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Parallel best-first search algorithms for planning problems
on multi-core processors

Didier El Baz' - Bilal Fakih' - Romeo Sanchez Nigenda? - Vincent Boyer®

Abstract

The multiplication of computing cores in modern processor units permits revisiting
the design of classical algorithms to improve computational performance in com-
plex application domains. Artificial Intelligence planning is one of those applica-
tions where large search spaces require intelligent and more exhaustive search con-
trol. In this paper, parallel planning algorithms, derived from best-first search, are
proposed for shared memory architectures. The parallel algorithms, based on the
asynchronous work pool paradigm, maintain good thread occupancy in multi-core
CPUs. All algorithms use one ordered global list of states stored in shared memory
from where they select nodes for expansion. A parallel best-first search algorithm
that develops new states with depth equal to one is proposed first. Then, we propose
an extension of this parallel algorithm that features a diversification strategy in order
to escape local minima. We study and analyse a set of computational experiments
for problems that come from the International Planning Competition and real-world
industry applications. The empirical evaluation shows that the parallel algorithms
solve most of the domains efficiently without incurring higher solutions costs. In
those problems with partial results, we highlight the potential shortcomings of the
proposed approaches for promising future directions.

Keywords Artificial intelligence planning - Parallel computing - Parallel best-first
search - Multi-threading - Asynchronous work pool parallel model

1 Introduction

Artificial intelligence (AI) planning is the problem of finding sequences of actions

that, if executed from an initial state of the world, satisfy a goal state ['1]. Plan-
ning problems occur in many real-world domains like planning tasks for satellites,
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airport task planning, airline crew scheduling, autonomous robot navigation, intel-
ligent transportation, and logistics, among others. In general, planning algorithms
solve planning problems through action and goal model representations, and heuris-
tics and metrics to control search.

Nowadays, many planning instances continue to be very difficult to solve via
sequential algorithms. Classical Planning, the simplest case for Al Planning where
actions are fully deterministic and instantaneous, is PSPACE-Complete [4]. Therefore,
planning problems search spaces are large and complex. One way to explore different
regions of the search space, while looking for a solution, is through the development
of heuristics [1, 5, 22, 28]. A second alternative, which has drawn recent attention, is
to parallelize search algorithms [16]. Modern multi-core CPUs and computing nodes
can provide both the computing resources, i.e., the many computing cores and the
memory resources required to solve efficiently hard planning problem instances.

In consequence, parallel best-first search methods, implemented on shared or dis-
tributed memory architectures, have been recently proposed [3, 16, 17]. An adaptive
K-parallel best-first search algorithm, designed specifically for multi-core domain-
independent planning [30], was implemented on the top of the YAHSP planning
system [29]. The adaptive parallel algorithm solves 57 more problems than the
serial counterpart out of the 2042 instances evaluated from 54 International Plan-
ning Competition domains, shedding a promising path for the application of parallel
search methods in Al Planning. Nevertheless, some authors (see [19]) have pointed
recently that parallel Best-first search algorithms that are suited for both multi-core
and multi-machine clusters have not been previously evaluated in depth.

In this paper, we leverage that the many improvements introduced in modern
multi-core CPUs as well as computing nodes, e.g., number of cores, memory band-
width, threads scheduling techniques, and we propose two parallel best-first search
algorithms implemented on the top of the LPG-td planning system [9]. The paral-
lel algorithms exploit all the computing resources of modern multi-core CPUs and
computing nodes while using an ordered global list of states. States are stored in the
ordered list according to the value of the evaluation function. The proposed parallel
algorithms are based on the asynchronous work pool parallel model that is conveni-
ent for planning applications.

Each parallel thread fetches a state with the best value of the evaluation function in
the ordered list. They generate children states that are stored in the ordered global list
via mutual exclusion techniques to preserve data consistency. The parallel algorithms
keep selecting and expanding states until a goal state is found. We evaluate in depth
the proposed parallel algorithms. In particular, we analyse their solutions, i.e., the
number of actions as well as the computing time in function of the number of threads
used for resolution. The proposed parallel algorithms solve more planning problems
from the evaluation set, having better performance in the majority of the problems.

The next section introduces related work on parallel algorithms in the context
of AI planning problems. Then, Sect. 3 presents general background on best-first
search, which LPG-td considers. After that, Sect. 4 presents in detail the principles
of the proposed parallel algorithms. Furthermore, Sect. 5 provides an empirical
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analysis of the algorithms in a set of problems from the International Planning Com-
petition (IPC)' and problems from real-world industry applications. Finally, we con-
clude the paper and provide future research directions.

2 Related work

In this section, we give a brief survey on several parallel algorithms. First, we con-
sider parallel methods applied in the context of general search. Then, we present
parallel algorithms in the context of planning problems and systems.

One of the most well-known algorithms is Parallel Retracting A* (PRA*), which
is a parallelization version of RA* [7]. PRA* distributes work among processors
using a state hash function. In particular, the hash function maps each state gener-
ated to a corresponding processor. Notice that in PRA*, each processor maintains its
own (local) open and closed lists. The open list stores the states that have been gen-
erated but not yet expanded, while the closed list keeps the expanded states to detect
duplicates. PRA* has a significant synchronization overhead since some processors
have to wait for others to reach the synchronization point. For example, when a pro-
cessor P generates and sends a new state to processor R, P is blocked until it receives
a confirmation message from R. This mechanism is required since PRA* is imple-
mented on a connection machine with a limited amount of local memory. PRA*
uses a retraction mechanism to remove nodes from memory when needed.

Transposition-table driven work scheduling (TDS) [23, 24] is a hash-based par-
allelization of IDA* [18] with a distributed transposition table. Like PRA* TDS
distributes work using a state hash function. In particular, TDS distributes a trans-
position table among processors instead of open and closed lists like PRA*. Trans-
position tables detect and prune duplicate states in TDS. Unlike PRA*, TDS has no
synchronization overhead since it is a fully asynchronous algorithm.

Massively parallel heuristic search (MR-search) [26] is a parallel heuristic frame-
work based on the MapReduce paradigm. MR-search uses all available computing
resources (processors, memory, and disks) with its search strategies, breadth-first
frontier search, and breadth-first iterative deepening A*. The first search strategy
builds large pattern databases to guide the second search strategy.

