N

N

Efficient Floating-Point Implementation of the Probit
Function on FPGAs

Mioara Joldes, Bogdan Pasca

» To cite this version:

Mioara Joldeg, Bogdan Pasca. Efficient Floating-Point Implementation of the Probit Function on
FPGAs. Journal of Signal Processing Systems, 2021, 93 (12), pp.1387-1403. hal-03385845

HAL Id: hal-03385845
https://laas.hal.science/hal-03385845

Submitted on 19 Oct 2021

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://laas.hal.science/hal-03385845
https://hal.archives-ouvertes.fr

Efficient Floating-Point Implementation of
the Probit Function on FPGAs

Mioara Joldes! and Bogdan Pasca®

I AAS-CNRS, Toulouse, France, joldes@laas.fr
?Intel Corporation, France, bogdan.pasca@intel.com

Abstract

Non-uniform random number generators are key components in
Monte Carlo simulations. The inverse cumulative distribution func-
tion (ICDF) technique provides a viable solution for generating ran-
dom variables from various distributions. Thus, the ICDF of the stan-
dard normal distribution, or probit function for short, is of particular
interest. The goal of this article is to revisit and improve a floating-
point (FP) implementation of probit, from the perspective of mod-
ern hardware resources available on FPGAs. Beside reexamining the
classical Wichura’s algorithm, we propose: (1) a single-precision im-
plementation using the embedded FP DSP Blocks available in recent
FPGA families; (2) generic custom-precision architectures that scale
up to double-precision. These present a user-selectable trade-off be-
tween tail accuracy and resource utilization. Our proposed cores out-
perform existing single-precision FPGA implementations in area, la-
tency and accuracy, and also set benchmarks for new custom and
double-precision FP implementations.

Keywords. Floating-point arithmetic, minimax approximation, FPGA,
quantile, inverse error function.

1 Introduction

The hardware-based evaluation of elementary and special functions has
recently received a lot of interest [16, Chap. 8], [18]. In this article we focus

on the hardware floating-point (FP) implementation of the probit func-
tion, which is the inverse cumulative distribution function for the stan-
dard Gaussian distribution, also called normal quantile. Specifically, let
the standard normal cumulative distribution function be ® : R — [0, 1],

B(t) :\/%_ﬂ/e“fda. (1)

The probit function f is defined as the inverse of ®, with f : [0,1] — R,
f(z) = &7 Y(z), for 0 < x < 1 and respectively f(0) = —oo, f(1) = +oc.
Neither @, nor f have a closed-form in terms of elementary functions and
usually they are expressed in terms of special functions, like the so-called
error function erf, or its complementary erfc. For instance, one has:

f(x) =V2erf 12z — 1), (2)
where .
I
erf(x) = ﬁo/e do. 3)

Similarly to erf, erfc and their inverses, the probit function is more com-
plex to implement than usual elementary functions, since range reduc-
tion techniques are not available and its asymptotic behavior (near 0 and
respectively 1, see Figure [I) makes it more difficult to approximate by
polynomials or rational fractions. Thus, the quality of implementation
of probit is often assessed in terms of the maximum attainable standard
deviation, which occurs at the smallest non-zero value in the input range:

max, = |f(xmin)|-

Figure 1: Probit Function

The main practical usage of the probit function lies in the Gaussian
random number generation (GRNG). The so-called inversion method for

2

generating non-uniform random numbers is based on the fact that a quan-
tile function monotonically maps uniform variates to variates of its cor-
responding distribution. The inversion method is thus considered as one
of the best choices for random number generation. For the normal distri-
bution, the lack of an analytical expression for the corresponding quan-
tile function means that other methods may be preferred computationally.
Several comprehensive studies already analyzed these choices and we re-
fer the reader to [19,[15] and references therein.

While probit remains a viable alternative for GRNG (for instance it is
currently the default method for sampling from a normal distribution in
the statistical package R[[), an efficient and accurate floating-point hard-
ware implementation of this function is interesting in itself. The goal of
this article is to revisit and improve such an implementation from the per-
spective of modern hardware resources available on FPGAs.

1.1 Related works

Among the software-based solutions, Wichura [20] proposed a three-sub-
domain rational approximation which suits single or double-precision com-
putations and is implemented in statistics packages like R. Variations of
this approach (see for instance [14] for a survey) are implemented in most
numerical libraries, including Intel’s Math Kernel Library (MKL), Boost’s
C++ Math Toolkit, and Nvidia’s CUDA Math Library. Since modern FP-
GAs include Hardware-FP (HFP) DSP Blocks (which support single-pre-
cision multiply-add), it now makes sense to synthesize such a software-
based algorithm to hardware.

Among hardware-based solutions, several works focus on fixed-point
implementations. The thorough work of Lee et al. [4] proposes an archi-
tecture generation framework that can target arbitrary distributions. An
accuracy-driven non-uniform segmentation scheme is used for splitting
the input, and degree-2 polynomials (evaluated in fixed-point) approxi-
mate the function. For a 52-bit input, the output is on 16 bits, with last-
bit-accuracy in terms of absolute error and max, = 8.2. A fixed-point
implementation differs from an FP one in the sense that both the inputs
and outputs close to 0 hold very few bits of information. Since the approx-
imation accuracy goal is different between fixed and FP implementation:
absolute vs relative, the segmentation strategy also leads to different solu-
tions.

lstat.ethz.ch/R-manual/R-devel/ library /base/html/Random.html

To overcome these relative-accuracy shortcomings of fixed-point im-
plementations, Echeverria and Lopez-Vallejo [9] adapt to hardware the
software-based FP implementation from [11]. They use a more hardware-
friendly segment-finding circuitry, to generate 256 subintervals and corre-
sponding quintic FP coefficients Hermite polynomials. The claimed rela-
tive accuracy is ~ 27 for a tail accuracy of max, = 6.23.

Another FP implementation is presented by Schryver et al. [8]. It uses
a hierarchical segmentation from [4] adapted to the FP format. Unlike
[9], the inputs to the function are FP values in the interval (0, 0.5) with an
extra bit accounting for the symmetry. A degree 1 fixed-point piecewise-
polynomial evaluator is used, but it remains unclear whether the output
is in fixed or floating-point, since no normalization or exponent handling
is presented or discussed.

1.2 Contributions and outline

With respect to previous works, this article presents:

— a family of single-precision (SP) architectures targeting modern HFP-
based FPGAs. Generation-time architectural parameters are used for tra-
ding-off input range (affecting max,) and resource utilization.

— concerning higher precision formats, a generic implementation strat-
egy based on fused fixed-point piecewise polynomial approximation is
proposed. It is applied for generating efficient architectures for three float-
ing-point formats, including double precision.

To this end, after recalling some basic notions in Sec. [2, we detail sev-
eral approximation strategies for the probit function in Sec.|3; an analysis
of Wichura’s change of variable provides a more efficient segmentation
method, which is then jointly used with coefficient-constrained minimax
polynomial approximations. These are generated employing a high preci-
sion reliable golden reference implementation based on interval Newton'’s
method. In Sec.[4} several custom input range segmentations are analyzed.
Piecewise polynomials, together with a generic fused polynomial evalua-
tor, discussed in Sec. 5, provide hardware implementations accurate to 3
ulps. The features of these cores are detailed in Section @ Finally, the
synthesis results are discussed and compared in Section [7}

This is an extended version of the homonymous article [12]. In the
present work, besides a more thorough analysis of existing and proposed
architectures, several custom input range segmentation schemes are overviewed,
designed and implemented. With respect to [12], this allows for a much
improved architecture for the single-precision implementation of the pro-

bit function, which either reduces by 35% the memory requirement for an
equivalent tail accuracy, or increases the tail accuracy by 38% for a similar
resource utilization.

2 Background

Let x = (—1)*2°M be the FP input, with sign s, exponent e and mantissa
M. In this work we only focus on the regular range of the IEEE-754 [2]
format, where the mantissa is normalized M € [1,2). The corresponding
IEEE-754 standard binary encoding for z is:

sign exponent fraction

T 1T 1
INEENNENENNERREREDEEN

<— WVE —p¢——— W0F ——

From left to right: the sign is encoded on 1 bit {0 «+— positive, 1 < negative};
the exponent holds on wE bits, and is stored as e + bias, with bias =
2wE=1 _ 1. the fraction F = M — 1 is stored on the next wF bits. The
IEEE-754 standard defines two compute-oriented formats: binary32 (sin-
gle) having wE = 8, wF = 23 and binary64 (double) having wE = 11,
wkF = 52. Two other intermediary formats, namely wE = 11, wF = 26
and respectively wE = 11, wF = 35, are chosen to exemplify the proposed
architectures. [

It is common to express the rounding errors of "nearly atomic" func-
tions (arithmetic operations, elementary functions, etc.) in terms of ulp.
For the purpose of this article, ulp(y) is defined as the distance between
the closest two FP numbers straddling y [16), Def. 2.4]. In round to nearest,
the error is 0.5 ulp. For this probit function implementation, we target an
error budget of few ulp (say, 2 to 4, depending on the specifications).

