCTS, without changing this rationale.237

Expansion238

Let σ be the node returned by the selection procedure, during the expansion phase, for all239

a ∈ A(σ), a child σ|a is added to σ and initialized its visit counter N(σ|a) with its expected240

objective value V (σ|a) set to 0. If no prior probability Pr(σ|a) is available for this state, the241

uniform distribution 1/|A(σ)| can be used instead.242

Simulation243

In the simulation phase, the state obtained by the selection phase is extended to a final state244

τ via a Monte-Carlo rollout. In the context of combinatorial optimization the final state is a245

feasible solution. The rollout is typically done by random sampling of the possible actions246

A(σ) from state σ following a stochastic policy. For instance, one can use the probability247

distribution given by Pr(σ|a) | a ∈ A(σ). Alternatively, this can be done by any randomized248

greedy heuristic tailored to the problem at hand [14, 16, 20]. As mention before, hybridization249

with existing technologies can take place in this phase, whether it is a linear relaxation [21],250

a local search [9] or a call to a CP solver [13].251

V. Antuori, E. Hebrard, M-J. Huguet, S. Essodaigui and A. Nguyen 54:7

Backpropagation252

Finally for each node σ traversed during the selection procedure, we update its statistics253

regarding the final state τ obtained by the simulation phase:254

V (σ)← V (σ) + z(τ, σ)− V (σ)
N(σ) + 1255

N(σ)← N(σ) + 1256
257

with z(τ, σ) the outcome of the rollout τ evaluated from node σ. The first update rule allows258

to maintain the average outcome of the rollouts for each node traversed during the selection259

step. It is possible to change the rule to only keep the best outcome find when traversing260

the node, instead of the average [21, 20]. The rationale is the same as minimax algorithms261

for games, the optimistic view is that eventually search will find the best completion of a262

partial solution, and therefore its expected value is closer to the best rollout than to the263

average of all rollouts. However, the preferred choice may depend on the standard deviation264

of the outcomes of rollouts under a given node, and on the ratio of the whole search tree265

that the algorithm will eventually explore. For this reason, for larger problems, and when266

the heuristic used during the rollouts is robust, the average may be better.267

4 Tailoring Monte-Carlo Tree Search to Combinatorial Optimization268

In this section, we introduce three modifications of standard Monte Carlo Tree Search which269

we empirically found beneficial in the context of optimization problems. These modifications270

are generic, in the sense that they hold outside of our industrial application, as long as we271

have a lower bound computation technique for the objective function and a depth first search272

procedure for the target problem.273

4.1 Evaluation based on the objective function274

In game playing, the outcome of a Monte-Carlo rollout may only be known when the game275

ends. Typically, the rollout is given a value of 1 for a win, −1 for a loss and 0 for a draw.276

Standard adaptations to combinatorial optimization are to normalize the objective value in a277

way or another as described in Section 3.278

When simulating long branches, however, a “mistake” on a single decision along the279

branch can make the final outcome irrelevant. In fact, look-ahead methods often exhibit280

diminishing returns. For instance, it was observed in Chess that the rate of wins in self-plays281

between an algorithm looking k + 1 plies ahead versus the same algorithm looking k plies282

ahead declines as k grows [10]. In the case of a greedy procedure, it is therefore natural to283

conjecture that as the length of the branch grows, the correlation between the quality of the284

initial decision and the overall outcome decreases.285

In combinatorial optimization problems, however, we usually have a lower bound on the286

objective that monotonically grows with every decision. Therefore, the evolution of this value287

can provide a better insight into the quality of an initial decision. Let LB : A∗ 7→ R be a288

lower bound on sequences of actions, with LB(σ) equals to the objective value if σ is a final289

state. Then, for a given node σ we propose to evaluate a state σ′ reachable from σ as the290

sum of the marginal increment of the lower bound LB in the path from σ to σ′, weighted by291

an exponetially decaying coefficient γ. Hence we can define this sum recursively as follows:292

z(σ′, σ) =
{

LB(σ)− LB(p(σ)) if σ′ = σ

γ|σ′|−|σ|(LB(σ′)− LB(p(σ′))) + z(p(σ′), σ) otherwise
(5)293

CP 2021

54:8 Combining MCTS and DFS for a Car Manufactoring Workshop Scheduling Problem

The evaluation of a final state τ obtained by a rollout is then simply z(τ, σ) and represents294

an upper bound of the optimal solution.295

Algorithm 1 implements backpropagation following the reward defined in Equation 5.296

