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We first study stabilization of heat equation with globally Lipschitz nonlinearity. We consider the point measurements with constant delay and use spatial decomposition. Inspired by recent developments in the area of ordinary differential equations (ODEs) with time-delays, for the stability analysis, we suggest an augmented Lyapunov functional depending on the state derivative that is based on Legendre polynomials. Global exponential stability conditions are derived in terms of linear matrix inequalities (LMIs) that depend on the degree N of Legendre polynomials. The stability conditions form a hierarchy of LMIs: if the LMIs hold for N , they hold for N + 1. The dual observer design problem with constant delay is also formulated. We further consider stabilization of Korteweg-de Vries-Burgers (KdVB) equation using the point measurements with constant delay. Due to the third-order partial derivative in KdVB equation, the Lyapunov functionals that depend on the state derivative are not applicable here, which is different from the case of heat equation. We suggest a novel augmented Lyapunov functional depending on the state only that leads to improved regional stability conditions in terms of LMIs. Finally, numerical examples illustrate the efficiency of the method.

Introduction

Control of partial differential equations (PDEs), e.g. heat equation, becomes an active research topic [START_REF] Curtain | An introduction to infinitedimensional linear systems theory[END_REF][START_REF] Pisano | On the ISS properties of a class of parabolic DPS' with discontinuous control using sampled-inspace sensing and actuation[END_REF]. It is of interest to design a control law for PDEs using delayed inputs/outputs. Constructive conditions in terms of LMIs for delayed control of PDEs were presented in [START_REF] Fridman | Sampled-data distributed H∞ control of transport reaction systems[END_REF][START_REF] Fridman | Robust sampled-data control of a class of semilinear parabolic systems[END_REF]. The derived conditions allow to give an upper bound on the delay preserving the performance (e.g. exponential decay rate). Moreover, KdVB equation has been derived as the governing evolution equation for waves propagating in fluid-filled elastic or viscoelastic tubes incorporating the effects of dispersion, dissipation and nonlinearity [START_REF] Demiray | A travelling wave solution to the KdV-Burgers equation[END_REF]. The objective of the present work is the derivation of less conservative L-MI conditions for the stability analysis of heat and KdVB equations with time-delay. In application to chain of subobservers as used in [START_REF] Ahmed-Ali | Observer design for a class of parabolic systems with large delays and sampled measurements[END_REF], such conditions will allow to reduce the order of the chain.

For the stability analysis of ODEs with time-delay, Jensen's inequality [START_REF] Gu | An integral inequality in the stability problem of timedelay systems[END_REF][START_REF] Gu | Stability of time delay systems[END_REF] and Wirtinger-based integral inequality [START_REF] Seuret | Wirtinger-based integral inequality: application to time-delay systems[END_REF] were usually employed. Several contributions to derive less conservative integral inequalities for time-delay systems were provided in [START_REF] Park | Auxiliary functionbased integral inequalities for quadratic functions and their applications to time-delay systems[END_REF][START_REF] Zeng | Free-matrix-based integral inequality for stability analysis of systems with timevarying delay[END_REF]. Recently, a novel integral inequality so-called Bessel-Legendre (B-L) inequality that encompasses Jensen's inequality and Wirtinger-based integral inequality as particular cases was introduced in [START_REF] Seuret | Hierarchy of LMI conditions for the stability analysis of time-delay systems[END_REF] by using Legendre polynomials. The latter presented a hierarchy of LMI conditions that are competitive with [START_REF] Gu | An integral inequality in the stability problem of timedelay systems[END_REF][START_REF] Gu | Stability of time delay systems[END_REF][START_REF] Park | Auxiliary functionbased integral inequalities for quadratic functions and their applications to time-delay systems[END_REF][START_REF] Seuret | Wirtinger-based integral inequality: application to time-delay systems[END_REF][START_REF] Zeng | Free-matrix-based integral inequality for stability analysis of systems with timevarying delay[END_REF] in terms of conservatism and of complexity. In [START_REF] Baudouin | Stability analysis of a system coupled to a heat equation[END_REF], stability analysis of a coupled ODE-heat equation was presented via a new B-L inequality.

In the present work, we consider stabilization of heat and KdVB equations in the presence of constant output de-lay. Note that in the case of constant delay, input delay can be always moved to output by changing the time. We first study stabilization of heat equation under the point measurements with constant delay by using spatial decomposition approach (as introduced in [START_REF] Fridman | Robust sampled-data control of a class of semilinear parabolic systems[END_REF]). For the stability analysis of the closed-loop system, we suggest an augmented Lyapunov functional depending on the state derivative and that is based on Legendre polynomials. Such functionals extend the Lyapunov constructions of [START_REF] Ahmed-Ali | Observer design for a class of parabolic systems with large delays and sampled measurements[END_REF][START_REF] Fridman | Robust sampled-data control of a class of semilinear parabolic systems[END_REF]. Sufficient stability conditions are derived in terms of LMIs that are parameterized by the degree N of the polynomials. The same LMIs are also applicable to the case of stabilization under the spatially averaged measurements with constant delay. As a by-product, for the stability analysis of heat equation with constant state delay, we present the LMIs that appear to guarantee the exponential stability of delayed ODEs and that in the numerical example recover the analytical upper bounds on delay with a finite degree of the polynomials. We also formulate the dual observer design problem.

We further consider stabilization of KdVB equation under the point measurements with constant delay as studied in [START_REF] Kang | Distributed stabilization of Korteweg-de Vries-Burgers equation in the presence of input delay[END_REF]. Due to the third-order partial derivative in KdVB equation, the Lyapunov functionals that depend on the state derivative are not applicable here, which is different from the case of heat equation. We suggest a novel augmented Lyapunov functional encompassing the Lyapunov functional introduced in [START_REF] Kang | Distributed stabilization of Korteweg-de Vries-Burgers equation in the presence of input delay[END_REF] as a particular case that leads to improved regional stability conditions.