The targeted hardware includes all Intel FPGA devices starting with the
Arria 10/ Stratix 10 FPGA[1] onward, which have the following features
relevant for this work. Firstly, their DSP Blocks that can be configured
either in fixed or FP mode, to execute: (1) in fixed-point, one 27x27-bit
multiplication, 2 independent 18x19 multiplications or one sum-of-two
18x19-bit multiplications; (2) in FP mode: one binary32 addition, multi-
plication, accumulation, or multiply-add. Furthermore, their basic logic-
element is the ALM (Adaptive Logic Module). Finally, available M20K

2These correspond to formats with the same dynamic range as the binary64, but less
precision, which can be useful for some applications. The fraction widths are chosen
based on existing FP formats in the DSP Builder Advanced Blockset [3] Sec. 10.2].

5

memory blocks can be configured either in 512 x 40-bits or 1024 x 20-bits
modes.

3 Approximations to probit function

For special functions (like erf, erfc, probit), where ad-hoc argument reduc-
tion techniques are not available and non-linear asymptotic behavior is
present, a common FP implementation technique consists in dividing the
input domain into several subdomains:
— when the behavior of the function is "sufficiently nice" for conventional
polynomial or rational approximation to hold, that we denote by (L), see
also Figure
— "extremal subdomains", denoted by (H), where one has to cleverly use
the asymptotic behavior of the function, together with polynomial or ra-
tional approximation.

The symmetry of the probit function:

f(l—z)=—f(z), (4)

provides a first domain subdivision: one can then focus only on the inter-
val0 <2 <050r05 <z < 1.

From the FP perspective, the grid is finer on the range 0 < = < 0.5,
and hence, the implementation more challenging on this interval. In what
follows, the interval 0 < = < 0.5 is thus considered for the implementation
and the higher range 0.5 < = < 1 is obtained from equation (). Note
that for x in this range, the FP subtraction 1 — z is exact (always computed
without rounding error) according to Sterbenz Lemma [16, Chap. 4].

When subdivision is performed, the coefficients of all polynomials (ra-
tional fractions) are tabulated and the hardware cost (multipliers, adders)
amounts to the evaluation of the "worst-case" among the stored polyno-
mials. At the same time, higher order approximations allow for better
accuracy or for handling larger intervals. Therefore, a trade-off is to be
found between the number of subdomains, approximation degree, accu-
racy provided and hardware resources. We analyze in what follows two
types of approximations from this perspective.

3.1 Wichura’s subdivision and change of variable

Wichura [20] and related methods [14] use rational approximations on the
"sufficiently nice" (L) interval [0 + b, 0.5], where b > 0 is a tail breakpoint.

The other (H) values in (0, b), where the function is approaching the verti-
cal asymptote (see Figure(I) are covered by at least one additional polyno-
mial or rational approximation, which are in terms of a computationally
expensive change of variable. This change of variable is related to the
asymptotic behavior and can be obtained as follows.

For w < 0, one has

w2

e 2
®(w) < B(w), with B(w) := — ,
(w) < B(w), with B(w) o
and B(w)
. w
e D)

which states that for sufficiently large |w|, for negative w, B(w) is a
good approximation for ®(w). Hence, to solve ®(w) = z, one can consider
B(w) =~ z, take the natural logarithm log and obtain by rewriting;:

\/w2 + 2log(—V2rw) ~ \/—2log z. (5)

Thus, for w < 0,
wr —y/—2log . (6)

Eq. (6) provides a means for computing an approximation for f near its
asymptotics. As an example, Figure [2| shows the linearization effect of
such a variable change: for z € [271%7,273], the values of f(z) are plotted
on a —/—log,(z) linear scale, as well as a degree 1 polynomial P(y) :=

P (— —1og2(a:)), with P(y) = 0.8974609375 + 1.2421875y. The maxi-

mum absolute approximation error between P and f is less than 0.105 on
this range. To improve the approximation error, Wichura [20] considers a
higher order approximation R:

f(z) =~ —R (\/—2logx> , (7)
for z sufficiently close to 0. From eq. (4), one has
f() =R (V=2log(1—2)). ®)

for x sufficiently close to 1. Wichura [20] tail breakpoint for performing the
change of variable is x < b = .075. After the variable change, Wichura [20]

Figure 2: Plot of f(z), ona "—+/—log,(z)"-linear scale, for x € [271%7,273;
a linear approximation P with the Wichura’s variable change: P(y) :=

p(_m)

sign(q)

FP
X | divider

exception handling
R

Figure 3: Hardware architecture of Wichura'’s algorithm.

8

uses two more higher order rational approximations, with a second break-
point for very small inputs /—logz < 5. The degree of these approx-
imations is 3 (for both the numerator and the denominator) for single-
precision and respectively 7 for double precision. A schematic view of the
hardware implementation of this algorithm is given in Figure

For a single-precision hardware implementation targeting HFP DSPs,
the change of variable together with a division (necessary for rational ap-
proximation) is very costly: it accounts for more than 50% of the logic
and DSP utilization. This can be seen in the first 4 rows of Table |6l For
double-precision (last 4 rows of Table @, the relative cost decreases, but
still accounts for 35% of DSPs and latency.

Hence, our goal is to avoid the costly computation of the change of
variable like y = /—log,z, as well as the division. For that, we con-
sider: in Section a non-uniform segmentation of the input range of
x, which would roughly translate to uniform segmentation for the range
of y, on which piecewise polynomial approximations can be more easily
performed (cf. Figure [2); furthermore, we employ minimax constrained-
coefficients polynomial approximations, as detailed in what follows.

3.2 Polynomial Approximations

Previous approaches used either degree-2 Chebyshev approximations [13]
or quintic Hermite interpolations [9]. We consider the minimax constrained-
coefficients polynomial approximations provided by the Sollya software
tool [§]. This open-source tool is the state-of-the-art for obtaining machine-
tuned polynomial approximations and was already used in the implemen-
tation of other elementary and special functions [16, Chap. 10], [7Z,[18]. The
following features are used:

— The fpminimax command inputs a function f, an interval I, a de-
gree d and a list of constraints on the coefficients (e.g.constraints on FP
formats, bitwidths). It returns the coefficients of a polynomial p of degree
d, which minimizes the maximum of the (relative) approximation error
approx ‘= |[— p|/|f| on the given interval I, while satisfying the coeffi-
cients constraints.

— A certified upper-bound for the approximation error €,pprox can be
also obtained with Sollya; an upper bound for the floating-point or fixed-
point evaluation error ey, of the Horner scheme of p, can be obtained in a
second step with the Gappa software [6].

Unfortunately, the probit function was not implemented in Sollya. How-
ever, Sollya provides arbitrary precision, as well as certified computa-

ALGORITHM 1: PROBITEVALNEWTON(z, Z, €).
1: Teerfc(%) -2+ 2z
2: while intervalDiam(Z)/2 < e do
3 wg ¢ intervalMidpoint(Z)
4: T+ evaluate(T',7)
5. W+ evaluate(wy — T(wp)/T’)
6
7
8

T < intervallntersect(W,T)
: end while
: return intervalMidpoint(Z)

tions (interval arithmetic) for erf (and erfc). Hence, we developed an arbi-
trary precision faithfully-rounded implementation’|for the probit in Sollya
based on inverting the erfc function, with interval Newton method [17], as
follows.

Arbitrary precision implementation. The probit function is implemented
in Sollya, based on solving for w the equation ®(w) — z = 0, which is
equivalent to 7'(w) = 0 where T" and its derivative with respect to w are:

T(w) := erfc (%) — 2+ 2z, 9)
T'(w) = —/(2/7) exp (—w?/2) . (10)

These functions can be evaluated with arbitrary accuracy in Sollya and
their range on a given interval Z can be tightly enclosed, using the com-
mand evaluate(T,Z). This gives the interval Newton Algorithm/[I} which
computes an evaluation of the probit function at x, with required accu-
racy[|e, starting with an initial guess range Z, s.t. f(z) € Z. The advantage
with respect to the classical Newton method is that the algorithm is guar-
anteed to always converge, even if the initial guess range is very wide, or
very small, provided arbitrary precision computations are available [17].
This algorithm was also easily coded in C based on the MPFR library [10]
and the monotonicity properties of erfc and its derivative. Hence, it pro-
vides a very flexible accuracy and open-source golden reference for the
probit function, allowing both for generating tuned polynomial approxi-
mations (with various coefficients constraints) based on fpminimax com-
mand and, for a posteriori rigorous testing and validation of the results.

The remaining question is how to select a suitable subdivision of the
input range, so as to balance the number of polynomials and their degree.

3available athttp://homepages.laas.fr/mmjoldes/probit
“The absolute accuracy test in line 2 can be made relative by dividing with wy, pro-
vided that wg # 0

10

http://homepages.laas.fr/mmjoldes/probit

4 Input Range Subdivision Strategies

We discuss in what follows several custom segmentations, similar to the
hierarchical one, which was already used in [4, I8, 18] in both the fixed-
point and floating-point setting. First, the most simple one i.e, the uniform
subdivision is briefly recalled.