This algorithm takes as an input the sequence (R) of the lower bound increments given by297

the rollout, the node selected in the selection phase, and the decay rate.298

Algorithm 1 Backpropagation procedure

Data: R : sequence of the lower bound increments, σ : selected node, γ : decay rate
1 // Sum of exponentially decaying marginal increment of the lower bound

2 val←
|R|∑
i=1

γi−1Ri

3 // Backpropagation until the root node
4 repeat
5 val← γ ∗ val + LB(σ)− LB(p(σ))
6 N(σ)← N(σ) + 1
7 V (σ)← V (σ) + val−V (σ)

N(σ)
8 σ ← p(σ)
9 until σ = Nil;

The proposed evaluation method puts more weight on the short-term impact of a decision,299

wagering on it being more reliable than long term observations. For γ = 1, the score reflects300

the objective value LB(τ) of the rollout, whereas greater weight is put on short-term impacts301

when γ tends towards 0.302

Moreover, the lower bound computations can be used during the expansion phase to
avoid expending into sequences whose objective value cannot be lower than the current upper
bound (best known solution). Thus, a node σ′ that cannot be expanded further (all potential
children nodes are suboptimal) is removed from the search tree. In that case, the information
is backpropagated along the branch that leads to this node, that is, each node σ containing
the deleted node σ′ in its subtree are updated:

V (σ)← 1
N(σ)−N(σ′) (V (σ) ∗N(σ)− V (σ′) ∗N(σ′))

and
N(σ)← N(σ)−N(σ′)

Indeed, all information contained in the deleted node is now irrelevant for the rest of the303

search as it is not in the tree anymore. Then previous iterations which have passed throughout304

this node should not have an impact on the future search.305

Then, for the implementation of the proposed evaluation function, we should store LB(σ)306

at each node σ in addition to the triplet {N(σ), P r(σ), V (σ)}.307

A potential limit with this evaluation method is that it may skew search towards post-308

poning actions that greatly increase the lower bound, but must eventually be done. For309

instance, consider a Travelling Salesman Problem with an isolated city far away from all310

other cities. Rollouts where this city is visited last will be preferred to rollouts where it311

is visited early. Lower bounds that take into account the future decisions in a reasonable312

way (e.g., minimum spanning tree for the travelling salesman problem, or the prehemptive313

relaxation in scheduling) may prevent this phenomenon since the cost of an exceptionally314

remote city or of an exceptionally large task would contribute to the lower bound anyways.315

V. Antuori, E. Hebrard, M-J. Huguet, S. Essodaigui and A. Nguyen 54:9

The lower bound we used in our industrial problem, however, is extremelly basic and yet316

this did not seem to be an issue in our experiments.317

4.2 Dynamic Exploitation vs Exploration Balance318

Since the tree grows deeper as search progresses, the likelihood to deviate from the best319

branch increases. Therefore, we propose to dynamically adapt the parameter that control320

the balance between exploration and exploitation, depending on the depth of the tree, in321

order to promote exploitation on deeper nodes. Let td(T) be the depth of the tree T , then322

at step t of the selection phase, the exploitation/exploration coefficient will be323

βtd(T)−t ∗ c (6)324

with β < 1 a parameter. This mechanism has a similar effect as committing to a move at the325

root node. At the root t = 0 and thus βtd(T)−t ∗ c tends towards 0 when td(T) grows, so the326

first decision is very unlikely to deviate from the most promising choice once the search tree327

has sufficiently grown. Conversely, at a leaf, this term tends towards the original value c and328

hence less promising – but less frequently visited – nodes will be selected more often. In the329

context of games, when a move is actually made, it makes sense to forget the siblings and330

parents of the corresponding state. In optimization, this mechanism has been implemented331

in several approaches in order to limit the combinatorial explosion [3, 14]. Since commits332

are irreversible, the algorithm is no longer complete, and budget parameters controling such333

commits need to be carefully chosen. Instead, the mechanism we propose has a similar effect334

but in a “smooth” way: near the root, it is more likely that the best move will be chosen,335

however other states can still be reached.336

4.3 Depth First Search as a rollout337

Finally we propose to use a Depth First Search procedure instead of a randomized greedy338

heuristic in the simulation phase. More precisely, in order to intensify the search around339

promising areas, a budget is defined after a first greedy “dive” and a budget-limited DFS is340

performed. For this purpose, the simulation is split into three steps:341

The first step is a greedy randomized procedure from the selected node σ until a con-342

tradiction is detected. This contradiction can happen because a constraint is violated,343

or because the lower bound exceeds the upper bound. At this point, we define a budget344

for the DFS by evaluating the current state σ′. This budget will be larger if this is a345

promising state, and maximal if no contradiction was encountered (and hence a new346

upper bound was found). On the other hand, if the state σ′ is not promising, then the347

budget will be smaller or null.348

The second step of the simulation is a DFS, from the state reached by the greedy procedure349