As in [START_REF] Seuret | Hierarchy of LMI conditions for the stability analysis of time-delay systems[END_REF][START_REF] Seuret | Complete quadratic Lyapunov functionals for distributed delay systems[END_REF], the derived stability conditions form a hierarchy of LMIs: if the LMIs hold for N , they hold for N + 1. By solving the LMIs, improved upper bounds on delay that preserve the stability are found. Finally, numerical examples illustrate the efficiency of the method. Some preliminary results for the scalar heat equation were presented in [START_REF] Zhang | Improved observer design for heat equation with constant measurement delay via Legendre polynomials[END_REF].

Notation and Preliminaries

Throughout the paper, R n denotes the n-dimensional Euclidean space with the vector norm |•|, R n×m is the space of all n × m real matrices. The notation P > 0, for P ∈ R n×n means that P is symmetric and positive definite. 0 n×m (0 n ) stands for the matrix in R n×m (R n×n ) whose entries are zero. For any square matrix X, He{X} = X + X T . L 2 (0, l) stands for the Hilbert space of square integrable vector (or scalar for n = 1) functions z : (0, l) → R n with the norm

z L 2 (0,l) = l 0 z T (x)z(x)dx. H i (0, l) (i = 1, 2) are the Sobolev space: H i (0, l) = {z : d j z dx j ∈ L 2 (0, l) ∀0 ≤ j ≤ i} with the norm z H i (0,l) = i j=0 d j z dx j 2 L 2 (0,l) .
The notation ( k i ) refers to the binomial coefficients given by

k! (k-i)!i! . Let L k (s) (k ∈ N 0 ) be the shifted Legendre polynomials over interval [-h, 0]: L k (s) = k i=0 (-1) i+k ( k i ) k+i i s+h h i . (1.1)
These polynomials satisfy the following properties:

Property 1.1 (i) Orthogonality: ∀k, i ∈ N 0 , 0 -h L k (s)L i (s)ds = 0, k = i, h 2k+1 , k = i. (1.2) 
(ii) Boundary conditions:

∀k ∈ N 0 , L k (0) = 1, L k (-h) = (-1) k . (1.3) (iii) Differentiation: Lk (s) = 0, k = 0, k-1 i=0 2i+1 h (1 -(-1) k+i )L i (s), k ≥ 1.
(1.4)

We will employ extended Bessel-Legendre inequality that is obtained by integration in x ∈ [0, l] of the inequality of Lemma 3 of [START_REF] Seuret | Hierarchy of LMI conditions for the stability analysis of time-delay systems[END_REF]:

Lemma 1.1 Consider a function z ∈ L 2 ([-h, 0]; L 2 (0, l)),
and scalars h > 0 and l > 0. Then for any n × n matrix R > 0, the following inequality holds for all N ∈ N 0 :

l 0 0 -h z T (x, t + s)Rz(x, t + s)dsdx ≥ N k=0 2k+1 h l 0 (Θ k (x, t)) T RΘ k (x, t)dx, (1.5) 
where

Θ k (x, t) (k ∈ N 0 ) correspond to the projection of z(x, t + s) over L k (s)
given by (1.1):

Θ k (x, t) = 0 -h L k (s)z(x, t + s)ds, k ∈ N 0 . (1.6)
2 Stabilization of heat equation with an output delay

Problem formulation

Consider the following semilinear diffusion equation:

z t (x, t) = D z(x, t) -βz x (x, t) + Az(x, t) +φ(z(x, t), x, t) + B N j=1 b j (x)u j (t), t ≥ 0, x ∈ [0, l], l > 0 (2.1)
under the Dirichlet boundary conditions

z(0, t) = z(l, t) = 0. (2.2)
Here z(x, t) = [z 1 (x, t), . . . , z n (x, t)] T ∈ R n is the state, u j (t) ∈ R r (j = 1, . . . , N ) are the control inputs, A ∈ R n×n and B ∈ R n×r are constant matrices and β ∈ R n×n is the diagonal matrix of convection coefficients. The diffusion term is given by

D z(x, t) = ∂ ∂x (d 1 (x)z 1 x (x, t)), . . . , ∂ ∂x (d n (x)z n x (x, t)) T (2.3) with d i (x) ∈ C 1 satisfying 0 < d i 0 ≤ d i (x) (i = 1, . . . , n) for x ∈ [0, l].
Following [START_REF] Am | Network-based H∞ filtering of parabolic systems[END_REF], we assume that for some positive definite [START_REF] Curtain | An introduction to infinitedimensional linear systems theory[END_REF] for φ(z, x, t) = φ M z).

Ψ ∈ R n×n , function φ ∈ C 1 satisfies φ T (z, x, t)φ(z, x, t) ≤ z T Ψz (2.4) for all z ∈ R n , x ∈ [0, l], t ≥ 0.
As in [START_REF] Fridman | Sampled-data distributed H∞ control of transport reaction systems[END_REF][START_REF] Fridman | Robust sampled-data control of a class of semilinear parabolic systems[END_REF], the control inputs u j (t) enter (2.1) through the shape functions

b j (x) = 1, x ∈ Ω j , 0, otherwise, j = 1, . . . , N, (2.5) 
where Ω j = [x j-1 , x j ) (j = 1, . . . , N ) divide the domain [0, l] into N sub-intervals. Here points 0 = , j = 1, . . . , N.

x 0 < x 1 < • • • < x N = l satisfy x j -x j-1 = ∆ j ≤ ∆,
(

In addition, the measurement is affected by a time-delay which is assumed to be constant, denoted hereafter by h > 0. For the control design, our method works also for unknown but constant h that belongs to a prescribed interval [h 1 , h 2 ]. Then, point measurements are provided by N sensors distributed over the whole domain [0, l]:

y j (t) = 0, t ≤ h, z(x j , t -h), t > h, j = 1, . . . , N. (2.7) 
Note that our model (2.1) may present a metal bar of the length of l that is heated along its length. In this case we measure the temperature in the spatial points along the bar (see e.g. Example 1.1.2 in [START_REF] Curtain | An introduction to infinitedimensional linear systems theory[END_REF]). Another application of spatially sampled measurements was recently given in application to multi-agents in [START_REF] Terushkin | Network-based deployment of nonlinear multi agents over open curves: a PDE approach[END_REF], where the measurements are provided by leaders placed in the points xj .