4.1 Uniform subdivision

On the (L) range [0.25, 0.5) of the input interval, the function is sufficiently
nice and thus, a uniform segmentation is the most common and often very
efficient strategy.

For a single-precision target implementation this strategy needs 128
subintervals for degree-2 polynomials and respectively, 16 subintervals
when degree-3 polynomial approximations are considered.

For a double-precision implementation we propose degree-8 mini-
max polynomials, as a good compromise for uniform subdivision, which
requires 16 subintervals on the (L) range.

4.2 Logarithmic subdivision

Let us now focus on the (H) part of the input interval, where the variable
change is to be avoided. The intuition is that the integer / = (—1)%*(e + F)
aliased to a floating-point number = = (—1)°2°M (where F' = M — 1),
is a scaled and shifted approximation of the logarithm. Hence, taking a
uniform segmentation on the aliased integer provides a non-uniform seg-
mentation of the range of = suitable for the change of variable y = log, .
Thus, a suitable segmentation scheme for probit can be composed by con-
catenating the exponent e and a specific variable number of fractional bits
(depending on each binade), which are obtained function of the approxi-
mation constraints.

For a single-precision target implementation Table[I|shows the minimum
required number of address fractional bits awp, depending on the expo-
nent range, when imposing degree-2 (and respectively degree 3) minimax
approximations and eapprox < 272 for each corresponding polynomial. As
expected, one observes that awr decreases proportionally to /e, which is
in fact dictated by Wichura’s change of variable (6)), and thus, this segmen-
tation roughly "simulates" it.

For a double-precision implementation, we propose degree 8 minimax
polynomials as a good compromise: 16 subintervals were needed on the

11

Table 1: Logarithmic segmentation scheme for single-precision and tar-
geted 272 relative approx error.

Exponent awp Exponent awp

—3,...,—26] 5 —3,...,—34] 3

—27,...,—90] | 4 —35,...,-94] | 2

—91,...,—126] | 3 —95,...,—126] | 1
(a) Degree 2 (b) Degree 3

Table 2: Logarithmic mantissa segmentation scheme: real bound vs. 6
fraction bits approximation, for double-precision.

Segment bound | ap

21/8 000110
22/8 001100
23/8 010011
24/8 011011
25/8 100011
26/8 101100
27/8 110101

"nice" (L) input range = € [272,271); to fill in memory constraints up to 512
subintervals, we consider a budget of 496 subintervals for the (H) input
range x € [27%4,272). It is interesting to note the following subtle improve-
ment obtained by also performing a non-uniform mantissa subdivision
per binade.

Example of non-uniform mantissa subdivision for double-precision. Con-
sider 8 equally sized subintervals of the mantissa in the binade z € [27%,272).
The best relative approximation error for a degree-8 polynomial approxi-
mation on the range x € [272,27% - 1.125) is approx =~ 27°%, which does not
provide ulp accuracy. However, by subdividing the range y = log,(z) €
[—3,—2), in 8 equally sized intervals and checking the resulting degree 8
approximation for x € [27% 273+1/%) one obtains Eapprox =~ 27°%, which is
ulp accurate. Similar results are obtained for the other intervals. Thus, the
more accurate resulting segmentation bounds (uniform on the log, range)
are 21/8,2%/8 _ 27/8 2 A simple addressing scheme is done by a lookup
table, which maps the first 6 fractional bits of each input = to one of the
8 corresponding non-uniform segments, by approximating the fractional
part ar of 2/% on 6 bits cf. Table

This trick which again "simulates" the log, change of variable, without
actually computing it, allows for keeping degree 8 polynomials over the
entire considered range x € [27%,27!) and avoid a roughly 10% overhead
by increasing the degree of the approximation to 9.

12

ALGORITHM 2: GENERATESUBDIVISIONLU T (awp, w,).

1: ap, <0

2: fori <+ 1to 2% do
3: ap, + nearestint ((2/2"° —1).2evr)
4 forj <« ap,_, toap, —1do
5: LUT[j] +i—1
6 end for

7. end for

8: return LUT

4.3 Further improvements on subdivision techniques

Custom segmentation schemes are well-known [18} 4], but are rather sel-
dom used in practice, due to the typically high-cost associated with find-
ing the interval that an input x belongs to. This cost can sometimes out-
weigh the benefits of reducing the number of stored coefficient sets.

However, the previously mentioned trick, implemented in [12] only
for the double-precision case, proved very effective. It turns out that such
custom non-uniform subdivision techniques can be very practical also for
the single-precision implementation, as discussed in what follows.

The (H) branch for single-precision. When generalizing the example
above, the goal is to provide for a given binade z € [27% 27 "1) a subdi-
vision strategy into say, 2" subintervals, which is more accurate than the
logarithmic one (for which the mantissa is uniformly segmented). Fur-
thermore, the overhead required for the new addressing scheme should
be kept small. To this end, a uniform segmentation of the range of y =
log,(x) € [—e,, —e, + 1) is used, from which a direct calculation gives the
real-number segmentation bounds on the mantissa: 2/2"°,22/2% | 22" ~1)/2% ‘9

Subsequently, a simple encoding scheme is designed via a lookup table,
to map the first awp > w, fractional bits of each input z, to one of the 2"
corresponding non-uniform segments. This is done by approximating the
fractional part of the bounds 21/2"° on awp bits. For instance, the first awp
fractional bits of = corresponding to the first segment must take values
between 00 . .. 0 and the nearest integer to (21/2" —1).2%F (see also Table
for an example). Finally, the resulting w, bits are then used for addressing
the polynomial coefficients. This process is summarized in Algorithm 2|

This new strategy was tested and implemented on the (H) range of the
single-precision case. An improved segmentation scheme was thus ob-
tained, as shown in Table 3 For instance, for degree-2 polynomial approx-

13

Table 3: Improved logarithmic segmentation scheme for single-precision
and targeted 2~ relative approx error.

Exponent awp | Wo Exponent awp | wo
—3,...,—10] 5 5 =3,..., -1 5 3
—11,...,—54] | 6 4 —19,...,—126] | 4 2
—55,...,—126] | 5 3

(a) Degree 2 (b) Degree 3

imations, one needs only w, = 4 bits for addressing each binade with ex-
ponents in range [—11, ..., —54], and w, = 3 bits from exponents in range
[—55,...,—126], while with the previous classical logarithmic scheme 5
bits were required for addressing each binade with exponentsin [-3, ..., —26],
and the 4, respectively 3, bits kicked-in only at —27 and respectively —91.
This improvement only costs 3 small lookup tables (e.g. input on 6 bits
and output on 4) for the whole single-precision range. All in all, this trans-
lates to an important resource optimization and/or better attained max,,

as shown and discussed in Section[7]

The (L) Branch for single-precision. As previously stated in Section4.T]
the "nice" part of the function can be handled by a uniform approxima-
tion, which for degree-2 approximations, would require 128 subintervals.
However, by customizing this segmentation, we can further reduce this
interval count with minimal resource logic utilization impact. The advan-
tage is that this storage reduction for the (L) branch allows for handling a
wider exponent range in the (H) branch, without increasing the total block
memory count, thus improving the attained max,.

The core of this improvement is an accuracy-based semi-coarse greedy
segmentation scheme. The starting point is the observation that the initial
uniform segmentation scheme on the (L) interval z = 2|0.5—x| € [0, 0.5) ac-
counts for the worst-case accuracy requirements on the subintervals close
to z = 0, where the function erf ' (z) is harder to approximate. E| However,
it is possible to progressively widen subintervals (in coarse steps), when
getting away from 0, while satisfying the accuracy constraints, since the
function is easier to approximate on this part.

The widening is roughly based on a greedy aggregation of several adja-
cent subintervals from the initial uniform scheme, as long as the accuracy
constraints are still met. If the number of adjacent intervals considered
is a power of 2, this method is the hierarchical segmentation of [4] and

5The multiplication by 2 in the previous change of variable is simply related to the fact
that the probit function is the inverse erf function of argument 2z — 1 (see eq. (2)), so the
approximations and segmentations will be directly related to those of the inverse error
function which is symmetric around 0.

14

can also be seen as a recursive binary splitting of the initial interval un-
til the accuracy constraints are met. For instance, in the original uniform
segmentation scheme the subinterval width is 278, which implies that the
range [271,273) is split into 16 segments. However, 8 segments of size 27
are sufficient to meet single-precision accuracy on this range. With this
strategy the minimal number of segments obtained for (L) was 55. Note
that with a uniform segmentation, the required number of segments was
128, cf. Section 4.1

Moreover, better segment sizes may not be a convenient power of two.
For example, the segment [27°,27° + 1.5 - 27®) on which accuracy require-
ments are met is wider than the initial scheme step, so it could be con-
sidered, provided an efficient addressing scheme. The most flexible ap-
proach, given in [18], consists in: (1) storing strictly non-overlapping seg-
ment bounds either in lookup tables or block RAMs (for an increased
number of segments); (2) given an input, the corresponding segment is
obtained via a binary search, which boils down to the hardware imple-
mentation of a comparison at each stage. To improve on this method by
avoiding the block RAM storage, as well as reducing the number of com-
parisons, our approach is a hybrid between the fully flexible one [18] and
the traditional uniform one: it builds a small set of (non necessarily dis-
joint) subintervals on which uniform segmentation schemes are employed.
Clearly, each considered uniform scheme may have a different internal
subinterval size.