Notice that PRA*, TDS, as well as MR-search, are parallel algorithms that con-
sider problem-dependent heuristics to guide their search strategies. For example, they
have been evaluated in the 15-puzzle and 24-puzzle problems using distance heuris-
tics derivatives. On the contrary, the proposed parallel algorithms of this paper are
implemented on the top of a domain-independent planning system, which solves any
problem specified with the Planning Domain Definition Language (PDDL) standard
[8] using heuristic abstractions. The following works consider the same design.

Hash-Distributed A* (HDA*) [17] is a parallelization of the A* algorithm [10] that
asynchronously distributes and schedules work among processors based on a hash
function of the search state. In particuiar, HDA* is an algorithm that combines the
hash-based work distribution strategy of PRA* and the asynchronous communication

1 http://www.icaps-conference.org/index.php/Main/Competitions.
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of TDS. The algorithm is implemented on top of the Fast Downward domain-inde-
pendent planner [11]. As opposed to PRA*, HDA* does not incorporate a node retrac-
tion mechanism. More recent works on HDA* have focused on improving the hash
function of HDA* that asynchronously distributes work [14—16]. They concentrate on
increasing the speedups of the HDA* algorithm by reducing node transfers and by
mitigating communication overhead using abstract Zobrist hashing methods.

Parallel Best-NBlock-First (PBNF) [3] is a parallel algorithm that uses abstrac-
tions to partition the search space, detecting duplicate information when threads
expand the most promising nodes. Threads in the algorithm can also perform
speculative expansions by continuing the expansion of their current search spaces.
With this technique, threads will always be busy. PBNF is implemented on top of a
regression state-space planner.

3 Best first search preliminaries

Best-first search is an instance of the general graph and tree search algorithms
that selects the next node for expansion based on an evaluation function, so it is
an informed search strategy [25]. The algorithm uses a priority queue to store the
search nodes because it needs access to the best node, given the evaluation function,
for expansion. A priority queue is usually implemented with Heaps, a complex but
efficient tree-based data structure that provides access to the object with the high-
est (or lowest) priority in O(1) time. Once the best node is selected, each applicable
operator, €.g., action, generates children nodes, which are inserted back into the pri-
ority queue, insertions take O(log n) time where n is the size of queue. The algo-
rithm keeps selecting and expanding search nodes until a goal state is found.

Algorithm 1: Best-First Search Algorithm
Input: The initial state 7 and goal state g of the problem
Output: A solution state s

: PriorityQueue ¢;

Table d;

// First state of Global ordered list ¢

State s;

g.insert(7);

While True
s = g.Remove();
d.insert(s);

Foreach child v of state s
vy, = EVALFN(v, g);
If Vp ==
return v;
13: If v & d (not a duplicate)
14: g.insertorderly(v);

15: End

b2 e e
Mo
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Best-first search has been widely used in the context of planning. Planning, in its
classical definition, involves satisficing a goal state from an initial state through a
series of action refinements. Notice the direct correspondence to the general descrip-
tion of best-first. Many of the most awarded planning systems base their implemen-
tations on best-first search derivatives [9, 11, 13, 27], introducing differences in how
they compute heuristic estimates to guide the search process.

Algorithm 1 summarizes best-first search. The algorithm requires the initial state
i of the problem as well as the goal state g that needs to be satisfied. The algorithm
creates an empty priority queue g and an empty table d of visited nodes. The priority
queue is used to select nodes for expansion, while table d is checked for duplicates.
Initially, the priority queue only contains the initial state i.

The main loop of the general best-first algorithm keeps removing the best node s
from the priority queue until a child state that satisfies the goal is found. The current
selected state s is inserted in table d to avoid revisiting it later during the search pro-
cess. The algorithm uses the available planning actions to generate children states
v for s and inserts them in ascending order in the priority queue g according to the
value v, of the evaluation function EVALFN(v, g), only if these children are not
duplicates in d.

Notice that the evaluation function EVALFN(v, g) is given by a complex iterative
procedure that evaluates the cost of future actions to reach goal state g from any state
v during the search. Given that we construct our proposed parallel solutions on the
top of LPG-td, we are bound to the heuristic estimates the planner computes. The
heuristic, described in [9], considers reachability information from temporal action
graphs to weigh the elements of the search space. The general design process to
construct the proposed parallel solutions of this work defines the methods to access
asynchronously, via mutual exclusion, both data structures g and d to control search.
The following section describes the details of the proposed parallel algorithms.

4 Parallel best-ﬁrsf search algorithms

During more than 50 years, the improvements in technology have led to a sustained
increase in the capacity of integration of dense digital circuits. This was put forward
by the famous Moore law. This fact, combined with the race for high-performance
computing, has led to the predominance of parallel architectures in modern comput-
ing. Memory bandwidth has also increased, pushing the limits of memory bound
applications. Today, processors like IBM Power9 are multi-core systems with up to
48 computing cores. One can also find computing nodes whereby memory is shared
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by two to four multi-core processors. We believe that such multi-core processors
and parallel systems are excellent platforms that permit one to revisit classical algo-
rithms for planning problems.

In this section, we propose two parallel algorithms that rely on the same prin-
ciple. First, we introduce the general principle of the proposed parallel best-first
search algorithms, and then we present their details.

4.1 Principle of the proposed parallel best-first search algorithms

We propose a family of asynchronous parallel best-first search algorithms that lever-
age modern multi-core processors as well as computing nodes with shared memory
architectures. The proposed parallel best-first search algorithms maintain a global
list and a global table of states. The global list stores the set of states that have been
generated but not yet expanded; while the global table stores the expanded states to
detect possible duplications.