We design for system (2.1) a stabilizing controller

u j (t) = -Ky j (t), t ≥ 0, j = 1, . . . , N (2.8) 
with the gain K ∈ R r×n . Denote by the errors between the delayed state z(x, t -h) and point measurements z(x j , th):

f j (x, t -h) ∆ = z(x, t -h) -z(x j , t -h) = x xj z ξ (ξ, t -h)dξ, x ∈ Ω j , j = 1, . . . , N.
(2.9)

Then the closed-loop system (2.1), (2.7), (2.8) has the form:

z t (x, t) = D z(x, t) -βz x (x, t) + Az(x, t) +φ(z(x, t), x, t) -BK(1 -χ [0,h] (t)) ×[z(x, t -h) -f j (x, t -h)], t ≥ 0, (2.10) 
where x ∈ Ω j , j = 1, . . . , N and χ [0,h] (t) denotes the characteristic function of the time interval [0, h].

Now we consider the well-posedness of system (2.10). Let H 1 0 (0, l) = {θ ∈ H 1 (0, l) : θ(0) = θ(l) = 0} and

D(A) = {θ ∈ H 2 (0, l) : θ(0) = θ(l) = 0}.
By using the step method (see e.g. [START_REF] Fridman | Robust sampled-data control of a class of semilinear parabolic systems[END_REF]), it can be shown that for any initial condition z(•, 0) ∈ H 1 0 (0, l), there exists a unique strong solution of (2.10) such that

z ∈ L 2 (0, ∞; D(A)) ∩ C([0, ∞); H 1 0 (0, l)), z t ∈ L 2 (0, ∞; L 2 (0, ∞))
and equation (2.10) hold almost everywhere on [h, ∞).

Improved stability conditions

For the stability analysis of system (2.10), we suggest the following augmented Lyapunov functional (that extends the Lyapunov constructions of [START_REF] Ahmed-Ali | Observer design for a class of parabolic systems with large delays and sampled measurements[END_REF][START_REF] Fridman | Robust sampled-data control of a class of semilinear parabolic systems[END_REF]): (2.11) where N ∈ N 0 , and

V N (t) = V P N + V P2 + V S1 + V S2 + V R , t ≥ h,
V P N = l 0 ζ T N (x, t)P N ζ N (x, t)dx, V P2 = n i=1 l 0 P i 2 d i (x)(z i x (x, t)) 2 dx, V S1 = l 0 t t-h e -2α(t-s) z T (x, s)S 1 z(x, s)dsdx, V S2 = l 0 t t-h e -2α(t-s) z T x (x, s)S 2 z x (x, s)dsdx, V R = h l 0 t t-h e -2α(t-s) (s -t + h)z T s (x, s)Rz s (x, s)dsdx (2.12) with ζ N (x, t) = col{z(x, t), Θ 0 (x, t), . . . , Θ N -1 (x, t)} (2.13) and with (N + 1)n × (N + 1)n matrix P N , n × n matri- ces P 2 = diag{P 1 2 , . . . , P n 2 } > 0, S 1 > 0, S 2 > 0, R > 0, a scalar α > 0 and Θ k (x, t) (k = 0, . . . , N -1)
given by (1.6). The terms V S1 and V R are the PDE extensions of the standard Lyapunov functionals for delay-dependent analysis [START_REF] Fridman | Introduction to time-delay systems: analysis and control[END_REF][START_REF] Fridman | Exponential stability of linear distributed parameter systems with time-varying delays[END_REF]. The term V S2 is introduced to compensate l 0 z x (x, t -h)dx (instead of Halanay's inequality employed in [START_REF] Fridman | Robust sampled-data control of a class of semilinear parabolic systems[END_REF] for the case of time-varying delays). Note that z(•, s) for s ∈ [0, h] in (2.12) is defined as solution of (2.10), (2.2) with the initial condition z(•, t) ∈ H 1 0 (0, l).

Theorem 2.1 For given positive scalars h, l, ∆, α and a positive integer N , assume that there exist (N +1)n×(N + 1)n matrix P N , n × n matrices P 1 = diag{P 1 1 , . . . , P n 1 },

P 2 = diag{P 1 2 , . . . , P n 2 } > 0, S 1 > 0, S 2 > 0, R > 0, W > 0 and a scalar λ φ > 0 that satisfy PN > 0, (2.14) 
Υ N + Λ N + U N ≤ 0, (2.15) 
W -e -2αh S 2 ≤ 0, (

where Proof : Consider Lyapunov functional V N (t) given by (2.11). Lemma 1.1 gives a lower bound as follows