Therefore, (L) is split in the following branches, as also shown in Fig-

ure 4

Branch #0 The first interval near z = 0 is the most challenging. For an
approximation error bound of 27%, the interval size needs to be as
small as 271%. The next interval can be 3 times wider (3-271°) — cover-
ing the input range [27'°, 27%) — and still producing a similar approx-
imation error.

Branch #1 Spans the interval [272,277). This range is split into 7 intervals
of size 278,

Branch #2 Spans the interval [27°,27* - 1.100015). On this range 6 subin-
tervals of size 1.5 - 278 are used.

Branch #3 Spans the interval [27%,27%). This overlaps slightly on the final
interval of the previous branch, but this is expected and is selected
in order to ease addressing. On this range a total of 8 sub-intervals
of size 2 - 27% are used.

15

Branch #4 Spans the interval [272,27!). A total of 32 subintervals of size
3 - 278 are used on this range.

The circuitry used for decoding the currently active branch is presented
on the top of Figure 5} it is based on comparing the input with the bounds
of each branch. However, since these bounds have particular formats, this
comparators (highlighted as gray boxes) can be much simplified. Once
the active branch was decoded, the final address is computed as the sum
between the branch offset (the right MUX) and the local index within the
branch (the left MUX). For the sake of clarity, the inputs of the left MUX
are also depicted in Figure

5 Efficient polynomial fixed-point and FP evalu-
ations

When generating the polynomial approximations, several argument and
function scaling techniques are required for efficiency. It is important to
note that depending on the evaluation used, either a FP or a fixed-point
input is built for a corresponding FP, or respectively, a fixed-point evalu-
ation. One main distinction between the two cases is the following: the
input of the polynomial fixed-point evaluation is relative to the subinter-
val bounds, hence, for each subinterval, a subtraction is necessary to shift
it relatively to the left subinterval bound. This can be implicitly done, for
a uniform segmentation by taking only the corresponding lower bits, but
it is performed in fixed-point, when the bounds are not uniform. On the
other hand, the FP input is absolute, in the sense that no additional subtrac-
tion is necessary on each subinterval. This is further detailed below.
FP evaluation.For the case of SP, a FP evaluation can be performed in order
to take advantage of the HFP-DSP. This choice is experimentally justified
by the proposed synthesized architectures, as discussed in Section[7]

On the (L) domain, the reduced input argument, evaluated in FP, z =
2/0.5 — x| € [0,0.5] is the direct FP input to the polynomial evaluator ¢(z),
which is generated with:

gq(z)=fpminimax (f((1+z)/2), 2, [124 ...|1, I);

where [is obtained from the subdivision strategy employed (either uni-
form cf. Sec. 4.1 or custom cf. Sec. {.3).

For (H), which proceeds by binade x € [2¢,2°t1), a potential overflow,
in the polynomial coefficients for high magnitude e, is avoided by rescal-
ing the polynomial input to z = x /2

16

1 1 1
Branch ! 1 z=2[0.5 -z 1 Decoder Content

ke mm e —— - e e Fmmm—————

| 0-1-2-3-4-5-6-7-8-9-10-11-12 index. index
1 z€[0,27%) 1 [o] o[o[o[o[o[o[o[o[Y[Y[Y[Y] e« «[Y[Y] [A] 1 of[o] — 0 [0.271)
#0 ! subintervals 2 1 —“ 1 01 ~ 910 98
1 1 1100 — 1 [,27%)
1 1 1 1] —
. . Decoder Table .
X X Addr#0 |
I 1 r~c——-_"~°--
. . . ofo[4] — 0 [2%27)
) o[1]o] — 1 [727%+27)
1 I 01234567 -8-9-10-11-12 index 1 o117 — 2 [27s+277‘275)
: z€e[278,27%) :|010|o|o|o|o|x|x|x|v|v|v| | [ATAA] : 1[0[0] — 3 [2’2,2"‘12’2) ,
i o[t — [270+27%,276 4 277)
. subintervals 7| —— —— . L g 26 4 97 96 4 5T 4 2-9)
Mot ! Decoder Table Adde#ly AT —p 20+27+27%27)
1 1 1
""" | I R R P P P S A A
1 1 1 o[1] o[0] 0] 0
1 1 o [o[ololofold] ¢ [727+15-27)
1 1 1 o[1[o[o[1[0o] —
o[1] o[o[1]
: : 01234567 -8-9-10-11-12 index : ol ol 1ol o \1 [2794+15-2529+2.15-2°%)
. 2 €[27%,274-1.00012) | [0 o o o X[X[X[XX Y[Y[Y]] [A[A[A] ol 1lo[1]o[1] —
bintervals 6 H_/ — 0[1]0]1]1]0 . h
: subintervals : : ol o[1[1] —= 2 [2°+2-15%2525+3.15-27%)
Addr #2 o[1]1[0[0]0
D Tabl
oo | B
! ! ! o[1[1]0[1[0] —3 [27°+3-15-2%,294+4.15.27%)
! ! Voot —
! ! ! o[A[1] 1] o]0
1 1 1 o[[o[>‘»4 [279+4.15.27827545.15.27%)
! i v Doaaane]
1 1 1 NEEEEE
! 1 1 Oolo[oo[e] —35 [2°+515-252946.15.2%)
1 1 1 1l o[o[of0o[1] —
_____ U
1 1 1
. . | 4-5-6-7
. . . X X X X
1 1 | 1]of[ofo — 0 [h2t+2.27)
NNOE — 1 [2*+2-2827%42.2.2°°
#3 ' ' OO[o[[0] —»2 [t+2.2:2%27143.
1 I 012343567 -8-9-10-11-12 index I NNEE 3 [2'+3.2.2520 44
! ze27,27%) 1 ol o[o[o [XIXIX[XIX[YIY[Y[] [A[A[A] ! 11]ol0] —-s4q [2*+4-2-252745.
! subintervals 8 | \W_} 1 1] 1] o] 1 —— 5 21+5.2.2527446-2-
1 1 1 AEIEIN) —f [2'+6-2-2527047.2.
! ! | Addr#3 | 1 a1 —s7 247228270482
1 1 1
R H [R
1 1 I -2-3-4-5-6-7-8
1 1 1 XXX XXXX
. \ 1 o[1] o[o] o] 0] 0 o
| | v ODDelee[d] —= ¢ B2%2°+3-29
. . . o[1[o[ofo[1]0] —
o[1] o[o[o[1[4
: : 041234567 -8-9-10-11-12 index : ol Tol o Tolo ::1 (279 4+3-2%,29 +2.3.2°%)
X ze2727) | [ol o XIX[X[XIXIXIX[Y[Y[Y[] [A[ATA[A[A] | o[1] o[o[]o[1] —
o[1] o[o[1[1]0
1 1 " —— —~ 3 5.3.0-8 08, 3. 3.9
#4 X subintervals 32 | X o[1lolol11[1 ;:2 27%+2-3-27%27%4+3.3c27%)
X X P X o[1] o[1]0[0[0
ecoder Table o[1] o[1] 0] 0o[1
Addr #4 ‘ ‘
! ! ' | [oODoTo[1l0] —=3 [2°+3-3-2529+4.3.2%
1 1 1 o[[o[Alo[1]1] —
1 1 1 o[1] o[1[1]0[0
1 1 1 o[1] o[1[1]o[1 \‘—»4 [27%+4-3-27%2745-3.279)
1 1 1 o[[o[[1[1]o] —
1 1 1 o[o[1111
1 1 \ OOTTololele] —=5 [2°+5-3-2%29+6.3.27%
. . . o[1ol o[o[1] —
1 1 1 eee
! ! ! 1A 1] o[1
: : : O] — 31
X X X A —

Figure 4: Custom Segmentations for the (L) range: 5 sub-branches are con-
sidered, each of which is uniformly segmented with a different internal
subinterval width. For a given brardéeh, the indexing of each of its subin-
tervals is based on a lookup table as shown in the fourth column: when
the subinterval width is a power of two, this can be simplified to a simple
offset e.g., branch #1 and #3. When the width is custom e.g., branch #0, #2,
#4, the lookup tables need to be explicitly filled-in.