σ′. This search is only performed on the subtree rooted at the node σ selected in the350

selection phase. The DFS algorithm must be able to store the best branch discovered,351

that is, the best solution or the best partial sequence according to the evaluation we352

described previously.353

The third step begins when the budget is consumed (or the search is complete for354

the subtree rooted at the selected node σ in the selection phase). If no solution was355

found during the previous step, the greedy randomized procedure is used to extend the356

best branch found by the DFS to a complete solution which can be evaluated before357

backpropagation.358

CP 2021

54:10 Combining MCTS and DFS for a Car Manufactoring Workshop Scheduling Problem

The evaluation procedures for the states and for the budget will be detailed in Section 5359

as their definitions depends on the considered problem.360

5 Adaptation to the industrial Workshop Scheduling Problem361

Tree model362

In the search tree of the MCTS method, a state σ represents a partial sequence of operations363

and the set of actions correspond to the set of operations of the routing problem described364

in Section 2, i.e., actions are operations A = O. In the search tree, a sequence σ|a is the365

sequence σ extended by the action (operation) a. The set of possible actions A(σ) from a366

sequence σ contains every operation a such that the (partial) sequence σ|a is feasible with367

respect to the constraints.368

Objective function369

Since our industrial application is a satisfaction problem (the existence of a tour without
delay), we need to generalize it to an optimization problem to apply MCTS as described in
Sections 3 and 4. Therefore, during the simulation phase, we relax the due date constraints
and instead we minimize the maximum tardiness:

L(σ) = max(0, max
1≤j≤|σ|

(eσ(j) − dσ(j)))

Since in this case operations can finish later than their due dates, it is necessary to make the370

precedence constraints due to production cycles explicit:371

max(ρ(dfk−1
i), ρ(dek−1

i)) < min(ρ(pek
i), ρ(pfk

i)) ∀i ∈ [1, m] ∀k ∈ [2, ni] (7)372

Furthermore, during the expansion phase we do not add a child node that would violate373

a due date constraint, as our primary goal is to find a solution σ without any late job, that374

is, such that L(σ) = 0.375

We use a trivial lower bound, which is at state σ the maximum tardiness L(σ) of the376

associated partial sequence also taking into account tardiness of all pending operations.377

Pending operations are all the operations that belong to a production cycle in which at378

least one operation is available to extend the current sequence, ignoring the train constraint.379

Therefore, Equation (5) is the sum of exponentially decaying marginal increments of the380

maximum tardiness with a small look ahead.381

Heuristic382

For the simulation phase as well as for the probabilities of the expansion phase, we use the383

heuristic tuned by reinforcement learning proposed in [2]. This heuristic is stochastic and384

provides a probability distribution over the set of available operations for a given state. More385

precisely, at a given state σ, each operation a ∈ A(σ) is evaluated using a fitness function386

f(σ, a) defined as a linear combination of four criteria: f(σ, a) = θ⊺λ(σ, a). These criteria387

λi correspond to:388

1. The emergency of the operation: lst(a, σ)−max(ra, eσ(|σ|) + ttσ(|σ|),a), with lst(a, σ) the389

latest starting time of the operation a in order to satisfy the due date constrains with390

respect to the operations belonging to σ and the precedences constraints;391

2. The travel/waiting time of the operation: max(ttσ(|σ|),a, (ra − eσ(|σ|)));392

V. Antuori, E. Hebrard, M-J. Huguet, S. Essodaigui and A. Nguyen 54:11

3. The (negated) length of the trolley;393

4. The type of operation, equal to 1 for pickups and 0 for deliveries.394

The parameter θ is set to the proposed learned values (0.251, 0.576, 0.148, 0.023). Then, a395

softmax function is applied to turn the fitness evaluation into a probability distribution for396

guiding the choice of the next node in the greedy heuristic:397

∀o ∈ A(σ) πθ(o | σ) = e(1−f(σ,o))/δ∑
o′∈A(σ)

e(1−f(σ,o′))/δ
(8)398

where the parameter δ controls the “greedyness” of the heuristic, that is, a “low” value for δ399

encourages to select the best choice with high probability, whereas a more “neutral” value of400