The parallel best-first search algorithms are multi-threaded methods that generate
as many threads as there are computing cores in the system, i.e., one thread per core.
Threads expand states asynchronously from the ordered global list. The parallel
algorithms are based on the asynchronous work pool paradigm; they maintain good
thread occupancy in multi-core CPUs. The approach solves elegantly and efficiently
multi-threaded computations in terms of execution time and memory use. The strat-
egy aims at achieving good load balancing; in particular, it tends to keep all threads
busy. When a thread 7 generates a new state v for expansion, it places v in the global
list if v is not a duplicate. When T has no work, it retrieves a state from the global
list. The accesses to the ordered global list are made via mutual exclusion techniques
to avoid the simultaneous use of shared resources by different threads in order to
maintain data consistency and efficiency. A good thread occupancy is maintained in
our parallel multithreaded algorithms due to the complexity of the planning prob-
lems and large number of states to develop before finding a solution. The ordered list
of states is sometimes huge, and there is enough work for the parallel threads that
run on the computing platform. ,

In the next subsections, we propose two parallel best-first search algorithms. The
first parallel algorithm relies on best-first search with depth equal to one. The second
parallel algorithm features a diversification strategy.
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4.2 Parallel best-first search algorithm PBFSD1

Algorithm 2: Paralle] Best-First Search Algorithm PBFSDI

Input: The initial state 7 and goal state g of the problem
Output: A solution state s
1: Global PriorityQueue g;
2: Global Table d;
3: // initial phase
4: Foreach child v of state ¢
5. v, = EVALFN(v, g);
6 If v, == 0
7: return v;
8:  g.nsertorderly(v);
: // First state of Global ordered list ¢
10: State s;
11: //Start parallel region
12: While True
13:  Mutual exclusion{
14: s = ¢g.Remove();
15: d.insert(s);
16:  }
17:  // Produce one generation children v of state s
18:  Foreach child v of state s
19: vp, = EVALFN(v, g);
20: If v, == 0 ‘

@ R

21: return v;

22: Mutual exclusion{

23: If v ¢ d (not a duplicate)
24: g.insertorderly(v);

25: }

26: End

The proposed asynchronous parallel algorithms, derived from the general principle
given in the previous subsection, differ in the depth of the best-first procedure imple-
mented by each thread and the possibility to introduce some diversification in the
search.

In the first method, parallel best-first search and depth equal to one (PBFSDI),
each thread performs a best-first search with a depth equal to one. Newly created
states, resulting from the best-first search procedure, are stored at one time in the
ordered global list via mutual exclusion if they are not duplicated. Algorithm 2 dis-
plays the pseudo-code for the overall PBFSDI algorithm. It begins by the expansion
of the initial state i at the head processor after creating the empty giobal list and
global table denoted by g and d, respectively.

Each parallel thread ¢ executes the following loop:
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thread 0

Fig. 1 Example of behavior of parallel best-first search algorithm PBFSD1

e Thread ¢ waits until the global list is available, i.e., the list is not locked by
another thread. '

e Thread 7 checks if a state is available from the global list. If so, then ¢ retrieves in
mutual exclusion the first state s of the global list g, i.e., the state with the small-
est value of evaluation function. Then, the following actions are performed in
sequence:

e Store the new state s in the global table d of expanded states.

e Expand state s, i.e., produce one generation of children of state s. Then,
thread ¢ checks the global table d for each of the newly generated child state v
to determine whether v is a duplicate or not. If v is not a duplicate, then insert
v in ascending order of the evaluation function in the global list g. The writ-
ing operation is performed after obtaining a lock on the global list. This lock
is released when the writing operation completes. If the value of the heuristic
estimate of a child is equal to zero, then the algorithm reaches a solution state
and returns it.

To illustrate the parallel best-first search algorithm PBFSDI, we consider the
example displayed in Fig. |. For simplicity of presentation, we assume that only
two threads are running and that we have a synchronous behavior (which is a special
case of the general asynchronous work pool paradigm); moreover, the computing
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time of tasks performed by all threads have the same duration, and time spent in the
critical sections are negligible.

The parallel algorithm starts with initial state i, whose value of evaluation func-
tion is i = 4. The global list g initially contains one element, i.e., state i. The algo-
rithm uses the applicable operators of state i to produce one generation of children
states. The newly generated children are inserted in the global list g in ascending
order based on the value of the evaluation function of each child. At this point, the
global list g is {a0, al}. State a0 is before state al in the global list since the value of
the evaluation function of a0 is z = 3 that is smaller than the value of the evaluation
function of al, which is h = 4.

Then, parallel section begins. At each step, each thread retrieves the first state
from the global list g, i.e., the state with minimal value of evaluation function A.
Each thread performs a best-first search with depth equal to one and process the
children of the retrieved state. The children that are not duplicates are stored into the
ordered global list ¢ in mutual exclusion. Here, thread0, in black, retrieves state a0
and threadl, in red, retrieves state al from the global list. Then, both threads process
children and store them into the ordered list ¢ after checking they are not dupli-
cates. The global list is now {b0, b1, b2, b3}. Then, thread( retrieves state »0 from
the global list ¢ and thread1 retrieves state b1 from the global list g. Threads process
children and store them back into g, i.e., thread0 adds state c0 to g, and threadl
adds state c1 to g. The global list g is now {c0, c1, 52, b3}. Then, threadQ retrieves
state c0 from the global list ¢, and threadl retrieves state c1 from the global list g.
Once again, threads process children and store them back into g, i.e., thread0 adds
state dO to g, and thread1 adds state d1 to g. The global list g is now {d0, d1, b2, b3}.
Thread0 which has generated child d0 whose value of evaluation function 4 = 0
reaches the goal and returns.

4.3 The paraliel search algorithm PS

Domain-independent planning systems use heuristics, computed from abstractions
and relaxations of the original problem, to traverse their large search spaces. LPG-
Td best-first search procedure considers reachability information from relaxed tem-
poral action graphs [9]. One of the effects of the heuristic is that it might localize
search. In other words, search exploration using parallel threads might not be diverse
enough.

The proposed parallel algorithm PBFSDI always picks nodes from the top of
the global ordered list. In other words, it selects the best nodes given the heuris-
tics. Such a strategy, which seems reasonable, might not be sufficient if the heuristic
estimates are conservative. In this subsection, we propose PS, the Parallel Search
algorithm that performs a best-first search with diversification. We keep the data



D.ElBazetal.

structure of algorithm PBFSDI, i.e., the global ordered list of states g, and table d
of visited states.