PN = P N + 1 h e -2αh S 1 diag{0, 1, . . . , 2N -1}, Υ N = He{G T N P N H N } + 2αG T N P N G N -e -2αh N k=0 (2k + 1)Γ T N (k)RΓ N (k), G N = I n 0 n×5n 0 n×N n 0 N n×n 0 N n×5n hI N n , H N = F T N Γ T N (0) . . . Γ T N (N -1) T , F N = 0 n I n 0 n×(N +4)n , Γ N (k) = I n , 0 n×2n , (-1) k+1 I n , 0 n×2n , γ 0 N k I n , . . . , γ N -1 N k I n , γ j N k = -(2j + 1)(1 -(-1) k+j ), if j ≤ k, 0, if j > k, U N = π 2 l 2 diag{0 3n , W -e -2αh S 2 , 0 (N +2)n } (2.17) and Λ N = {Λ ij } is symmetric matrix composed of Λ 11 = He{P 1 A} + S 1 + λ φ Ψ, Λ 12 = -P 1 + A T P 2 , Λ 14 = -Λ 16 = -P 1 BK, Λ 15 = P 1 , Λ 22 = -2P 2 + h 2 R, Λ 23 = -P 2 β, Λ 24 = -Λ 26 = -P 2 BK, Λ 25 = P 2 , Λ 33 = S 2 + He{D 0 (αP 2 -P 1 )}, Λ 44 = -e -2αh S 1 , Λ 55 = -λ φ I n , Λ 66 = -π 2 ∆ 2 W, Λ 77 = 0 N n (2.18) with Ψ given by (2.4) and D 0 = diag{d 1 0 , . . . , d n 0 }. Then there exists M 0 > 0 such that a unique strong solution of (2.10), (2.2) initialized with z(•, t) ∈ H 1 0 (0, l) for t ∈ [0, h] satisfies the inequality z(•, t) 2 H 1 0 (0,l) ≤ M 0 e -2α(t-h) h 0 [ z(•, s) 2 H 1 0 (0,l) + z s (•, s) 2 L 2 (0,l) ]ds, t ≥ h, (2.19 
V N (t) ≥ l 0 ζ T N (x, t)P N ζ N (x, t)dx + l 0 t t-h e -2α(t-s) z T (x, s)S 1 z(x, s)dsdx, ≥ l 0 ζ T N (x, t)P N ζ N (x, t)dx +e -2αh l 0 t t-h z T (x, s)S 1 z(x, s)dsdx ≥ l 0 ζ T N (x, t) PN ζ N (x, t)dx.
Thus, the positivity of V N (t) results from PN > 0 given by (2.14).

For t ≥ h, differentiating V P N along (2.10) yields

VP N = 2 l 0 ζ T N (x, t)P N ζN (x, t)dx, (2.20) 
where

ζN (x, t) = col{z t (x, t), Θ 0 t (x, t), . . . , Θ N -1 t (x, t)}.
Via (2.10) and (2.13), the definitions of G N and F N given by (2.17) yield

ζ N (x, t) = G N η N ,j , z t (x, t) = F N η N ,j , (2.21) 
where

η N ,j = col{z(x, t), z t (x, t), z x (x, t), z(x, t -h), φ(z(x, t), x, t), f j (x, t -h), 1 h Θ 0 (x, t), . . . , 1 h Θ N -1 (x, t)} with f j (x, t -h) defined by (2.9).
Then, an integration by parts ensures that

Θ k t (x, t) = L k (s)z(x, t + s)| 0 s=-h - 0 -h d ds L k (s) z(x, t + s)ds = Γ N (k)η N ,j , k = 0, . . . , N , (2.22)
where we applied (1.3) and (1.4) with Γ N (k) given by (2.17). From (2.20), (2.21) and (2.22), it follows that

VP N = 2 N j=1 xj xj-1 η T N ,j G T N P N H N η N ,j dx, (2.23) 
where H N is given by (2.17).

We have

VP2 = 2 n i=1 l 0 P i 2 d i (x)z i x (x, t)z i xt (x, t)dx, (2.24) 
VS1 + 2αV S1 = l 0 z T (x, t)S 1 z(x, t)dx -e -2αh l 0 z T (x, t -h)S 1 z(x, t -h)dx, (2.25) VS2 + 2αV S2 = l 0 z T x (x, t)S 2 z x (x, t)dx -e -2αh l 0 z T x (x, t -h)S 2 z x (x, t -h)dx.
(2.26)

Note that z i xt (i = 1, . . . , n) in VP2 are well-defined as in Remark A.1 of [START_REF] Fridman | Sampled-data distributed H∞ control of transport reaction systems[END_REF].

Further by using Lemma 1.1 and taking into account (2.22), we obtain

VR + 2αV R = h 2 l 0 z T t (x, t)Rz t (x, t)dx -h l 0 t t-h e -2α(t-s) z T s (x, s)Rz s (x, s)dsdx ≤ h 2 l 0 z T t (x, t)Rz t (x, t)dx -e -2αh N k=0 (2k + 1) × N j=1 xj xj-1 η T N ,j Γ T N (k)RΓ N (k)η N ,j dx. (2.27)
To cancel the term of the right hand side of (2.24), we employ the descriptor method [START_REF] Fridman | Introduction to time-delay systems: analysis and control[END_REF][START_REF] Fridman | Robust sampled-data control of a class of semilinear parabolic systems[END_REF], where the right-hand side of

0 = 2 l 0 [z T (x, t)P 1 + z T t (x, t)P 2 ][-z t (x, t) + D z(x, t) -βz x (x, t) + Az(x, t) + φ(z(x, t), x, t) -BKz(x, t -h)]dx + 2 N j=1 xj xj-1 [z T (x, t)P 1 +z T t (x, t)P 2 ]BKf j (x, t -h)dx (2.28) with some n × n matrix P 1 = diag{P 1 1 , . . . , P n 1 } is added to VN (t) + 2αV N (t).
An integration by parts and substitution of the Dirichlet boundary conditions (2.2) lead to

2 l 0 [z T (x, t)P 1 + z T t (x, t)P 2 ] D z(x, t)dx = 2 n i=1 l 0 [P i 1 z i (x, t) + P i 2 z i t (x, t)] ∂ ∂x (d i (x)z i x (x, t))dx = -2 n i=1 l 0 P i 1 d i (x)(z i x (x, t)) 2 dx -VP2 , (2.29) 
l 0 z T (x, t)P 1 βz x (x, t)dx = l 0 z T x (x, t)P 1 βz(x, t)dx. Thus, by noting that matrix P 1 β is diagonal, we have 2 l 0 z T (x, t)P 1 βz x (x, t)dx = 0.