δ produces more randomized choices. In the experiments, we will set a value of δ = 0.005 in401

the simulation phase, and a value of δ = 0.1 to initialize the prior probabilities of the new402

nodes in the expansion phase.403

Simulation404

The greedy procedures before and after the DFS simply consist in taking at random the next405

operation following the probability distribution defined by equation 8.406

For the DFS we define a backtrack budget between 0 and B, depending on when the first407

tardiness was detected during the first dive. If the first dive finds an improving solution, then408

the budget is maximum (B), in order to find other related improving solutions. Otherwise,409

we rely on the rank ϕ where the lower bound became positive to define the budget. Let ϕ∗
410

be the highest rank for any previous solution, the backtrack budget is then:411


B if ϕ ≥ ϕ∗

B(ϕ∗−ϕ
ϕ∗−α∗ϕ∗)2 if ϕ∗ > ϕ > α ∗ ϕ∗

0 otherwise
(9)412

with α ≤ 1, a threshold parameter.413

During the DFS, we define a probability distribution over the children using the softmax414

function of the greedy heuristic and we limit the breadth of the tree by keeping only415

actions with a probability greater than 10−6, which typically leaves all but 1 to 3 children416

approximately. Then, those children are sorted by their probabilities, and in order to417

randomize the DFS, a random child (again, using the same probability distribution) is418

swapped with the first one, to be branched on first by the DFS. As instances can be very419

large, this is sufficient to keep variety in the solutions, while removing many “bad” decisions.420

This is also why we rely on the backtrack count instead of the fail count to define the budget,421

as a lot of nodes may have only one child. We add a geometric restart policy in the DFS422

step, where the search is reset to the node selected in the selection phase. The growth423

factor is reset at each MCTS iteration. At the end, the DFS returns the longest (potentially424

partial) sequence for which the lower bound remains null (i.e., for as the largest number of425

operations). Then, the greedy procedure is called to extend this sequence to a complete426

solution.427

6 Experimental Evaluation428

We report in this section the results of our experiments. First, we assess the respective429

impact of using the new evaluation policy, the dynamic exploration/exploitation balance and430

the DFS in the simulation phase. In a second part, we compare our MCTS adaptations to431

state-of-the-art methods for this problem.432

CP 2021

54:12 Combining MCTS and DFS for a Car Manufactoring Workshop Scheduling Problem

6.1 Experimental protocol433

We use the same data set as in [2] composed of 120 synthetic instances. The data set is made434

of four categories characterized by the number of components (15 in category A, 20 in B, 25435

in C and 30 in D). Moreover, all of these categories are associated to three time horizons: a436

work shift of an operator (7 hours and 15 minutes), a work day (made up of three shifts)437

and a full week (6 days).438

The number of components is highly correlated with hardness, and directly related to439

the branching factor in the Monte-Carlo search tree. Indeed, each node has at most two440

children per component (ie., from 30 children for instances of category A to 60 children for441

instances of category D). In addition, the depth of the search tree grows with the number of442

operations, that depends both on the time horizon and on the number of components. This443

depth varies from 450 for the “shift” schedules, up to 14500 for the “weekly” schedules.444

We ran every method 10 times for each of the 120 instances with a timeout of 1h. All445

experiments were run on a cluster composed of Xeon E5-2695 v3 @ 2.30GHz processors.446

Our methods were implemented using in C++ and compiled with GCC-8.0. The two447

methods from [2] were implementd using JAVA and were run in the same conditions, and448

Choco-4.10 [18] for CP.449

6.2 Impact of the MCTS adaptations450

In the first part of the experiments, the goal is to assess the respective impact of the proposed451

adaptations for the MCTS method. We evaluated 6 different versions of the MCTS, adding452

the adaptations we propose one at a time:453

MCTS is the standard MCTS method without any of the proposed adaptation. This454

baseline method uses the value of the objective function as the result of the rollouts, and455

backpropagates this value through the tree to the root node.456

MCTS+DFS is the same algorithm as MCTS except that it uses the DFS in the simulation457

phase.458

SEDMI is the variant of MCTS that uses the sum of exponentially decaying marginal459

increments of the lower bound to evaluate the nodes.460

SEDMI+DFS adds the DFS to SEDMI for the simulation phase.461

SEDMI+DFS+DC extends SEDMI+DFS with the dynamic exploitation/exploration comprom-462

ise.463

SEDMI+SAT-DFS+DC is the variant of SEDMI+DFS+DC in which the upper bound on the464

objective function is fixed to 1 in the DFS, i.e. the DFS tries to solve the satisfaction465

version of the problem instead of trying to improve the global upper bound. However,466

the last part of the simulation still provides a complete solution via a greedy procedure,467

and hence this method also provides an upper bound.468

All parameters for the proposed methods are given in Table 1. We recall that c is the469

exploitation/exploration tradeoff parameter. The higher value for this parameter, the more470

the MCTS will explore. Then, β is the decay rate for the adaptation of c, and γ is the decay471

rate of the evaluation function. Finally, α and B are respectively the threshold parameter,472

and the maximum backtrack budget for the DFS. All the values for these parameters were473

chosen by preliminary experiments, and the chosen combination appears to give relatively474

good overall results.475

The results are shown in Table 2 and 3, in which we report the number of solved runs,476

and the average maximum tardiness. For all the methods we consider that an instance is477

solved if and only if the value of the objective function is null i.e. there is no tardiness.478