The multiple threads of PS algorithm perform randomly either a best-first search
with a depth equal to one, like with PBFSD1 algorithm, or they develop a state situ-
ated at 30% of the global list of states g that was generated but not yet expanded. In
the latter case, the selected state is expanded along twenty generations according to
best-first search principle. This way, we take benefit of another advantage of paral-
lelism, i. e., the possibility to diversify the search concurrently.

Picking by random states that are not the best in the ordered list and develop-
ing these states during a convenient number of generations according to best-first
search principle has the potential to generate a new best state. Parallel algorithm PS
is a combination of best-first search and diversification. The probabilities to perform
either a best-first search with depth equal to one from the best state or a best-first
search with depth equal to twenty from a state situated at thirty percent of the global
list g are identical and equal to 0.5. We note that this value, as well as the value
of the search depth and the position of the state to expand have been determined
empirically. The algorithm PS is also implemented according to the asynchronous
work pool parallel paradigm.

Algorithm 3 displays the pseudo-code for the PS algorithm. It starts with the
expansion of the initial state i at the head processor. Then, parallel threads develop
either one generation children starting from state s at the beginning of the global
ordered list g or twenty generations of children according to best-first search scheme
starting from a state ¢, that is situated at thirty percent of the global ordered list.

‘To illustrate the parallel best-first algorithm PS, we consider the example dis-
played in Fig. 2. We assume now that four threads are running. For simplicity of
presentation, we assume that we have a synchronous behavior like in the previous
example. Moreover, time spent in the critical sections are negligible, and the com-
puting time of tasks performed by all threads have the same duration, but in the case
where a thread produces 20 successive generations according to besi-first search and
starting from a state that is situated at 30% of the global list g. Then, the comput-
ing time of that particular thread is more important than in the case where a thread
produces only one generation of children states. For clarity of presentation, Fig. 2
displays only one case where a thread produces 20 successive generations.
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Algorithm 3: Parallel Search Algorithm PS
Input: The initial state ¢ and goal state g of the problem
Output: A solution state s
1: Global PriorityQueue g;

2: Global Table d;
3: // Initial phase
4: Foreach child v of state ¢
5. vp, = EVALFN(v, g);
6: Ifv, ==0
7: return v;
8:  g.insertorderly(v);
9: // First state of Global ordered list q
10: State s;
11: // State at 30% of Global ordered list g
12: State t;
13: //Start parallel region
14: While True
15:  z_random := generateRandomInteger[1, 100]
16:  If z_random < 50{
17: Mutual exclusion{
18: s = gq.Remove();
19: d.insert(s); '
20: }
21: // Produce one generation children v of state s
22: Foreach child v of state s
23: v, = EVALFN(v, g);
24: If v, ==
25: return v;
26: Mutual exclusion{
27 If v € d (not a duplicate)
28: g.insertorderly(v);
29: }
30: }
31:  else{
32: Mutual exclusion{
33: // Point to state ¢ at 30% of the global list g
34: t = g.Remove();
35: d.insert(t);
36: }
37: //Produce twenty generations descendants v of state ¢ according to
best-first search
38: Foreach v
39: If EVALFN(v, g) == 0
40: return v;
41: Mutual exclusion{
42: If v ¢ d (not a duplicate)
43: g.insertorderly(v);
44: }
45: '}

46: End
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The algorithm PS starts with initial state i, whose value of evaluation function is
h = 26. The global list g initially contains state i. The algorithm uses the applicable
operators of state i to produce a global list g = {a0, al}, with two states and a list
q = {b0, b1, b2, b3}, with four states, whose associated values of evaluation function
are 24, 25, 26, and 26, respectively. Then, parallel section begins. Each thread per-
forms a random test; as a result of the test, thread0, in black, thread]l, in red, thread2,
in green and thread3, in blue, retrieve in mutual exclusion states b0, b1, b2, and b3,
respectively, and carry out a best-first search with depth equal to one.

Threads process children states and store them in mutual exclusion into the
ordered list g after checking they are not duplicates. The global ordered list g is now
{c0,cl,c2,...c10,cl1}. Threads continue to process states in function of the result
of the test. We note that after having performed a test, thread3 begins to carry out
a best-first search with depth equal to twenty from state fj that is situated at 30% of
the global list g and whose value of evaluation is equal to 15. In that specific case,
the diversification produced by performing a best-first search with depth equal to 20
from a state that is not a state with smallest value of evaluation function permits one
to obtain a solution (state 3t0) after less than 20 generations, while thread0, threadl,
and thread? are still stucked in a local minima. Thread3, which generates state 3t0,
whose associated value of evaluation function 4 = 0, reaches the goal and returns.

We note that thread3 that performs best-first search with depth equal to 20 pro-
duces children states from state fj without interfering with other threads, i.e., without
having access to global list of states g before twentieth generation.

5 Empirical evaluation

The proposed parallel algorithms were implemented on top of the LPG-td plan-
ning system [9]. LPG-td is a domain-independent planner based on stochastic local
search, best-first search, and planning graphs. LPG-td won the best-automated plan-
ner award in the 2003 IPC and the best performance award in domains with timed
literals in 2004.

We present experimental results on selected problems from the International
Planning Competition (IPC) benchmark domains” and real-world applications from
the literature. There are 824 problem instances in total for evaluation from 11 dif-
ferent planning domains. In summary, the results show that the LPG-td sequential
algorithm solved 687 problems from the evaluation set (83%), while the PBFSD1
and the PS parallel versions solved 732 (88%) and 737 (89%), respectively.

We calculate the computing time of parallel algorithms via the gettimeofday()
function, i.e., time spent from the beginning to the end of the computation. We halt
the algorithms if no plan is found after 10 min of execution. Note that all parallel
algorithms proposed in the paper are asynchronous; therefore, the computing time
and the number of actions of solutions for some given difficult instances may differ

2 https://www.icaps-conference.org/competitions/.
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Fig.2 Example of behavior of parallel best-first search algorithm PS

from one run to another. Nevertheless, we display in the sequel results for single
runs due to the number of problems treated.