(2.30)

To "compensate" the cross terms in (2.28) with f j (x, t -h) given by (2.9), for any n × n matrix W > 0 application of Wirtinger's inequality (see e.g. (3.177) in [START_REF] Fridman | Introduction to time-delay systems: analysis and control[END_REF]) yields

xj xj-1 f T j (x, t -h)W f j (x, t -h)dx = xj xj x xj z T ξ (ξ, t -h)dξ W x xj z ξ (ξ, t -h)dξ dx + xj xj-1 x xj z T ξ (ξ, t -h)dξ W x xj z ξ (ξ, t -h)dξ dx ≤ ∆ 2 π 2 xj xj-1 z T x (x, t -h)W z x (x, t -h)dx, j = 1, .
. . , N. Thus, the following inequality holds:

N j=1 xj xj-1 z T x (x, t -h)W z x (x, t -h) -π 2 ∆ 2 f T j (x, t -h)W f j (x, t -h) dx ≥ 0.
(2.31)

From (2.4) we have 0 ≤ λ φ l 0 z T (x, t)Ψz(x, t) -φ T (z, x, t)φ(z, x, t) dx (2.32)
with some scalar λ φ > 0. 

Condition Υ N + Λ N + U N ≤ 0 in (2.15) implies S 2 + He{D 0 (αP 2 -P 1 )} ≤ 0, thus, αP 2 -P 1 ≤ 0. Taking into account d i 0 ≤ d i (x) (i = 1, . . . , n) we have 2 n i=1 l 0 d i (x)(αP i 2 -P i 1 )(z i x (x, t)) 2 dx ≤ l 0 z T x (x,
≤ N j=1 xj xj-1 η T N ,j (Υ N + Λ N )η N ,j dx - l 0 z T x (x, t -h)(e -2αh S 2 -W )z x (x, t -h)dx ≤ N j=1 xj xj-1 η T N ,j (Υ N + Λ N + U N )η N ,j dx, t ≥ h, (2.34 
) where we applied Wirtinger's inequality with (2.16). Here Υ N and U N are given by (2.17) and Λ N is composed of (2.18). Thus, from (2.15) we have VN (t) + 2αV N (t) ≤ 0 for all t ≥ h implying V N (t) ≤ e -2α(t-h) V N (h) for all t ≥ h. Due to the positivity of V N (t), there exists some M 1 > 0 such that

V N (t) ≥ M 1 z(•, t) 2 H 1 0 (0,l) , t ≥ h. (2.35)
Moreover, V N (h) can be upper bounded by 

V N (h) ≤ M 2 h 0 [ z(•, s) 2 H 1 0 (0,l) + z s (•, s) 2 L 2 (0,l) ]
y j (t) =    0, if t ≤ h, 1 ∆j xj xj-1 z(ξ, t -h)dξ, if t > h, j = 1, . . . , N,
we obtain (2.10) with

f j (x, t -h) ∆ = 1 ∆j xj xj-1 [z(x, t -h) -z(ξ, t -h)]dξ.
(2.37)

Since xj xj-1 f j (ξ, t -h)dξ = 0 and d dx f j (x, t -h) = z x (x, t - h), for any n × n matrix W > 0 the Poincaré's inequality [16] leads to xj xj-1 f T j (x, t -h)W f j (x, t -h)dx ≤ ∆ 2 π 2 xj xj-1 d dx f T j (x, t -h)W f j (x, t -h) 2 dx ≤ ∆ 2 π 2 xj xj-1 d dx f T j (x, t -h) W d dx f j (x, t -h) dx, = ∆ 2 π 2 xj xj-1 z T
x (x, t -h)W z x (x, t -h)dx, j = 1, . . . , N. Then, we obtain (2.31) with f j (x, t -h) given by (2.37). Thus, LMIs of Theorem 2.1 are applicable to the case of spatially point or averaged measurements with time-delay.

Consider next d i (x) ≡ d i 0 (i = 1, . . . , n), φ(z, x, t) ≡ 0, β = 0 and the measurement y(t) = 0, if t ≤ h, z(x, t -h), if t > h.
(2.38)

Thus, system (2.1) becomes

z t (x, t) = D z(x, t) + Az(x, t) + Bu(t), t ≥ 0, x ∈ [0, l], l > 0 (2.39)
that is stabilized by a state-feedback

u(t) = -Ky(t), t ≥ 0 (2.40)
with y(t) given by (2.38) and K ∈ R r×n . Then the resulting closed-loop system has the form

z t (x, t) = D 0 z xx (x, t) + Az(x, t) -BK(1 -χ [0,h] (t))z(x, t -h), t ≥ 0 (2.41)
with D 0 = diag{d 1 0 , . . . , d n 0 } and constant matrices A ∈ R n×n , B ∈ R n×r , K ∈ R r×n and χ [0,h] (t) defined below (2.10). Since the diffusion term in (2.41) is constant, we choose P 1 in (2.28) as a non-diagonal matrix (see e.g. [START_REF] Solomon | Stability and passivity analysis of semilinear diffusion PDEs with time-delays[END_REF]): 

l 0 z T (x, t)He{P 1 D 0 }z xx (x, t)dx = - l 0 z T x (x, t)He{P 1 D 0 }z x (x,
ż(t) + (D 0 -A)z(t) + BK z(t -h) = 0.
(2.43)

Note that system (2.43) corresponds to the first modal dynamics (with k = 1) in the modal representation of the Dirichlet boundary-value problem (2.2), (2.41) with l = π

żk (t) + (k 2 D 0 -A)z k (t) + BK zk (t -h) = 0, k = 1, 2, . . . (2.44)
projected on the eigenfunctions of the operator D 0 ∂ 2 ∂x 2 (this operator has eigenvalues -k 2 D 0 , see e.g. [START_REF] Wu | Theory and applications of partial functional differential equations[END_REF]). The stability of (2.2), (2.41) implies the stability of (2.44). Thus, LMIs of Corollary 2.1 are tight [START_REF] Fridman | Exponential stability of linear distributed parameter systems with time-varying delays[END_REF].

The dual observation problem

Consider the semilinear diffusion equation

z t (x, t) = D z(x, t) -βz x (x, t) + Az(x, t) + u(t) +σ(z(x, t), x, t), t ≥ 0, x ∈ [0, l], l > 0
(2.45) under the Dirichlet boundary conditions (2.2) with the state z(x, t) ∈ R n and the control input u(t) ∈ R n . The diffusion term is given by (2.3) and σ is a known function of class C 1 satisfying σ T z σ z ≤ Ψ with some positive definite Ψ ∈ R n×n , where σ z denotes the partial derivative of a function σ(z, x, t) with respect to z.