V. Antuori, E. Hebrard, M-J. Huguet, S. Essodaigui and A. Nguyen 54:13

Table 1 Parameters value

c 1
β 0.995
γ 0.9977
α 0.9
B 50000

Restart (base) 100
Restart (factor) 1.2

Table 2 Comparison of the MCTS adaptations

H
MCTS MCTS+DFS SEDMI SEDMI+DFS SEDMI+DFS+DC SEDMI+SAT-DFS+DC

#S Lmax #S Lmax #S Lmax #S Lmax #S Lmax #S Lmax

A
shift 100 0 100 0 100 0 100 0 100 0 100 0
day 90 135 90 133 90 115 90 77 100 0 98 0

week 68 1996 78 1850 70 1800 80 1839 77 1840 80 1858

B
shift 80 420 79 258 90 372 82 353 81 349 87 439
day 50 2954 54 2959 60 2522 60 2439 63 2121 70 2134

week 10 21070 29 20771 10 20572 32 20541 31 20355 36 20635

C
shift 49 1676 48 1708 40 1901 45 1727 40 1824 40 2012
day 10 9503 11 9248 10 8683 26 8656 36 8747 35 9022

week 0 64442 8 64713 0 64480 9 64584 9 64474 10 64445

D
shift 40 2154 33 2146 30 2338 33 2018 30 2304 30 2621
day 0 13659 0 13664 0 12657 0 12723 13 12225 11 12340

week 0 101474 0 101444 0 100533 0 100760 0 100954 0 100840
Average 41 18290 44 18241 42 17998 46 17976 48 17933 50 18029

Table 2 shows the performance of the different variants of the MCTS averaged by classes of479

instances, and by time horizons. In this table, for each method, a line corresponds to 100480

runs (10 instances and 10 runs for every time horizon), then the number of solved runs is481

a sum over these 100 runs. In Table 3 the same results are presented aggregated by time482

horizons, and the number of solved instances is in percentage (over the 400 runs by line and483

by method).484

In these tables, we can see the benefit of using the DFS in the simulation phase. Using485

DFS, as expected, allows the MCTS methods to solve more instances on the week horizon.486

In fact, those instances are too large to be solved via rollouts only, and the DFS allows to487

intensify the search on the deepest parts of the tree, that are not explored in the MCTS.488

Unfortunately, the effect of the DFS is not visible on the shift horizon. We can also see the489

benefit of using the sum of exponentially decaying marginal increments as node evaluation490

Table 3 Results aggregated by time horizon

H
MCTS MCTS+DFS SEDMI SEDMI+DFS SEDMI+DFS+DC SEDMI+SAT-DFS+DC

#S Lmax #S Lmax #S Lmax #S Lmax #S Lmax #S Lmax

Shift 0.67 1063 0.65 1028 0.65 1153 0.65 1024 0.63 1119 0.64 1268
Day 0.38 6562 0.39 6501 0.40 5994 0.44 5974 0.53 5773 0.54 5874
Week 0.20 47245 0.29 47195 0.20 46846 0.30 46931 0.29 46906 0.32 46944

CP 2021

54:14 Combining MCTS and DFS for a Car Manufactoring Workshop Scheduling Problem

on day and week horizons in terms of objective value. However, this adaptation slightly491

degrades the performance on shorter horizon meaning that this time horizon is too short to492

take advantage of this mechanism. Overall, the combination of both mechanisms outperforms493

the two versions with only one of these mechanisms. Finally, the effect of the dynamic494

compromise can be seen on the day horizon. This time horizon is small, but not enough for495

the MCTS to advance deep enough in the search tree to find solutions. This mechanism496

forces the MCTS to explore the tree deeper and faster, and as a results, to improve the497

number of solved instances.498

6.3 Comparison with previous methods499

For the second part of the experiments, we compare the two best MCTS methods, namely500

SEDMI+DFS+DC (the method leading to the lowest objective function) and SEDMI+SAT-DFS+DC501

(the method with the highest number of solved instances) to the two best methods introduced502

in [2], that are both based on the stochastic branching policy described in Section 5:503