I
e
I

]

I

2345678 910-1112-13-14 2 Case: v € [05,0.75) |

|

: ‘1|x|x|x|x|x|x|x|x|x|x|x|x|x|... - 05 |
\]

' -

! Case: @ € [0.25,0.5)
9 0 T S B

! N J

| N

| X

:‘ YYD Y] Y] Y] Y Y] Y] Y] Y] Y] Y] Y] IYIYI 05—

R 55— NN Y

-1 -2-3-4-5-6-7-8-9-10-11-12-13-14

oL LI 1 TTTTTTTT] =205

I : °
COCgag g O
Cm | m| |
| I =
W T] —

| LUT-based decoder |

_} 3 decoded interval

Addr #4
Addr #3
Addr #2
Addr #1
Addr #0

Addr (L)

Figure 5: Addressing scheme on (L) branch: gray boxes correspond to
simplified comparators, the right MUX inputs the branch offsets and the
left MUX selects the local index within each branch. The input bits of
z = 2|0.5 — z| (underlined in blue) correspond to either top bits of F, when
x > 0.5 or top bits of 0.5 — x when = < 0.5.

18

g(z)=fpminimax (£ (2" (-e)xz), 2, [124...1]1, I);

where [will be some subinterval of [1, 2). The reduced input argument on
the (H) branch is thus obtained by concatenating a new sign (0) and the
exponent value (0+bias) to F.

Fixed-point evaluation. The goal is to match the polynomial input and
output ranges for both (H) and (L) evaluation branches. The output range
is straightforwardly scaled to [0.5,2) by considering f/2"*-*¥, where the
maximum exponent (in absolute value) is obtained when evaluating f on
the two interval ends.

On the (L) branch, firstly, the same input argument reduction like in
the previous FP case is done, but in this case the evaluation |0.5 — z| is in
tixed-point. Afterwards, for a uniform subdivision on the (L) branch, the
argument is obtained by taking the corresponding lower order bits, which
are denoted by zgyg. For example, 0 < zguse < 27°, when the input is split in
16. On the other hand, on the (H) branch, the subdivision is not uniform,
so for an argument z € [l,7], the evaluation is performed in zgg = 2z —
[. This gives for example, when 3 fraction bits are used for addressing;:
0 < zgit < 27°. Then a further scaling down is employed to match 27°.
A final technicality is that for the first interval in (L), 2 = 2|0.5 — z] is
very close to zero, so to account for efficient fixed-point evaluation, a final
multiplication by z is performed outside the fused polynomial evaluator.

6 Architecture

Several architectures are discussed:

e Firstly, and for the sake of simplicity, we deal with the single-precision
case, when degree-2 polynomial approximations are employed, and
when the classical uniform segmentation method is used for the (L)
branch, together with the logarithmic one for the (H) branch, as dis-
cussed in Sec. 4.1 and The architecture is depicted in Fig. [6|
Then, the necessary changes related to the customized segmentation
(Sec. are highlighted in Fig. |8 and briefly analyzed with respect
to the previous architecture.

e Secondly, the single-precision case, with degree-3 polynomial ap-
proximations is discussed from the same two perspectives: classical
vs. customized segmentations.

e Finally, a generic architecture is presented (see Fig. [I0), based on
tixed-point piecewise-polynomial approximations.

19

{ymmetry 05 {7025 075
3 . | "

+ Selector 1

X
x<0.5 x>0.75
{ Range Reduction | ol CR1 s
sl 050 | . Ebranch @] Selector
|l i Py i
N0 1 2 3 N0 1 23 fr—I
: H
[ERPRSRTS R FPDSPSub !
+ Branch (L) Mx>>1 e e P S ST T Rt LIS A
| Address I ch (H) Branch (L)}
: : Polynomial : Polynomial:
: ilnpuf i Input’
[21:15] Pl i]
addr (1) ! bias-19(Z |1 Branch (H): (| biasteMin |ez [fZ " Paramet n.c‘
H oxp{=19:-30}; | 1 Circuitry
aa —] ! Branch (H)
z L | ™y =g pceH||| PcBH-B
o 8faddr (H) {-19:-30} ! Branch) === -
N LTI | ey (95126}
\Address_ _ 1 thw ¢
3 3
Table | | Table | | Table | EMin=-3 PCBH-A
Table]| |Table| |Table c2 cl c0 | ahfw=4 {-31,-62/-94}
c2 cl c0 \— r twh=s)
1 1 : 1
)
No 1 Enc |
O SN R IS B s o
‘ : ; ! i Reconstruction

,,,

Figure 6: SP architecture of FP probit for HFP-enabled FPGAs.
6.1 Single-Precision - degree 2

A SP architecture targeting HFP DSP-Enabled FPGAs is presented in Fig-
ure[6] The implementation presents two distinct branches: (L) z € [0.25,0.75]
and (H) for the remaining range. The function is approximated by degree-
2 piecewise polynomial approximations.

Branch (L) argument is reduced as presented in Sec. [5|(a). Then, a total
of 128 subintervals are used, with an approximation error less than 1 ulp.
The subinterval selection can be done starting with z (floating-point) and
then aligning it using a barrel-shifter. This costly operation is avoided by
addressing from a:

—for z € [0.5,0.75], the address line consists of the [21:15] bits from the
fraction of .

— for x € [0.25,0.5), the address is obtained by selecting bits [22:16] of

20

[to[e[oTo e e[oTo[c]o]-.[o]] 05

|1|x|x|x|x|x|x|x|x|x|...|x|x|x| 025 <2 <0.5

O S nnnnnnonoinnn

Figure 7: Fixed-point alignment for (L) branch address computation, when
x < 0.5. The operation is a 2 4+ wF'-bit subtraction.

the fixed-point difference 0.5 — z; the alignment of both terms is known,
as shown in Figure 7]

Branch (H) handles inputs in the ranges (0, 0.25) and (0.75,1). Values
corresponding to (0.75, 1) are obtained from the symmetry eq. {@). The log-
arithmic segmentation technique (see Sec.[4.2), with degree-2 polynomials,
requires a different number of subintervals, function of the corresponding
exponent as mentioned in Table[l| Based on this, the number of exponents
that can be handled is found by using the coefficient table sweet-spot:
512 x 40-bit for the M20K blocks. Therefore, if we restrict the total num-
ber of subintervals stored to be 512, we can store as many as 512/32=16
exponent values. This covers the range of exponents from -3 to -18. Addi-
tionally, since the coefficient tables for branch (L) only use 128 out of the
512 address lines, an additional 12 exponents {—19,...,—30} can be han-
dled by fully packing the branch (L) tables. The tail accuracy of this ar-
chitecture, denoted by SP-HFP-d2-U-e30 (single precision, HFP DSP used,
degree-2 approximations with Uniform /classical segmentations, and min-
imum handled exponent of —30) in Tables[5|and [fis max, = 6.

The handled exponent range can be further increased by adding the
auxiliary circuitry PCBH-A, which itself has two configurations:

— PCBH-A, = PCBH with eMin = —31, ehw = 5, ahfw = 4 handles
exponents from -31 to -62.

- PCBH-A; = PCBH with eMin = —31, ehw = 6, ahfw = 4 handles
exponents from -31 to -94.

The corresponding architectures are denoted by SP-HFP-d2-U-e62 and
SP-HFP-d2-U-e9%4 in Tab. 5| and [} with tail accuracy of max, = 8.92 and
respectively max, = 11.11.

Specifically, the number of bits required to encode the exponent range
is denoted by ehw. For the range of exponents handled by PCBH-A; ,, a
total of 16 subintervals are required for meeting the approximation error
budget, hence the address is stored on 4 bits (ahfw = 4). Finally, the num-
ber of address bits is ahfw + ehw.

Circuitry PCBH-B can be used in conjunction with PCBH-A, to increase
the range of handled exponents to the full range of the SP format, corre-

21

sponding to -126, with max, = 12.94 and denoted by SP-HFP-d2-U-e126
in Tab. 5|and [fl The logic is similar to that PCBH-A, with the difference
that the number of subintervals required for each exponent is reduced to
8, cf. Table[T] ahfw = 3 bits.

A final level of multiplexers selects the coefficients depending on the
branch enabled (H) or (L), and the signs of the different differences (bias +
eMin — eZ) that are sufficient for determining the current branch.

Degree-2 polynomial SP evaluation is based on Horner’s scheme. Two
DSP Blocks are configured in multiply-add mode, and chained as depicted
on the bottom of Fig[6} A worst case error of 2 ulps is introduced by the
FP evaluation (chain of 4 operations), leading to a maximum error of 3
ulps (combined approximation and evaluation error). The final result is
constructed by appending the symmetry bit (x<0.5) to the exponent and
fractions returned by the polynomial evaluator.