We suggest a nonlinear observer of the form ẑt (x, t) = D ẑ(x, t) -β ẑx (x, t) + Aẑ(x, t) + u(t)

+σ(ẑ(x, t), x, t) + L N j=1 b j (x)[y j (t) -ẑ(x j , t -h)], t ≥ 0, x ∈ [0, l], l > 0 (2.46) under the Dirichlet boundary conditions ẑ(0, t) = ẑ(l, t) = 0, (2.47) 
where y j (t) (j = 1, . . . , N ) are given by (2.7), L ∈ R n×n is an observer gain and ẑ(x, t) = 0 for t ∈ [-h, 0].

Then using function χ [0,h] (t) defined below (2.10), the estimation error ê(x, t) = z(x, t)-ẑ(x, t) satisfies the Dirichlet boundary value problem êt (x, t) = D ê(x, t) -βê x (x, t) + Aê(x, t) + φ(ê(x, t), x, t)

-L N j=1 b j (x)(1 -χ [0,h] (t))ê(x j , t -h), t ≥ 0, (2.48) 
where φ(ê, x, t) = σ(z, x, t) -σ(ẑ, x, t)

= 1 0 σ z (ẑ + ξê, x, t)dξê with φ T (ê, x, t)φ(ê, x, t) ≤ êT 1 0 σ T z (ẑ + ξê, x, t)σ z (ẑ + ξê, x, t)dξ ê ≤ êT Ψê.
Note that in the latter we applied Jensen's inequality [START_REF] Gu | An integral inequality in the stability problem of timedelay systems[END_REF][START_REF] Gu | Stability of time delay systems[END_REF]. Thus, Theorem 2.1, where BK = L, gives sufficient conditions for the exponential stability of (2.48) under the Dirichlet boundary conditions.

Hierarchy of LMIs

Following arguments for Hierarchy of LMIs in [START_REF] Seuret | Hierarchy of LMI conditions for the stability analysis of time-delay systems[END_REF][START_REF] Seuret | Complete quadratic Lyapunov functionals for distributed delay systems[END_REF], we find that the stability conditions of Theorem 2. ) with N = 0) and Jensen's inequality [START_REF] Gu | An integral inequality in the stability problem of timedelay systems[END_REF][START_REF] Gu | Stability of time delay systems[END_REF].

3 Regional stabilization of KdVB equation with an output delay

Problem formulation

Consider the following KdVB equation:

z t (x, t) = -z(x, t)z x (x, t) + λz(x, t) + βz xx (x, t) -z xxx (x, t) + N j=1 b j (x)u j (t), t ≥ 0, x ∈ (0, l), l > 0 (3.1) under the periodic boundary conditions z(0, t) = z(l, t), z x (0, t) = z x (l, t), z xx (0, t) = z xx (l, t), (3. 
2) where z(x, t) ∈ R is the state, u j (t) ∈ R (j = 1, . . . , N ) are the control inputs that enter (3.1) through the shape functions b j (x) (j = 1, . . . , N ) given by (2.5), λ and β are positive constants and the initial condition is given by z(x, 0) = z 0 (x). Note that for λ = 0, the open-loop system (3.1) has constant solutions, whereas for λ > 0 the openloop system may become unstable.

We study the KdVB equation (3.1) under the delayed stabilizing controller (2.8) with K ∈ R that leads to the closedloop system for t ≥ 0

z t (x, t) = -z(x, t)z x (x, t) + λz(x, t) + βz xx (x, t) -z xxx (x, t) -K(1 -χ [0,h] (t))[z(x, t -h) -f j (x, t -h)],
(3.3) where x ∈ Ω j , j = 1, . . . , N , f j (x, t -h) is given by (2.9) and χ [0,h] (t) is defined below (2.10). Now we consider the well-posedness of system (3.3). The solution of system (3.3) under the periodic boundary conditions (3.2) should be understood in the weak sense. Namely, we define the space

   H 1 per (0, l) = {g ∈ H 1 (0, l) : g(0) = g(l)}, g 2 
H 1 per = P 11 l 0 g 2 (x)dx + P l 0 [g (x)] 2 dx, (3.4) 
where P 11 and P are positive constants that are related to the Lyapunov functional (see (3.7) below). Given T > 0, a weak solution of (3.

3) on [0, T ] is a function z(x, t) ∈ C(0, T ; H 1 per (0, l)) such that z t ∈ L ∞ (0, T ; L 2 (0, l)) ∩ L 2 (0, T ; H 1 per (0, l)) and d dt l 0 z(ξ, t)φ(ξ)dξ = - l 0 z(ξ, t)z x (ξ, t)φ(ξ)dξ +λ l 0 z(ξ, t)φ(ξ)dξ + β l 0 z ξ (ξ, t)φ ξ (ξ)dξ - l 0 z ξξ (ξ, t)φ ξ (ξ)dξ -K N j=1 xj xj-1 (1 -χ [0,h] (t)) ×[z(ξ, t -h) -f (ξ, t -h)]φ(ξ)dξ
(3.5) hold for any φ ∈ H 1 per (0, 1) and almost all t ∈ [0, T ].