CP: a constraint programming approach with rapid restarts. This method solves the504

satisfaction version of the problem. As a result, it is slightly better for finding solutions505

without tardiness.506

GRASP: a multi-start local search procedure. This method considers the optimization507

problem with relaxed due dates as in the MCTS methods, hence we can compare the508

overall tardiness.509

Table 4 Comparison with previous methods

H
CP GRASP SEDMI+DFS+DC SEDMI+SAT-DFS+DC

#S #S Lmax #S Lmax #S Lmax

A
shift 90 90 10 100 0 100 0
day 90 90 193 100 0 98 0

week 80 70 2433 77 1840 80 1858

B
shift 60 60 467 81 349 87 439
day 52 46 3218 63 2121 70 2134

week 35 10 26915 31 20355 36 20635

C
shift 40 40 1941 40 1824 40 2012
day 10 10 9498 36 8747 35 9022

week 10 0 71104 9 64474 10 64445

D
shift 19 16 2677 30 2304 30 2621
day 0 0 13994 13 12225 11 12340

week 0 0 107186 0 100954 0 100840
Average 40.5 36 19969 48 17933 50 18029

The results, given in Table 4, show that overall, the proposed MCTS adaptations510

outperform the CP and the local search approaches on both criteria: the number of solved511

instances, and the maximum tardiness. More precisely, the dominance is clear for horizons512

shift and day in terms of number of instances solved, but we can see that our method does513

not outperform the CP model on the week horizon. Finally, between the CP approach and514

the SEDMI+SAT-DFS+DC variant, there is a difference of 9.5% of instances solved in favor of515

the latter. There is still half of the instances that are not solved to optimality. However, the516

instances of the data set were randomly generated without a guarantee of satisfiability, and,517

we believe that the majority of unsolved instances are not satisfiable (especially for the week518

horizon).519

V. Antuori, E. Hebrard, M-J. Huguet, S. Essodaigui and A. Nguyen 54:15

7 Conclusion520

In this paper, we have presented and applied several variants of the Monte Carlo Tree Search521

method to solve a repetitive single vehicle pickup and delivery problem with time windows522

and capacity constraint, issuing from car manufacturing assembly lines. We defined a way of523

evaluating the rollouts based on the growth of the lower bound of the objective function. We524

also proposed an adaptation of the balance parameter between exploitation and exploration525

in order to be able to solve larger instances. Moreover, we proposed an hybridization of526

Monte Carlo Tree Search with Depth First Search used during the simulation phase. The527

experimental evaluation demonstrates that these proposals allow us to outperform previous528

approaches on the considered problem, and show the benefit of our contributions.529

These three proposals, although well suited to a dedicated problem, are generic. The530

next step is then to demonstrate the genericity of these Monte Carlo Tree Search variants by531

considering their application to other combinatorial optimization problems. We also plan to532

integrate our MCTS method in existing constraint programming solvers to take advantage of533

their search tree exploration in the Depth Fisrt Search part, further reinforcing the hybrid534

nature of the approach. Finally, we would like to explore further the learning aspects of the535

method. Indeed, in the simulation phase, we are repeatedly dealing with similar subproblems536

in different part of the tree, and the policy used in a subtree could be adjusted after each537

iteration in order to have different policies adapted to different parts of the tree search.538

References539

1 David Allouche, Simon de Givry, George Katsirelos, Thomas Schiex, and Matthias Zytnicki.540

Anytime hybrid best-first search with tree decomposition for weighted CSP. In Proceedings541

of the 21st International Conference on Principles and Practice of Constraint Programming542

(CP), pages 12–29, 2015. doi:10.1007/978-3-319-23219-5_2.543

2 Valentin Antuori, Emmanuel Hebrard, Marie-José Huguet, Siham Essodaigui, and Alain544

Nguyen. Leveraging Reinforcement Learning, Constraint Programming and Local Search:545

A Case Study in Car Manufacturing. In Proceedings of the 26th International Conference546

on Principles and Practice of Constraint Programming (CP), pages 657–672, 2020. doi:547

10.1007/978-3-030-58475-7_38.548

3 Dimitris Bertsimas, J. Daniel Griffith, Vishal Gupta, Mykel J. Kochenderfer, and Velibor V.549

Misic. A comparison of Monte Carlo tree search and rolling horizon optimization for large-scale550

dynamic resource allocation problems. European Journal of Operational Research, 263(2):664–551

678, 2017. doi:10.1016/j.ejor.2017.05.032.552

4 Cameron Browne, Edward Jack Powley, Daniel Whitehouse, Simon M. Lucas, Peter I. Cowling,553

Philipp Rohlfshagen, Stephen Tavener, Diego Perez Liebana, Spyridon Samothrakis, and Simon554