Computational experiments were carried out via OpenMP on a computing node
with two CPUs Intel Xeon Gold 6130, with 16 cores, clock 2.10 GHz, and 192 GB
of RAM (product collection: Intel Xeon Scalable Processors). The computing node
has a total of 32 computing cores. We note that the implementation of our parallel
algorithms does not pin threads to given cores; the scheduler of the CPU assigns
threads to cores, and assignment can change during a run.

The next subsection presents the analysis and results of the different algorithms
in real-world problems. After that, we introduce the evaluation on the IPC bench-
mark planning domains.
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5.1 Real-world application problems

We present three different planning domains from real-world applications. The first
couple of problems come from manufacturing production plants. These problems
showcase single machine scheduling scenarios that consider maintenance opera-
tions. Maintenance operations have sequence-dependent setup costs that have to
respect the availability constraints of the production line [2]. The main difference
between these two manufacturing domains is the planning of the maintenance oper-
ations. In the first model, called Model-EOL (End of Line), each planning horizon
has to end with a maintenance job, while in the second model, such tasks are Exter-
nal Events in the production plan (Model-ExE).

The third planning domain solves Public Transportation Network problems
(Model-PTN). Such problems consider the-engineering of travel plans taking into
account the public transport and user preferences [6]. Travel plans in public tran-
sit networks are time and space-dependent, given that the location of transportation
units and users change over time. This characteristic increases the complexity of
solving the problem.

5.1.1 Manufacturing models results

Figures 3, 4, and 5 show execution times and solution quality (in terms of num-
ber of actions) for the LPG-td and the parallel algorithms (PBFSDI and PS) for the
Model-EOL problems. There are 225 evaluation instances in total, of which LPG-td
solves only 46% of them. On the other hand, PBFSDI and PS return solutions to
every problem. Notice that LPG-td does not scale up to problems with 30 tasks (see
Fig. 3a). Furthermore, even for the simplest case with ten tasks, the parallel ver-
sions are 99% faster than LPG-td. Between the parallel algorithms, PS is slightly
slower than PBFSDI on average. The time difference is more significant in the larg-
est instances (i.e., problems with 30 tasks) where PBFSD1 is 37% faster than PS
(Fig. 3c). In addition, LPG-td generates 28 times longer solution plans on average
for the simplest case. On the other hand, PS returns slightly shorter plans on average
for the largest scenarios (Fig. 5).

Figures 6 and 7 show the results of the algorithms, in terms of execution time and
number of actions, on the second manufacturing model (i.e., ModelExe with exter-
nal events). This time, the algorithms solved each instance of the evaluation set. The
parallel versions were more efficient than LPG-td, returning globally better quality
solutions. While LPG-td can return a solution on 23.21 s on average in the evalua-
tion set, PBFSD] takes 14.65 s and PS 19.08 s. Therefore, PBFSD] is 36% faster
than LPG-td, while PS is 17% faster as well. Concerning number of actions, the
overall solutions returned by PBFSDI are 6% shorter than those of LPG-td, while
PS solutions are also 5% better.

5.1.2 Public transportation model results

We got mixed results in the Public Transportation Domain (see Fig. 8). Although
the PBFSD] algorithm returns on average shorter plans, both parallel versions are
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less efficient than LPG-td. Furthermore, LPG-td solves 99% of the 105 problem
instances, while PBFSDI solves 88% and PS 89% of them. Among both parallel
algorithms, PBFSD1 is 65% faster than PS.

5.2 International planning competition (IPC) benchmarks

The next set of problem instances corresponds to problem benchmarks from the
international planning competition. There are 269 problem instances from eight
different planning domains: OpenStacks, Satellite, Pipes, PSR, Airport, Rovers,
Promela, and Pathway.

Figure 9 shows results from the OpenStacks planning domain. The OpenStacks
domain is based on the simultaneous min—-max open stack combinatorial optimiza-
tion problem. A manufacturer has several orders, each for a combination of different
products and can only make one product at a time. In this domain, the parallel algo-
rithms perform consistently better than LPG-td being more than 200 times faster in
several scenarios (see Fig. 9a) without losing solution quality (i.e., without increas-
ing the number of actions in their solutions as seen in Fig. 9b).

The next evaluation set corresponds to the Satellite domain. This domain con-
siders a set of satellites equipped with different devices that operate under various
modes. The objective is to acquire images. Satellites divide the observation tasks
considering the capabilities of their instruments. Figure 10a and b show execution
times and number of actions, respectively, by the different approaches. Notice that
only PS can scale up to more problems from the set. PBFSDI solves the same first
13 problems as LPG-td and remains competitive in terms of number of actions and
execution time.

In the case of the Pipes-World, planners control the flow of oil derivatives through
a pipeline network, obeying various constraints such as product compatibility, tank-
age restrictions, and (in the most complex domain version) goal deadlines. LPG-td
solves two and three more problems than PBFSD] and PS, respectively. However,
the parallel algorithms perform generally better than LPG-td. PBFSDI returns better
quality solutions at a fraction of the time taken by the other approaches (see Fig. 11).

The PSR domain considers resupplying lines in a faulty electricity network. A
transitive closure over the network connections determines its flow of electricity.
This flow is subject to the states of the electric supply devices. Figure 12 displays
the PSR results. Notice that, in this domain, the parallel algorithms generally return
better quality solutions. However, they solve 12% fewer problems than LPG-td on
average.

One of the most complex domains for the parallel methods is Airport (see
Fig. 13). This domain considers the problem of planning ground traffic operations at
an airport. The airport scenarios illustrate traffic situations arising during simulation
runs in the airport simulation tool Astras [12]. The largest instances in the test suites
are realistic encodings of the Munich airport. In this domain, PBFSDI and PS found
plans for 65% of the scenarios, while LPG-td solved 98% of them. However, for dif-
ficult instances, parallel algorithm PS tends to give better solutions in terms of time
and number of actions than LPG-td.
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The final three benchmark domains, Rovers (Fig. 14), Promela (Fig. 15), and
Pathway (Fig. 16) show inferior results for the parallel algorithms. The Rovers
domain models a collection of rovers that must navigate a planet’s surface. Rov-
ers must collect samples and communicate data about them to the lander. PBFSDI
solves 63% and PS 55% of the problems, while LPG-td solves all of them. Although
the parallel algorithms return equivalent quality solutions like those provided by
LPG-td, the time performance for LPG-td is significantly superior.