The condition (3.5) is motivated via the integrationby-parts formula. Based on the Galerkin approximation method (see, e.g. [START_REF] Pisano | On the ISS properties of a class of parabolic DPS' with discontinuous control using sampled-inspace sensing and actuation[END_REF]), one can show that (3.3) has a unique weak solution for all T > 0 provided the initial value z 0 ∈ H 3 (0, l) ∩ H 1 per (0, l) satisfies the compatible conditions [START_REF] Kang | Distributed stabilization of Korteweg-de Vries-Burgers equation in the presence of input delay[END_REF]:

z 0 (0) = z 0 (l), z 0 (0) = z 0 (l).
(3.6)

Improved regional stability conditions

For the stability analysis of system (3.3), an augmented Lyapunov functional depending on the state z(x, t) only (rather than the state derivative z t (x, t)) was introduced in [START_REF] Kang | Distributed stabilization of Korteweg-de Vries-Burgers equation in the presence of input delay[END_REF] to derive the stability conditions in terms of LMIs that allow to find an upper bound on the delay that preserves regional stability. To obtain improved regional stability conditions, we here consider a novel augmented Lyapunov functional via Legendre polynomials:

VN (t) = VP N + VP + 2 i=1 ( VSi + VRi ), N ∈ N 0 , (3.7) 
where

VP N = l 0 ζT N (x, t)P N ζN (x, t)dx, VP = P l 0 z 2 x (x, t)dx, VS1 = S 1 l 0 t t-h e -2α(t-s) z 2 (x, s)dsdx, VS2 = S 2 l 0 t t-h e -2α(t-s) z 2 x (x, s)dsdx, VR1 = R 1 l 0 t t-h e -2α(t-s) (s -t + h)z 2 (x, s)dsdx, VR2 = R 2 l 0 t t-h e -2α(t-s) (s -t + h)z 2 x (x, s)dsdx with ζN (x, t) = [z(x, t), Θ 0 (x, t), . . . , Θ N (x, t)] T ,
and with (N +2)×(N +2) matrix

P N = {P ij }, scalars P > 0, S i > 0, R i > 0 (i = 1, 2
) and α > 0. Here Θ k (x, t) (k = 0, . . . , N ) are given by (1.6). For N = 0, VN (t) coincides with the Lyapunov functional introduced in [START_REF] Kang | Distributed stabilization of Korteweg-de Vries-Burgers equation in the presence of input delay[END_REF].

Since the solution of (3.3) does not depend on the values of z(x, t) for t < 0 [START_REF] Liu | Delay-dependent methods and the first delay interval[END_REF], we redefine the initial condition to be a function

z(x, t) = z 0 (x), t ≤ 0.
Thus, we have

VN (0) = [P 11 + 2P 12 h + P 22 h 2 + S 1 h + R1h 2 2 ] l 0 z 2 0 (x)dx +(P + S 2 h + R2h 2 2 ) l 0 [z 0 (x)] 2 dx
, where we applied (1.2). Note that the latter coincides with that for the case of N = 0 considered in [START_REF] Kang | Distributed stabilization of Korteweg-de Vries-Burgers equation in the presence of input delay[END_REF]. Thus, we employ the following results borrowed from [START_REF] Kang | Distributed stabilization of Korteweg-de Vries-Burgers equation in the presence of input delay[END_REF] that guarantee simple bounds on VN (h) and z(x, t), and that present a solution of (3.3): Lemma 3.1 [START_REF] Kang | Distributed stabilization of Korteweg-de Vries-Burgers equation in the presence of input delay[END_REF] Consider system (3.3) and the functionals VN (t) and V(t) respectively given by (3.7) and

V(t) = P 11 l 0 z 2 (x, t)dx + P l 0 z 2 x (x, t)dx (3.8) 
with scalars P 11 > 0 and P > 0 that are related to the functional VN (t). Denote

M max (P 11 + 2P 12 h + P 22 h 2 + S 1 h + R1h 2 2 )P -1 11 , (P + S 2 h + R2h 2
2 )P -1 + e 2α1h -1, where S i (i = 1, 2) are from functional VN (t), h and α are positive scalars, and α 1 is a positive tuning parameter. Given positive tuning parameters C and C 1 .

(i) Assume that along (3.3) V(t) -2α 1 V(t) ≤ 0, t ∈ [0, h], (3.9) 
VN (t) + 2α VN (t) -2α 1 V(t) ≤ 0, t ∈ [0, h], (3.10) 
and M C 2 < C 2 1 , (3.11) 
hold. Then

VN (h) ≤ M P 11 l 0 z 2 0 (x)dx + P l 0 [z 0 (x)] 2 dx < C 2 1 if z 0 2 H 1 per = P 11 l 0 z 2 0 (x)dx + P l 0 [z 0 (x)] 2 dx < C 2 .
Assume additionally that along (3.3)

VN (t) + 2α VN (t) ≤ 0, t > h (3.12)
holds. Then the solution of (3.3) satisfies

VN (t) ≤ M e -2α(t-h) P 11 l 0 z 2 0 (x)dx + P l 0 [z 0 (x)] 2 dx (3.13) for all t ≥ h.
(ii) If, in addition to the conditions of (i), there exist scalars P > 0, ρ > 0 and > 0 such that

VN (t) ≥ ρ l 0 z 2 (x, t)dx + P l 0 z 2 x (x, t)dx, (3.14) 
≥ 1 + ρ, -P 1 * -ρ < 0. (3.15) Then z(x, t) ∈ (-C 1 , C 1 ) ∀x ∈ [0, 1], t ≥ 0. (3.16) 
We now present improved conditions in terms of LMIs to guarantee (

Theorem 3.1 Given positive scalars h, l, ∆, α, K > λ, and positive tuning parameters α 1 > λ, C and C 1 , let there exist scalars (N + 2) × (N + 2) matrix P N = {P ij } and scalars P > 0, S i > 0, R i > 0 (i = 1, 2), W > 0, W 1 , ρ > 0 and > 0 such that (2.16), (3.15) and

PN > 0, (3.17) 
Ξ N (-C 1 ) ≤ 0, Ξ N (C 1 ) ≤ 0, (3.18) 
Υ N 1 + Λ N (-C 1 ) ≤ 0, Υ N 1 + Λ N (C 1 ) ≤ 0, (3.19) 
Υ N 2 + Φ N (-C 1 ) ≤ 0, Υ N 2 + Φ N (C 1 ) ≤ 0, (3.20) 
where