Colton. A Survey of Monte Carlo Tree Search Methods. IEEE Transactions on Computational555

Intelligence and AI in Games, 4(1):1–43, 2012. doi:10.1109/TCIAIG.2012.2186810.556

5 Guillaume Chaslot, Steven Jong, Jahn-Takeshi Saito, and Jos Uiterwijk. Monte-Carlo Tree557

Search in Production Management Problems. In Proceedings of the 18th Belgium-Netherlands558

Conference on Artificial Intelligence (BNAIC), pages 91–98, 01 2006.559

6 Rémi Coulom. Efficient Selectivity and Backup Operators in Monte-Carlo Tree Search. In560

Proceedings of the 5th International Conference on Computers and Games (CG), pages 72–83,561

2006. doi:10.1007/978-3-540-75538-8_7.562

7 Gecode Team. Gecode: Generic constraint development environment, 2006. Available from563

http://www.gecode.org.564

8 Sylvain Gelly and David Silver. Combining online and offline knowledge in UCT. In Proceedings565

of the 24th International Conference on Machine Learning (ICML), pages 273–280, 2007.566

doi:10.1145/1273496.1273531.567

CP 2021

https://doi.org/10.1007/978-3-319-23219-5_2
https://doi.org/10.1007/978-3-030-58475-7_38
https://doi.org/10.1007/978-3-030-58475-7_38
https://doi.org/10.1007/978-3-030-58475-7_38
https://doi.org/10.1016/j.ejor.2017.05.032
https://doi.org/10.1109/TCIAIG.2012.2186810
https://doi.org/10.1007/978-3-540-75538-8_7
https://doi.org/10.1145/1273496.1273531

54:16 Combining MCTS and DFS for a Car Manufactoring Workshop Scheduling Problem

9 Jack Goffinet and Raghuram Ramanujan. Monte-Carlo Tree Search for the Maximum Satisfiab-568

ility Problem. In Proceedings of the 22nd International Conference on Principles and Practice of569

Constraint Programming (CP), pages 251–267, 2016. doi:10.1007/978-3-319-44953-1_17.570

10 Ernst A. Heinz. New Self-Play Results in Computer Chess. In Proceedings of the Second571

International Conference on Computers and Games (CG), pages 262–276, 2000. doi:10.1007/572

3-540-45579-5_18.573

11 Levente Kocsis and Csaba Szepesvári. Bandit Based Monte-Carlo Planning. In Proceedings574

of the 17th European Conference on Machine Learning (ECML), pages 282–293, 2006. doi:575

10.1007/11871842_29.576

12 Levente Kocsis and Csaba Szepesvári. Bandit based monte-carlo planning. In Proceedings of577

the 17th European Conference on Machine Learning (ECML), ECML’06, page 282–293, Berlin,578

Heidelberg, 2006. Springer-Verlag. doi:10.1007/11871842_29.579

13 Manuel Loth, Michèle Sebag, Youssef Hamadi, and Marc Schoenauer. Bandit-Based580

Search for Constraint Programming. In Proceedings of the 19th International Confer-581

ence on Principles and Practice of Constraint Programming (CP), pages 464–480, 2013.582

doi:10.1007/978-3-642-40627-0_36.583

14 Jacek Mandziuk and Cezary Nejman. UCT-Based Approach to Capacitated Vehicle Routing584

Problem. In Proceedings of the 14th International Conference on Artificial Intelligence and585

Soft Computing (ICAISC), pages 679–690, 2015. doi:10.1007/978-3-319-19369-4_60.586

15 Shimpei Matsumoto, Noriaki Hirosue, Kyohei Itonaga, Nobuyuki Ueno, and Hiroaki Ishii.587

Monte-carlo tree search for a reentrant scheduling problem. In Proceedings of the 40th588

International Conference on Computers Indutrial Engineering (CIE), pages 1–6, 2010. doi:589

10.1109/ICCIE.2010.5668320.590

16 Minh Anh Nguyen, Kazushi Sano, and Vu Tu Tran. A monte carlo tree search for trav-591

eling salesman problem with drone. Asian Transport Studies, 6:100028, 2020. URL:592

http://www.sciencedirect.com/science/article/pii/S2185556020300286, doi:https://593

doi.org/10.1016/j.eastsj.2020.100028.594

17 Alessandro Previti, Raghuram Ramanujan, Marco Schaerf, and Bart Selman. Monte-Carlo Style595

UCT Search for Boolean Satisfiability. In Proceedings of the 12th International Conference596

of the Italian Association for Artificial Intelligence (AI*IA), pages 177–188, 2011. doi:597