Promela models deadlocks in communication protocols. Processes that emulate
finite-state transition diagrams model the deadlocks. The communication protocols
used in Promela consider the dining philosophers problem and the telegraph rout-
ing problem. In this set, LPG-td solves 14 scenarios, while PBFSDI1 solves only
three (21%) and PS nine of them (64%). Again, LPG-td is consistently more efficient
than the parallel methods, but all the algorithms return the same quality solutions in
terms of number of actions.

The Pathway domain models biochemical pathways; that is, the chemical reac-
tions in a biological organism that explain cell behavior. The goal consists of synthe-
sizing specific substances in the pathway. This model is the most complex domain
evaluated for the parallel algorithms. PBFSDI solves only 26% of the problems in
the evaluation set, while PS returns solutions in 23% of them. LPG-td finds a solu-
tion in 93% of the scenarios.

5.3 Analysis and discussion

In summary, the parallel algorithms solved more problems from the evaluation set.
They returned solutions close to 90% of the evaluation scenarios, while LPG-td
found solutions in 83% of the instances. Furthermore, PBFSDI needed 224 s sum
of averages times to complete almost 90% of the evaluation set, while PS required
486 s. In the meantime, LPG-td registered 463 s sum of average times to cover 83%
of the scenarios. The good results of parallel algorithms in terms of number of prob-
lems solved, computing time and solution quality rely in part on the good thread
occupancy. The planning problems are complex (sometimes very complex), and the
proposed methods have to develop a large number of states before finding a solution.
As a consequence, the ordered list of states is sometimes huge, and there is enough
work for the parallel threads that run on the computing platform.

Concerning the real-world problems, the parallel algorithms solved 98% of the
instances in this set, while LPG-td returned solutions to 78% of them. A compar-
ison between the parallel methods shows that PBFSDI is slightly better than PS.
PBFSDI returns shorter plans on average than PS and more efficiently. For example,
PBFSD] returns plans with 550 actions, while PS returns plans with 710 actions on
average.

Parallel algorithms got mixed results in the IPC evaluation set. The algorithms
performed strongly in 50% of the IPC domains; that is, Pipes (Fig. 11), OpenStacks
(Fig. 9), Satellite (Fig. 10), and PSR (Fig. 12). PBFSD1 solved 89% and PS 90% out
of the 140 instances. LPG-td solved 93% of the scenarios. Notice that the parallel
algorithms tend to return shorter plans more efficiently. PBFSD] returns plans with
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Fig. 3 Execution times for manufacturing model with EOL maintenance tasks (Model-EOL)

130 actions on average within 55 s of average time. PS increases these numbers by
delivering solutions with 142 actions on average within 110 s of execution time. On
the other hand, LPG-td takes 130 s average time to compute plans with 171 actions.

LPG-td outperforms the proposed methods in the rest of the IPC domains, con-
stituted by Airport, Rovers, Promela, and Pathway. LPG-td solves 94% of the 129
instances in these domains, while PBFSDI completes 50% and PS 52% of the prob-
lems. By looking at the results, it appears that all the algorithms return resembled
solutions. For example, we can observe that the algorithms returned plans with the
same number of actions in the Promela set (Fig. 15b), which is an indication that
the domain is over-constrained. In other words, although the space of the problem
appears to grow exponentially (see Fig. 15a), there are not enough solutions to jus-
tify parallel search diversification. In this case, exploring alternative branches of the
search space might deviate the algorithms from the solutions set, which increases
the computation time returning no solutions given the time limits of the experimen-
tal design.

ing the number of threads helps to explore more of the search space. Tables 1, 2, and
3 display such behavior. The efficiency of parallel algorithms PBFSD1 and PS relies
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mainly on the following features: the asynchronous behavior of the parallel meth-
ods; a shared memory implementation with a limited number of cores (a few dozen).
As a consequence, waiting time/delays due to atomic operations remain in small in
general. Algorithms return better solutions as the number of threads increases. How-
ever, as we mentioned for Promela, that might not always be the case. Tables 4 and
5 display the effect of the number of threads on computing time and solution qual-
ity on the Airport domain for PBFSDI and PS. We can point to two observations.
It appears that increasing the number of threads generally decreases the computing
time. Notice the runs of PBFSDI for the P16 problem in Table 4. The algorithm
takes 40 s using four threads, reducing its computing time down to 3.8 s when using
32. However, the second observation is that when the solution space is constrained,
increasing the number of threads might hurt. That is the case for PS in Table 5,
where its computation time increases without improving the quality of the solutions



D. El Baz et al.

I i
£ 5. 2 o
2 2,
g g
w a
E E .
e =
c c 1
2 8,
gcs e g 2 .
i g, — .
o o s b
10 T 3sez Prohlers 12 Tanes Pualemes 15 Tasks Frelvens
R D R TS B ) “LFG td PEFSD1 FS PG td FopzDL-PS
(a) Medium Sized Instances with 10, 12 and 15 Tasks
200 i 350
“» 180 o
1;3’ 3 300
oy
S 160 S
D 140 2 250
2] v
y 120 @ 200
£ 100 £
= 150
§ o, §
E @ = 100 i
8 40 8 ‘ ——
x = 5D !
w20 ' i
e
0 0
20 Tasks Problems 30 Tasks Problems
“LPG-td *PBFSD1 - PS *LPG-td * PBFSD1 - PS

(b) Large Sized instances with 20 and 30 Tasks

Fig.6 Execution times for model with external events (Model-ExE)

500 200 300
a 590 » 18 | W 358
500 = c
5 | § o 5
o 400 S 1o g 200
=< < 120 <
o e .
o 300 < 10C © 150
b e b
8 200 3 - 2 10
d - 4]
[S g 6C ' €
2 1 - z Z s
Tt 26 -
0 ! G 2]
10 Tesks Preblems 12 Tasks Problams 15 Tas«s Prokiems
*L2G b FRFSDL PS *LPG-zd “PBFSDL S =LPG-td - P2FSDL PS

(a) Medimm Sized Instances with 10, 12 and 15 Tasks

400— 1 1200

350
e v 1000
.© 300 ! o
&= - .":
& 250 . -
B 200 T 600
-t -
8 150 g
c g 400 i
=g - 2 B
£ 5 Z 200

0 0
20 Tasks Problems 30 Tasks Problems
*LPG-td «PRFSD1 -PS *LPGtd sPBFSDL =PS

(b) Large Sized instances with 20 and 30 Tasks

Fig.7 Number of actions for model with external events (Model-ExE)



Parallel best-first search algorithms for planning problems...