Optimized version for SP, degree 2. A further optimized version of
this architecture is depicted in Figure [§| There are two main novelties of
this architecture. First, the architecture is now based on the custom greedy
segmentation of the (L) branch described in Section This reduces the
number of subintervals from 128 to 55, thus allowing for more (H) branch
exponents to be handled (this in turn improves max, of the architecture).
Secondly, the non-uniform segmentation — discussed in Section - is
used for the exponents range of the (H) branch. This allows for further re-
ducing the number of subintervals required for these binades. In a similar
manner, the configurable architectures are denoted by SP-HFP-d2-C (sin-
gle precision, HFP DSP used, degree-2 approximations with custom/non-
uniform segmentations) in Tables [5|and [6]

The coefficient tables corresponding to the (H) branch which, for the
architecture in Figure|6} handled exponents from {—3, —18}, now pack ex-
ponents from {—3, —26}. The bottom 256 table entries handle exponents
{—3, —10}, where a uniform segmentation with 32 subintervals is used for
each exponent. The upper 256 table entries handle exponents {—11, —26}.
For each of these exponents, 16 non-uniform subintervals are used — 6 frac-
tional bits are decoded to 4 bits (corresponding to 16 subintervals) using
the approach detailed in Algorithm

The (L) branch coefficient tables store in the bottom 55 positions the co-
efficients corresponding to the (L) branch. The addressing of these subin-
tervals, depicted with the black box "55 (L) address generator" in Figure
is detailed in Figure [§] Similarly to the architecture in Figure [} the rest
of this table is filled-up with (H) branch exponents. More precisely, expo-
nents in the range { —27, —54} which have a similar behavior as {—11, —26}
(non-uniform 16 subintervals) sum-up to 28 - 16 = 448 table entries. To-

22

X
Branch!
Selector :
! Branch (L)
1 Address iBranch(h) [: exp Branch (L)}
4 : Polynomial |~ . Polynomial}
! Input e 3 H Input'
i [21:15] H H :
55 interval (H) Non-Unif. (H) Uniform (H) Non-Unif.
(L) address Addr. Gen. Addr. Gen. ‘Addr. Gen.
generator | |Er] S [s][4] GEE| |[HEEE
exp{-27:-54) exp(-3:-10} exp{-11:-26}
) 8 PCBH-A PCBH-B
{-55,-118} {-119, -126,
__0/ (H) Non-Unit H) Non-Uni.
Addr. Gen. Addr. Gen.

i ¥ ¥ 1G] [EIEIEE]

Table| |Table| |Table Table | | Table | | Table il L1 120)
c2 cl c0 c2 cl c0 | Table " Table | Table | | Table " Table | Table |
2 cl 0 el 0

2

1

1

: - Branch (H) - Branch (H) .
' (H) Uniform exp{-3:-10} (H) Non-Unif. exp{-27:-54}} |
1 Addr. Gen. Address Addr. Gen. Address: !
1 H |
c|EEE) P [EGEIEE P
! exp{-3:-10} addr (H) {-3:-10} : exp{-27:-54 !
1 B e B L L s T IITTR 1
1 1
1

Figure 8: Optimized SP architecture of FP probit for HFP-enabled FPGAs.
The bottom part of the figure shows the details of the high-level compo-
nents used for the (H) branch addressing.

23

gether with the (L) branch exponents the total utilization of these tables is
55 - 448 = 503. This optimized architecture, denoted by SP-HFP-d2-C-e54
in Tables [§ and [f| has max, = 8.3.

In order to further extend the supported exponent range (and thus im-
prove max,) circuits PCBH-A and PCHB-B can be used, similarly to the
previous architecture).

e PCBH-A handles exponents from {—55, —118}. For each of these ex-
ponents, a non-uniform segmentation scheme with 8 subintervals is
used. This optional circuitry (SP-HFP-d2-C-e118 in Tab. 5 and [6) re-
sults in an improved max, = 12.51.

e PCBH-B handles the rest of allowed single-precision exponents. For
each of these exponents, 8 non-uniform subintervals are used. This
results in a total of 8 exponents x 8 subintervals = 64 table entries.
The size of this table allows for an efficient 6-input LUT-based im-
plementation, and thus no extra memory blocks are required. In
conjunction with PCBH-A, this circuit (SP-HFP-d2-C-e126 in Tab.
and |[6) allows for a full exponent range coverage.

6.2 Single-Precision - degree 3

A different trade-off between DSP and memory blocks can be obtained if
the polynomial degree is increased to 3. The reduced number of subinter-
vals on both (L) and (H) leads to the memory compaction shown in Fig @

As presented in Sec (L) branch requires only 16 subintervals, and
thus occupies a small size of the 512 coefficient tables. Next, two sub-
sections of branch (H) handle exponents up to -94. First, for exponent
range {-3,-34} each exponent requires 8 subintervals but for the range {-35,
-94} only 4 subintervals suffice for meeting the approximation error objec-
tive. This architecture denoted by SP-HFP-d3-U-e94 in Tab. [§|and [f| has a
max, = 11.11.

The addressing is detailed in Figure [9 and is composed of a set base
address plus offset. The signs of the subtracters s, and s; corresponding
to bias — 3 — ez and bias — 35 — ey select the base address from 3 possible
values 0, 256, and 256+16. The same signs also drive a MUX selecting
between the 3 local offsets. The final table address is obtained by adding
the base and the offset values.

Optimized version for SP, degree 3. An optimized segmentation on
the (H) branch allows for an improved max,. More precisely, on the expo-
nent range {—3, —18}, a customized segmentation in 8 subintervals per bi-
nade meets the accuracy target, while on the exponent range {—19, —110},

24

addr (L) eZ fZ

ias-3

70000 —

XXX XX

00000 5 L
00000

\-» &

o

branch (H) 256 poly
{-3,-34}

8 subintervals

branch (L) 16 poly

branch (H) 240 poly
{-35,-94}
9 4 subintervals

Figure 9: Coefficient memory composition and addressing for a SP archi-
tecture based on a degree 3 polynomial evaluator.

4 subintervals per binade are sufficient. Thus, the number of memory en-
tries is 16 - 8 + 92 - 4, added with 16 on the (L) branch, which totals exactly
512 (the sweet-spot for the memory block utilization). This architecture
(SP-HFP-d3-C-e110 in Tab. [5|and [f) has a max, = 12.06.

Similarly to the optimized degree-2 implementation, the full exponent
range can also be supported. For the exponent range {—111, —126} a non-
uniform segmentation scheme with 4 subintervals per binade is sufficient.
This results in 16 x 4 = 64 memory entries, which is cheap to implement
using LUT-6, an abundant resource in modern FPGA architectures. This is
denoted by SP-HFP-d3-C-e126 in Tab. [fland [6|and provides the full-range
max, = 12.94.

6.3 Generic architecture

A generic architecture is depicted in Figure As proposed in Sec.
the computation is split in two branches: (L) with a uniform interval sub-
division and (H) with the logarithmic-based interval subdivision.

For the (L) branch, the argument is firstly reduced as in the SP architec-
ture. Then a number bls of subintervals are used. The addressing is done
directly from the input, as before. For that, let alw be the number of frac-
tional bits used. Then, when = € [0.5,0.75) the address is obtained from
the [wF—2, wF—1—alw] bits of the input fraction, whereas for z € [0.25,0.5)
the bits [wF —1, wF —alw| from the fixed-point difference 0.5— (mX > 2) are
used (cf. Figure[7). Finally, the polynomial input is obtained by recovering
the following wF — 1 — alw of fX (when = > 0.5), or respectively bottom
wF — alw bits from 0.5 — (mX > 2). The parameter values employed in our
higher precision cores are alw = 4 and bls = 16.

For Branch (H), let us focus on the exponent and the fraction contribu-
tion to the address. Since the address range for (H) starts at index bls, this
offset needs to be added when computing the address, but is omitted in

25

" Branch Sefector” | iSymmetry 1
i 025075 ! !Selector 0.5 |
1 | | | L
=0 =T =1 0 | e .
1 1
1 [x<0.25 Vx<05 [) i el Branch (H) : ' Branch (L) !
I %>0.75 | ' Address | !Address !
1
! OR ! L= P05 mXs»? .:
1 |branch (H)] | WwF+1 . !
T i X T '
|And | | bias—3+ i Z5mxshr2 |,
I — bis/(1<<tafw) [€X ! 1]
.......................... i
Polynomia i — :I Lo paLN | palP]
Input Selector i LZC 1 N 0 \
! 1+(bls/ I 7 S
f (1<<tafw))]
' << ¥ .
1 1
PXLN| pxLP [pxHN [pxHP |)
1 1
1 1

polyAddr

=0

| Normalize

1
1
1
| 1
1 <«<1 1
I 1
1
1

1
paHN=fX(wF-1:wF-ahfw)
pxHN=fX(m_wF-1-ahfw:0)
paHP=mxHP(wF-2:wF-1-ahfw)
pxHP=mxHP(m_wF-2-ahfw:0) & 0

paLN=z5mxshr2(wF,wF+1-alw)
pxLN=z5mxshr2(m_wF-alw:0) & (alw-ahfw-1)'0
paLP=fX(wF-1,wF-alw)
pxLP=fX(m_wF-1-alw:0) & (alw-ahfw)'0

alw=address width branch (L)
ahfw=fraction address width branch (H)
bls=subinterval count branch (L)

TSymmetry ']i _
1

1 Reconstruction

Figure 10: Generic architecture based on fixed-point piecewise-
polynomial approximations

26

the following for simplicity. Firstly, the exponent contribution for z < 0.25
is obtained using bias — 3 — eX. For > 0.75, the function input 1 — z is
computed from a fixed-point subtraction with known alignment, equiva-
lent to 0.5 — (mX > 2). The relative exponent, required for the address
computation, is obtained by counting the leading zeros of the difference.
Secondly, denote by ahfw, the number of fractional bits necessary for ad-
dressing the tables. When x < 0.25, these bits are obtained from the top
of fX. When z > 0.75 the fixed-point difference 1 — z is normalized, by
feeding the previously computed zero count together with the difference
into a left shifter. The top ahfw bits of the resulting fraction are then used.
For our cores, ahfw=3. Finally, the polynomial address is obtained by con-
catenating exponent and fractional parts.