10.1007/978-3-642-23954-0_18.598

18 Charles Prud’homme, Jean-Guillaume Fages, and Xavier Lorca. Choco Solver Documentation.599

TASC, INRIA Rennes, LINA CNRS UMR 6241, COSLING S.A.S., 2016. URL: http://www.600

choco-solver.org.601

19 Stefan Ropke and David Pisinger. An adaptive large neighborhood search heuristic for the602

pickup and delivery problem with time windows. Transportation Science, 40(4):455–472, 2006.603

doi:10.1287/trsc.1050.0135.604

20 Thomas Philip Runarsson, Marc Schoenauer, and Michèle Sebag. Pilot, Rollout and Monte605

Carlo Tree Search Methods for Job Shop Scheduling. In Proceedings of the 6th International606

Conference on Learning and Intelligent Optimization (LION), pages 160–174, 2012. doi:607

10.1007/978-3-642-34413-8_12.608

21 Ashish Sabharwal, Horst Samulowitz, and Chandra Reddy. Guiding combinatorial optimization609

with UCT. In Proceedings of the 9th International Conference on Integration of AI and OR610

Techniques in Contraint Programming for Combinatorial Optimzation Problems (CPAIOR),611

pages 356–361, 2012. doi:10.1007/978-3-642-29828-8_23.612

22 David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George van den613

Driessche, Julian Schrittwieser, Ioannis Antonoglou, Vedavyas Panneershelvam, Marc Lanctot,614

Sander Dieleman, Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya Sutskever, Timothy P.615

Lillicrap, Madeleine Leach, Koray Kavukcuoglu, Thore Graepel, and Demis Hassabis. Mastering616

the game of Go with deep neural networks and tree search. Nature, 529(7587):484–489, 2016.617

doi:10.1038/nature16961.618

https://doi.org/10.1007/978-3-319-44953-1_17
https://doi.org/10.1007/3-540-45579-5_18
https://doi.org/10.1007/3-540-45579-5_18
https://doi.org/10.1007/3-540-45579-5_18
https://doi.org/10.1007/11871842_29
https://doi.org/10.1007/11871842_29
https://doi.org/10.1007/11871842_29
https://doi.org/10.1007/11871842_29
https://doi.org/10.1007/978-3-642-40627-0_36
https://doi.org/10.1007/978-3-319-19369-4_60
https://doi.org/10.1109/ICCIE.2010.5668320
https://doi.org/10.1109/ICCIE.2010.5668320
https://doi.org/10.1109/ICCIE.2010.5668320
http://www.sciencedirect.com/science/article/pii/S2185556020300286
https://doi.org/https://doi.org/10.1016/j.eastsj.2020.100028
https://doi.org/https://doi.org/10.1016/j.eastsj.2020.100028
https://doi.org/https://doi.org/10.1016/j.eastsj.2020.100028
https://doi.org/10.1007/978-3-642-23954-0_18
https://doi.org/10.1007/978-3-642-23954-0_18
https://doi.org/10.1007/978-3-642-23954-0_18
http://www.choco-solver.org
http://www.choco-solver.org
http://www.choco-solver.org
https://doi.org/10.1287/trsc.1050.0135
https://doi.org/10.1007/978-3-642-34413-8_12
https://doi.org/10.1007/978-3-642-34413-8_12
https://doi.org/10.1007/978-3-642-34413-8_12
https://doi.org/10.1007/978-3-642-29828-8_23
https://doi.org/10.1038/nature16961

V. Antuori, E. Hebrard, M-J. Huguet, S. Essodaigui and A. Nguyen 54:17

23 David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur619

Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, Yutian Chen, Timothy P.620

Lillicrap, Fan Hui, Laurent Sifre, George van den Driessche, Thore Graepel, and Demis621

Hassabis. Mastering the game of go without human knowledge. Nature, 550(7676):354–359,622

2017. doi:10.1038/nature24270.623

CP 2021

https://doi.org/10.1038/nature24270

	1 Introduction
	2 Problem Description
	3 The Monte-Carlo Tree Search Method
	4 Tailoring Monte-Carlo Tree Search to Combinatorial Optimization
	4.1 Evaluation based on the objective function
	4.2 Dynamic Exploitation vs Exploration Balance
	4.3 Depth First Search as a rollout

	5 Adaptation to the industrial Workshop Scheduling Problem
	6 Experimental Evaluation
	6.1 Experimental protocol
	6.2 Impact of the MCTS adaptations
	6.3 Comparison with previous methods

	7 Conclusion