600

500

400

300

200

Execution Time (Seconds)

100
*LPG-td “PBFSD1 ' PS

(a) Execution Times in the Public Transportation Do-

main
3000 L] I
i &
[ L] x'f 2 | :i~
22500 el 2 :"Ei .'IROI‘,. -W"'v'. :
0 T \ 1 g PN V8
B 2000 " ] bopan gl wmr R
ol . ST o e AR Sy
A \ /| -
SOy 00 S P et
21500 Tt 1% i Vel M i 1|
U vygitd s An | * l-‘
IS 1/, vyl ,r“ ! 1l
\ ul Y s 8 & 1
g 14 W Y. | @
1000 . |
H ; It
- 7 2 Il
a J ntrl bdd
500 1S "'n" ! L ",’ L ~“:‘,' LY $
- v VY . o“-
!
0 t

- LPG-td PBFSD1 -=-PS
(b) Number of Actions in the Public Transportation Domain

Fig. 8 Public transportation domain results

returned. Therefore, performance is application dependent since the granularity of
tasks changes according to the type of planning problem. It is an open research area,
for parallel algorithms, to dynamically adjust the resources employed given the pla-
teau of the search space. Recent theoretical studies on analyzing pathological behav-
ior of parallel best-first search could shed some light on how to improve the diversi-
fication of such algorithms without incurring higher computational costs [20].
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5.4 Comparisons with other parallel methods

To conclude this section, we note that the computing times obtained with the pro-
posed parallel algorithms PBFSDI and PS for instances of the Airport and Pipes
world problems are fast as compared with those obtained for the same scenarios
with other parallel methods like HDA* and PRA* in the literature.

In particular, Kishimoto et al. [17] have considered several implementations of
HDA* and PRA* in a multi-core machine with up to 8 cores (2.33 GHz 2x 4-cores
Xeon L5410) and a cluster of computing nodes that consists of 2.93 GHz 2x 6-core
Xeon X5670. For example, instance P24 of Pipes world problem is solved in 194.96
and 217.21 s by heuristics HDA* and PRA*, respectively, on a multi-core machine
(8 cores). The same instance is solved in 5.55 s (best computing time) with HDA*
on a cluster with 25 nodes and a total of 300 computing cores. (we recall that we
obtain the same solution in 0.54 s with algorithm PBFSDI and that parallel algo-
rithm PS gives a solution in 0.12). Similarly, instance P27 of Pipes world problem is
solved in 103.62 s (best computing time) with HDA* on a cluster with 200 comput-
ing nodes and a total of 2400 computing cores (we recall that we obtain the same
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As mentioned earlier, work by Jinnai and Fukunaga [14-16] concentrate on
improving the speedups of the HDA* algorithm by using a set of abstract hashing
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Table 1 solution (time secs and number of actions) of instances P24, 27, P31, and P34 of pipes world
problem by parallel algorithm PBFSD] for 4, 8, 16, and 32 threads and sequential counterpart

Instances Pipes woild problem

Sequential 4 threads 8 threads 16 threads 32 threads

Time Actions Time Actions Time Actions Time Actions Time Actions

P24 0.04 38 0.10 45 0.51 38 0.054 38 054 24
P27 - - 0.16 52 0.04 28 - - 040 26
P31 - - - - 130.29 65 - - 092 40
P34 0.18 56 0.07 42 0.06 38 0.09 42 045 36

Table2 Solution (time secs and number of actions) of instances P24, 27, P31, P34, and P38 of pipes
world problem by algorithm PS for 4, 8, 16, and 32 threads and sequential counterpart

Instances Pipes world problem

Sequential 4 threads 8 threads 16 threads 32 threads

Time Actions Time Actions Time Actions Time Actions Time Actions

P24 040 36 005 36 0.11 32 034 41 012 37
P27 0.17 28 031 26 0.61 27 0.15 26 026 27
P31 16.09 43 224 48 0.67 38 4.2 43 357 36
P34 043 44 173 52 028 44 094 42 058 40
P38 - - - - - - - - 74.81 63

Table 3 Solution (time secs and number of actions) of several instances of Public Transportation prob-
lem by parallel algorithm PBFSDI for 4, 8, 16, and 32 threads and sequential counterpart

Instances Public transportation

Sequential 4 threads § threads 16 threads 32 threads

Time Quality Time Quality Time Quality Time Quality Time Quality

P144-1 0.02 1296 0.69 1033 0.88 1042 1.97 1033 6.47 547
P225-1 0.05 1800 419 1751 6.03 1753 10.41 1753 39.17 1609

methods that reduce node transfers and communication overhead. In summary,
these works do not present a complete evaluation of planning domains, instead, a
set of planning problems are selected for analysis. The evaluation selects the hardest
instance in which the general A* algorithm finds a solution. Notice, however, that
such an instance might not be the hardest of the evaluation set, as pointed out by the
evidence presented in this paper. Authors do not report solution quality; therefore, in
the following, we compare only those scenarios solved by them and our approach in
terms of solution time.
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Table4 Solution (time secs and number of actions) of instances P15 and P16 of airport problem by par-
allel algorithm PBFSDI for 4, 8, 16, and 32 threads and sequential counterpart

Instances Airport problem

Sequential 4 threads 8 threads 16 threads 32 threads

Time Actions Time Actions Time Actions Time Actions Time Actions

P15 0.016 58 0.80 58 082 58 0.61 58 0.61 58
P16 11042 83 40.88 83 1746 83 724 83 380 79

Table 5 Solution (time secs and number of actions) of instances P39 and P40 of airport problem by par-
allel algorithm PS for 4, 8, 16, and 32 threads and sequential counterpart