For instance, to fill 512 table entries on (L)+(H), since bls = 16 is used
for (L), and ahfw = 3 bits are required for the fractional part (H) (uniform
segmentation for each binade), a total of (512 — 16) /2 = 62 exponents can
be handled, which results in a 6 bits exponent addressing.

In Section 4.2| we have also described a more fine-grain selection of
the subintervals corresponding to a binade, using a non-uniform mantissa
segmentation. This is depicted in Figure for our cores, and consists
of using the top 6 fractional bits to index a 3-bit wide table (Sgm. Table)
storing the corresponding new segment address, based on Table

Then, the polynomial input is obtained from the bottom wF — ahfw of

fX for z < 0.25 (and respectively those of the normalized difference 1 — z,
when x > 0.75). Furthermore, as mentioned in Sec. p| (b) zgniir = 2z — [(I
for "left" interval bound) is needed for the evaluation: an additional 6-bit
wide LUTG6 (Left Table) stores [and the subtraction is in fixed-point. Note
that its result can be 1-bit wider in the case of the non-uniform mantissa
segmentation.
Fused fixed-point polynomial evaluator. To create a single polynomial
evaluator, the worst case of formats across the entire set of coefficients
has to be considered. For our cores, they are presented in Table | Note
that, as explained in Sec. 5| (b), a final multiplication is performed outside
the fused polynomial evaluator. Moreover, since the evaluator’s output
in [0.5, 2), a single-bit normalization is required. The final exponent is re-
covered function of this bit and an additional stored relative exponent for
each polynomial.

Several generic architectures were generated:

— to compare with the HFP-enabled SP architectures, a single preci-
sion architecture with fixed-point evaluation is proposed. Denoted by SP-
FXP-d3-C-e64, this architecture is based on degree-3 polynomial approxi-
mations, features the custom segmentation presented above and handles

27

Table 4: Polynomial coefficient formats: signed(width,fraction). Number
of polynomials is 512. Approximation accuracy lulp.

wF | deg. | Coefficients Formats: Fused
(L)+(H)

26 | 4 | (31,30), +(38,32), (31,29), £(30,25),
(27,22)

35 | 5 |(40,39), +(47,41), (40,38), £(39,34),
(35,30), £(34,27)

52 | 8 | (57,56), +(64,58), (57,54), £(56,51),
(52,47), £(51,43), (49,41), +(47,36),
(43,32)

exponents {—3, —64} on the (H) branch.

— a double precision architecture with fixed-point evaluation denoted
by DP-FXP-d8-C-e64 is based on degree-8 polynomial approximations,
features custom segmentation and handles exponents {—3, —64} on the
(H) branch.

— two intermediary custom formats, with the same dynamic range as
double, but less precision (WF=26 and respectively, wF=35) are explored
via the fixed-point evaluation generic architecture. Denoted by CP-FXP-
d4-C-e64 (and respectively CP-FXP-d5-C-e64), they are based on degree-4
(respectively degree-5) polynomial approximations, feature custom seg-
mentation and handle exponents {—3, —64} on the (H) branch.

7 Results

In this article we proposed a family of architectures offering trade-offs be-
tween resource utilization and the tail accuracy max,. The main features
of all proposed architectures are summarized in Table |5, The synthesis re-
sults are presented in Table[] These were obtained using Quartus 19.3.0,
targeting Intel Arria 10, fastest speedgrade.

Firstly, let us analyze the obtained results for the single-precision case.
For degree-2 polynomial approximations, the custom segmentation tech-
niques always improve max,. For the basic configuration (SP-HFP-d2-U-
e30 vs SP-HFP-d2-C-e54) max, is improved from 6 to 8.3, for only 4 ALM
(2% of ALM count). In an enhanced configuration (SP-HFP-d2-U-e62 vs
SP-HFP-d2-C-e118) when an additional memory is used for both architec-
tures, max, is improved from 8.61 to 12.51, which is near the full SP range;

28

the cost of this improvement is exactly 10 ALMs, or about 4% the ALM
count. Finally, when comparing the two architectures at max, = 12.94
(SP-HFP-d2-U-e126 vs SP-HFP-d2-C-e126) the custom segmentation ver-
sion increases the ALM count by 35, but saves 5 M20Ks blocks - a very
good trade-off to be made in most cases.

A similar trend is observed for the degree-3 SP HFP-based implemen-
tation: in the default configuration (SP-HFP-d3-U-e94 vs SP-HFP-d3-C-
€110) the custom segmentation version improves max, from 11.18 to 12.06,
while also reporting fewer ALMs (this reduction is mostly due to other
technology mapping optimizations that we have implemented for SP-HFP-
d3-C-e110). An additional 72 ALMs are reported for a configuration that
offers full max, coverage (SP-HFP-d3-C-e126).

Moreover, when HFP DSPs are not used, our SP implementation SP-
FXP-d3-C-e64 uses degree-3 polynomial approximation and is based on
the generic architecture, cf. Sec. Compared to the previously men-
tioned HFP-based SP architectures, it is slightly less efficient by most met-
rics. For instance, SP-HFP-d3-C-e126 outperforms it in every single metric
- from latency, ALM count, DSP and M20K to max,. This confirms the ef-
ficiency of specializing the architectures on devices with HFP capabilities.

Compared to previous approaches for SP, the most relevant implemen-
tation of the FP Probit function is [9]. For comparable max,, our proposed
architectures outperforms [9], especially in terms of logic utilization. Since
[9] targets older Virtex-II devices, the 185MHz reported frequency is ex-
pected to scale up when the design is ported to recent FPGA devices.
Moreover, our architectures are accurate to 3 ulps, whereas [9] reports 20
fractional bits of accuracy, which translates to 8 ulps.

Also, Wichura’s algorithm was implemented using Intel DSP Builder
Advanced [3] for both the single and double-precision cases (see Fig.
for the SP architecture). For SP architectures which have comparable tail
accuracy to Wichura’s, our proposed cores outperform the Wichura'’s one,
despite the availability of FP DSP Blocks.

Beyond single, we have not found any prior works, therefore, our only
comparison point is our adaptation of Wichura to these custom formats
(all internal operations performed in the (WE,wF) format). The degree 7
rational polynomial approximation can likely be reduced for (11,26) and
(11,35) so the Wichura results for these two formats could potentially be
improved. It is clear however that in terms of resource utilization and
latency, our proposed architectures (CP-FXP-d4-C-e64 and CP-FXP-d5-C-
e64) will significantly outperform the Wichura adaptations. However, we
chose to limit our architecture to max, = 9.08, with 3 ulp relative accu-
racy (which seems reasonable in several applications [15]), whereas the

29

Table 5: Summary of main features of the proposed architectures. From
left to right, the columns represent: architecture name; the approximation
degree d; the segmentation type and total number of subintervals used
on the (L) and (H) branches; the minimum exponent supported; the tail
accuracy max,; the corresponding circuitry/figure (when available).

Deg. Segmentation Min exp Circuitry/

Name d (D [0.25,05) | () [0+ Zmin, 0-25) 085 Tmin [maxe | oo i
Figure
Type finterv.| Type | #Interv.

SP-HFP-d2-U-e30 896 —30 | 6 | Fig|
SP-HFP-d2-U-e62 . 1408 —62 |8.92 | Fig.|p PCBH-A;
SP-HFP-d2-U-eo4 | 2 | Uniform | 128 | Log 1920 —94 [11.11| Fig.[§ PCBH-A,
SP-HFP-d2-U-e126 2176 —126 |12.94 Fig |6 PCBH-A+B
SP-HFP-d2-C-e54 omi-Coarse Custom 960 —54 | 8.3 | Fig.§
SP-HFP-d2-C-el18| 2 [55 ‘i 1472 118 |12.51| Fig |3 PCBH-A
SP-HFP-d2-C-¢126 reedy 8 1536 —126 [12.94| Fig.[8, PCBH-A+B
SP-HFP-d3-U-e94 Log 196 —94 [11.11] Fig.]9
SP-HFP-d3-C-e110| 3 Uniform 16 [Custom 496 —110 [12.06
SP-HFP-d3-C-e126 Log 560 —126 [12.94
SP-FXP-d3-C-e64 | 3
CP-FXP-d4-C-e64 | 4 . 16 Custom .
CPFXP-d5Coogd 5| Uniform Log 496 —64 19.08 | Fig.[10]
DP-HFP-d6-C-e64 | 8

Wichura algorithm has full tail accuracy.