Instances  Airport problem

Sequential 4 threads 8 threads 16 threads 32 threads

Time Actions Time Actions Time Actions Time Actions Time Actions

P39 = - 993 282 742 226 4.74 226 8.02 226
P40 21.06 265 - = = - 592 207 755 207

In [15], the authors implemented the HDA* variants on the top of the Fast Down-
ward planner [11], contemporary of LPG-td, the planner in which we base our exten-
sions. They solved with the variant FAZHDA*, using a commodity cluster with six
nodes and 48 cores, scenario 10 of the Pipes World domain in 9.3s. Our evaluation
shows that PBFSDI solves the scenario in 0.12s and PS in 0.05s using one node
and 32 cores. The same problem reports 10s of solution time with GRAZHDA¥* in
[16], under the same hardware configuration. They also report 106.28s and 120.64s
solution time for scenario 16 for FAZHDA* and GRAZHDA¥*, respectively, using a
cloud cluster with 128 virtual cores. On the other hand, PBFSDI takes 0.46s and PS
0.19s for this problem using one node with 32 cores.

Table 6 displays the running time of HDA* variants from Jinnai and Fukunaga
in comparison with PBFSDI and PS. In [15], authors implemented the HDA* vari-
ants on the top of the Fast Downward planner [11], contemporary of LPG-td, the
planner in which we base our extensions. The hardware configuration consists of
a cluster with six nodes and 48 cores, while PBFSDI and PS use one node with 32
cores. Notice that the three HDA* variants from [15] for solving scenario 10 of the
Pipes domain are significantly slower than PBFSD1 and PS. The table also presents
scenarios 10, 12, and 15 from Pipes and problem six from the rover domain under
the same hardware configuration. These problems are solved by abstract feature
generation methods from [16]. Again, PBFSDI and PS outperform the HDA* vari-
ants. The authors also provide a platform based on a cloud cluster with 128 virtual
cores. This platform shows the only problem instance that PBFSDI and PS did not
solve, Airport 18. Finally, work [14] introduces pattern database heuristics to solve
scenario 14 from Pipes and scenario nine from Airport. PBFSDI as well as PS are

faster than their counterparts.
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Table 6 Solution time (seconds) comparison of PBFSD1 and PS with HDA* variants introduced by Jin-
nai and Fukunaga [14-16] '

Configuration
Cluster with 6 nodes, 48 cores One node, 32
cores
Work PipesNT  A* FAZHDA*  OZHDA*  AHDA* PBFSD1 PS
[151 10 147.79 9.3 8.19 7.98 0.12 0.05
Work A* FAZHDA*  GAZHDA* GRAZHDA*
[16] 157.31 10.6 10.1 10
PipesNT  A* DAHDA ZHDA* GRAZHDA*  0.21 0.07
12 201.07 6.11 9.12 771
Pipes NT  323.59 16.56 15.33 12.85 0.11 0.1
15
Rover6 A FAZHDA*  GAZHDA* GRAZHDA* 0.04 0.12
1042.69 25.76 31.13 25.32
Work PipesNT ~ A* AZHDA* AHDA* ZHDA* 0.12 0.09
[t4] 14 231.5 34.66 28.48 32.77
Airport9  156.59 24.5 27.19 24.22 1.01 2.65
Cloud cluster with 128 virtual cores - 0.46 0.19
Work  Pipes NT 16 A* FAZHDA*  GAZHDA* GRAZHDA*
(16] — 106.28 108.28 120.64
Airport 1§ — 95.48 128.22 102.34 — —

Contrarily to these works, we do not distribute states among the different threads/
processes, i.e., we do not have distributed local lists of states. In our parallel meth-
ods, threads asynchronously and concurrently retrieve states from the same global
ordered list, in mutual exclusion. As a consequence, we do not have communica-
tion and search overhead. Nevertheless, the access in mutual exclusion to the same
global list in shared memory may lead to idle times resulting from shared memory
management. These idle times remain negligible if we have dozen of threads and the
benefit of parallelism is quite obvious.

6 Conclusions and future work

This paper proposes two original parallel algorithms based on best-first search. The
target machines are modern multi-core CPUs like Intel Xeon scalable processors
and computing nodes with shared memory architectures. The basic principle of the
parallel methods relies on asynchronous updating of an ordered global list of states
that is accessed concurrently by multiple threads in mutual exclusion according to
the asynchronous work pool paradigm.

The empirical evaluation considers a set of 824 planning problems from real-
world applications and the International Planning Competition (IPC). Experiments
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are carried out on a node with two processors with a total of 32 computing cores.
The experimental results show that parallel algorithms solve up to 7% more prob-
lems from the evaluation set than the sequential counterpart in less time. The paral-
lel methods perform strongly in real-world application domains, solving up to 98%
of the scenarios while LPG-td finds a solution in 78% of them. Furthermore, paral-
lel methods return shorter plans at a fraction of the time taken by the sequential
algorithm.

We got mixed results in the IPC evaluation set. Parallel methods perform strongly
in 50% of the IPC set, where they return on average shorter plans more efficiently.
On the other hand, LPG-td outperforms the proposed methods in the remaining 129
problems, solving 92% of them versus the overall 50% resolution rate of the parallel
algorithms. We notice, given the results, that these instances are over-constrained;
that is, the solution space might not be large enough to justify parallelization. This
observation is an important finding also because it might help.in the future to design
pruning techniques on parallel branches to reduce computational overhead.

Al Planning is a hard problem, where large search landscapes are neither catego-
rized nor understood. Planning search spaces greatly vary among applications. This
study clearly shows the benefits that can be derived from parallelism and in particu-
lar multithreading on modern multi-core processors for solving planning problems.
The results are promising. It will enable further research on the potential application
of parallel algorithms to domain-independent planning. In particular, the design and
development of diversification and pruning techniques for parallel search explora-
tion. In future work, we intend to develop alternative strategies for inserting and
removing states from the global processing queues of our algorithms. We require
greedy strategies that consider worse quality solutions to escape from local optima.
We also plan to port our parallel methods to clusters of muiti-core machines as well
as Graphics Processing Units (GPUs), considered massively parallel devices.
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