8 Conclusion

In this work we have proposed two sets of architectures for the FP Pro-
bit function: (a) for SP targeting the HFP DSP Blocks, and (b) a generic
architecture based on a fixed-point polynomial evaluation kernel that can
be implemented for any custom FP format. On one hand, it was shown
that our proposed architectures both outperform existing FP SP works in
terms of resource utilization for comparable tail accuracy, but also provide
a level of customization regarding the tail accuracy max, that results in a
resource-utilization tradeoff - potentially exploitable at application level.
On the other hand, proposed generic parametrizable architectures work
for custom FP formats with a tail accuracy of max, = 9.08. These have a
low resource utilization for double-precision compared to an FPGA imple-
mentation of the Wichura algorithm. This is due to the proposed custom
segmentation scheme, which "mimics" the asymptotic behavior and the
corresponding Wichura’s change of variable. For instance, for the double
precision implementation, this allowed for a reduction of the polynomial
degree by 1 (and thus a 10% resources saving), compared to a classical

30

Table 6: Complete synthesis results for the proposed cores targeting Intel
Arria 10 FPGAs, fastest speedgrade. Results reported for [9] correspond
to Xilinx Virtex-II FPGAs.

Resource Utilization

wE, wE| Algorithm Lat- | ATMs Regs DSPs M20K FMax | &%
Divide 17| 206 625 3 3 549MHz| -
Sqrt 11| 100 309 2 3 530MHz|-
Log 26 | 321 842 8 3 483MHz| -
8,23 | Wichura 87 | 1134 3108 25 10 483MHz| 12.94
ol 55 | 2022 15 5 185MHz| 6.23
SP-HFP-d2U-30 | 18 | 225 590 3 6 483MHz| 6
SP-HFP-d2-C-e54 | 18 | 229 584 3 6 483MHz| 83
SP-HFP-d2-U-e62 | 18 | 263 607 3 9 483MHz| 861
SP-HFP-d2-C-el118 | 18 | 273 658 3 9 483MHz| 1251
SP-HFP-d2-U-94 | 18 | 270 608 3 12 483MHz| 10.86
SP-HFP-d2-U-e126 | 18 | 324 547 3 14 483MHz| 12.94
SP-HFP-d2-C-e126 | 18 | 359 532 3 9 483MHz| 12.94
SP-HFP-d3-U-e94 | 23 | 329 658 4 4 483MHz| 11.18
SP-HFP-d3-C-e110 | 23 | 264 680 4 4 483MHz| 12.06
SP-HFP-d3-C-e126 | 23 | 336 743 4 4 483MHz| 1294
SP-FXP-d3-C-e64 | 30 | 453 1293 5 5 481MHz| 9.08
oo | CPFXP-diCesd | 34 | 532 1427 7 6 48IMHz| 9.0
+26 | Wichura 206 | 8000 18928 26 17 446MHz| -
a5 | CPEXP-d5-Ce6d | 55 | 1115 2878 13 8 549MHz| 9.08
»35 | Wichura 291 | 13398 31115 42 20 449MHz| -
1 o, | DPEXP-d8-Ce6d | 87 | 2797 785 36 21 474MHz| 9.08
*92 | Wichura 351 | 18574 47389 83 45 392MHz| 37.51
Divide 38 | 888 3055 11 11 549MHz| -
Sqrt 33 | 674 2210 8 8 549MHz| -
Log 51 | 1500 4311 11 20 475MHz| -

31

logarithmic segmentation. Further tuning of similar custom segmentation
schemes, allows for an improved architecture for the SP case: either the
memory count reduces by 35% for an equivalent tail accuracy, or for a
similar cost, the tail accuracy increases by 38%. Another feature is that the
proposed architectures are sufficiently generic, such that higher max, can
easily be obtained by choosing a different polynomial degree and /or num-
ber of subintervals. We intend to further explore the argument reduction
techniques by analyzing the trade-off between pure piecewise polynomial
approximations and composite ones, which make some intermediary use
of the asymptotic behavior.

References

[1] Intel Arria®10 Device Overview (2018). https://www.intel.
com/content/dam/altera-www/global/en_US/pdfs/
literature/hb/arria-10/al0_overview.pdf

[2] IEEE Standard for Floating-Point Arithmetic. IEEE Std 754-2019 (Re-
vision of IEEE 754-2008) pp. 1-84 (2019)

[3] DSP Builder for Intel FPGAs (Advanced Blockset) Handbook
(2021). https://www.intel.com/content/dam/www/
programmable/us/en/pdfs/literature/hb/dspb/hb_
dspb_adv.pdf

[4] Cheung, R.C.C,, Lee, D., Luk, W., Villasenor,].D.: Hardware gener-
ation of arbitrary random number distributions from uniform distri-
butions via the inversion method. IEEE Transactions on VLSI Systems
15(8), 952-962 (2007)

[5] Chevillard, S., Joldes, M., Lauter, C.: Sollya: An environment for
the development of numerical codes. In: International Congress on
Mathematical Software, pp. 28-31. Springer (2010)

[6] Daumas, M., Melquiond, G.: Certification of bounds on expressions
involving rounded operators. ACM Transactions on Mathematical
Software (TOMS) 37(1), 1-20 (2010)

[7] De Dinechin, E, Joldes, M., Pasca, B.: Automatic generation of
polynomial-based hardware architectures for function evaluation. In:
IEEE International Conference on Application-specific Systems, Ar-
chitectures and Processors, pp. 216-222. IEEE (2010)

32

https://www.intel.com/content/dam/altera-www/global/en_US/pdfs/literature/hb/arria-10/a10_overview.pdf
https://www.intel.com/content/dam/altera-www/global/en_US/pdfs/literature/hb/arria-10/a10_overview.pdf
https://www.intel.com/content/dam/altera-www/global/en_US/pdfs/literature/hb/arria-10/a10_overview.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/dspb/hb_dspb_adv.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/dspb/hb_dspb_adv.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/dspb/hb_dspb_adv.pdf

[8]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

De Schryver, C., Schmidt, D., Wehn, N., Korn, E., Marxen, H., Korn,
R.: A new hardware efficient inversion based random number gener-
ator for non-uniform distributions. In: Intl. Conf. on Reconfig. Comp.
and FPGAs, pp. 190-195. IEEE (2010)

Echeverria, P., Lopez-Vallejo, M.: FPGA gaussian random number
generator based on quintic Hermite interpolation inversion. In: 2007
50th Midwest Symposium on Circuits and Systems, pp. 871-874.
IEEE (2007)

Fousse, L., Hanrot, G., Lefevre, V., Pélissier, P., Zimmermann, P.:
MPFR: A multiple-precision binary floating-point library with cor-
rect rounding. ACM Transactions on Mathematical Software (TOMS)
33(2) (2007)

Hormann, W., Leydold, J.: Continuous random variate generation by
fast numerical inversion. ACM Trans. Model. Comput. Simul. 13(4),
347-362 (2003)

Joldes, M., Pasca, B.: Efficient floating-point implementation of the
probit function on FPGAs. In: 2020 IEEE 31st International Confer-
ence on Application-specific Systems, Architectures and Processors
(ASAP), pp. 173-180 (2020)

Lee, D.U., Cheung, R.C,, Villasenor,]J.D., Luk, W.: Inversion-based
hardware gaussian random number generator: A case study of func-
tion evaluation via hierarchical segmentation. In: 2006 IEEE Inter-
national Conference on Field Programmable Technology, pp. 33—40.
IEEE (2006)

Luu, T.: Fast and accurate parallel computation of quantile functions
for random number generation. Ph.D. thesis, UCL (University Col-
lege London) (2016)

Malik, J.S., Hemani, A.: Gaussian random number generation: A sur-
vey on hardware architectures. ACM Comput. Surv. 49(3) (2016)

Muller, J.M., Brunie, N., de Dinechin, E, Jeannerod, C.P., Joldes,
M., Lefevre, V., Melquiond, G., Revol, N., Torres, S.: Handbook of
Floating-Point Arithmetic. Birkhaduser (2018)

Revol, N.: Interval Newton iteration in multiple precision for the uni-
variate case. Num. Alg. 34(2-4), 417-426 (2003)

33

[18] Thomas, D.B.: A general-purpose method for faithfully rounded
floating-point function approximation in FPGAs. In: 2015 IEEE 22nd
Symposium on Computer Arithmetic, pp. 4249 (2015)

[19] Thomas, D.B., Luk, W., Leong, P.H., Villasenor,].D.: Gaussian ran-
dom number generators. ACM Comput. Surv. 39(4) (2007)

[20] Wichura, M.].: Algorithm as 241: The percentage points of the normal
distribution. Journal of the Royal Statistical Society. Series C (Applied
Statistics) 37(3), 477-484 (1988)

34

	Introduction
	Related works
	Contributions and outline

	Background
	Approximations to probit function
	Wichura's subdivision and change of variable
	Polynomial Approximations

	Input Range Subdivision Strategies
	Uniform subdivision
	Logarithmic subdivision
	Further improvements on subdivision techniques

	Efficient polynomial fixed-point and FP evaluations
	Architecture
	Single-Precision - degree 2
	Single-Precision - degree 3
	Generic architecture

	Results
	Conclusion