PN = P N + diag -ρ, S 1 e -2αh h , . . . , S 1 e -2αh (2N +1) h , Ξ N (z) =     -P 11 (α 1 -λ) 0 1 2 W 1 * -P 11 β -P (α 1 -λ) + W 1 1 2 P z * * -P β     , Υ N i = He{ ḠT N i P N HN i } + 2α ḠT N i P N ḠN i , i = 1, 2, ḠN i = 1 0 1×3 0 1×(N +1) 0 1×(N +i) 0 (N +1)×1 0 (N +1)×3 hI N +1 0 (N +1)×(N +i)
,

HN i = 0 (2N +i+5)×1 ΓT N i (0) . . . ΓT N i (N ) T , ΓN i (k) = 1 (-1) k+1 0 1×2 γ 0 N k . . . γ N N k 0 1×(N +i) (3.21)
with γ j N k (j = 1, . . . , N ) given by (2.17 x (x, t)dx, which, together with ρ > 0 and P > 0, implies the positivity of VN (t). In the next step, the objective is to show that LMIs (3.18)-(3.20) guarantee (3.9), (3.10) and (3.12) respectively.

For any t ≥ 0, differentiating VP N along the trajectories of (3.3) yields

VP N = 2 l 0 ζT N (x, t)P N ζN (x, t)dx, = l 0 ηT N ῩN 1 ηN dx + 2P 11 l 0 z(x, t)z t (x, t)dx +2 N +2 k=2 P 1k l 0 Θ k-2 (x, t)z t (x, t)dx
(3.23) where (3.5) has been used with φ = z, and with ῩN 1 given by (3.3) and the augmented vector ηN = [z(x, t), z(x, t -h), z x (x, t), z xx (x, t), 

= l 0 ηT N (x, t) Ῡη N (x, t)dx +2P 11 λ l 0 z 2 (x, t)dx -2P 11 β l 0 z 2 x (x, t)dx +2 N +2 k=2 P 1k λ l 0 z(x, t)Θ k-2 (x, t)dx -2 N +2 k=2 P 1k l 0 z(x, t)z x (x, t)Θ k-2 (x, t)dx -2 N +2 k=2 P 1k β l 0 z x (x, t)Θ k-2 x (x, t)dx +2 N +2 k=2 P 1k l 0 z xx (x, t)Θ k-2 x (x, t)dx -2K(1 -χ [0,h] (t)) N j=1 xj xj-1 [P 11 z(x, t) + N +2 k=2 P 1k Θ k-2 (x, t)][z(x, t -h) -f j (x, t -h)]dx.
(3.25) Concerning the other terms of the Lyapunov functional, we have VP = 2P

l 0 z x (x, t)z xt (x, t)dx = -2P l 0 z xx (x, t)z t (x, t)dx = 2P λ l 0 z 2 x (x, t)dx -2P β l 0 z 2 xx (x, t)dx +2P l 0 z(x, t)z x (x, t)z xx (x, t)dx +2P K(1 -χ [0,h] (t)) N j=1 xj xj-1 z xx (x, t) ×[z(x, t -h) -f j (x, t -h)]dx, (3.26) and VS1 + 2α VS1 = S 1 l 0 z 2 (x, t)dx -S 1 e -2αh l 0 z 2 (x, t -h)dx, (3.27) 
VS2 + 2α VS2 = S 2 l 0 z 2 x (x, t)dx -S 2 e -2αh l 0 z 2 x (x, t -h)dx.

(3.28)

Then the application of Lemma 1.1 leads to 

VR1 + 2α VR1 = R 1 h l 0 z 2 (x, t)dx -R 1 l 0 t t-h e -2α(t-s) z 2 (x, s)dsdx ≤ R 1 h l 0 z 2 (x, t)dx -R 1 e -2αh N k=0 2k+1 h l 0 [Θ k (x, t)] 2 dx, (3.29) and VR2 
+ 2α VR2 = R 2 h l 0 z 2 x (x, t)dx -R 2 l 0 t t-h e -2α(t-s) z 2 x (x, s)dsdx ≤ R 2 h l 0 z 2 x (x, t)dx -R 2 e -2αh N k=0 2k+1 h l 0 [Θ k x (x, t)] 2 dx. ( 3 
≤ N j=1 xj xj-1 ηT N ,j [Υ N 2 + Φ N (z)]η N ,j dx -(S 2 e -2αh -W ) l 0 z 2 x (x, t -h)dx ≤ N j=1 xj xj-1 ηT N ,j [Υ N 2 + Φ N (z)]η N ,j dx, t > h, (3.33 
) where we applied (2.16). Here Υ N i (i = 1, 2) and ηN are respectively given by (3.21) and (3.24), ηN ,j = [η T N , f j (x, th)] T , and Λ N (z) and Φ N (z) are symmetric matrices composed of (3.22).

Similarly, differentiating V(t) in (3.8) along the trajectories of (3.3) yields This model accounts for an activator temperature z 1 that undergoes reaction, advection and diffusion, and for a fast inhibitor concentration z 2 , which may be advected by the flow [START_REF] Selivanov | Distributed event-triggered control of diffusion semilinear PDEs[END_REF].

V(t) -2α 1 V(t) = 2 l 0 κ T Ξ N (z)κdx, t ∈ [0, h], (3.34) where κ = [z(x, t), z x (x, t), z xx (x, t)] T and Ξ N (z) is given by (3.21). Since Ξ N (z), Λ N (z) and Φ N (z) are affine in z, Ξ N (z) ≤ 0, Υ N 1 + Λ N (z) ≤ 0 and Υ N 2 + Φ N (z) ≤ 0 hold for all z ∈ (-C 1 , C 1 )
Assume that there are N = 20 in-domain sensors transmitting measurements (2.7) at xj = 2j-1 2N , j = 1, . . . , N (the centers of Ω j = [ j-1 N , j N )) implying ∆ = 0.5. LMIs of Theorem 2.1 with various values of N and α = 0 lead to the maximal value of h (see Table 4.1) that preserves the stability. As expected, better results are obtained as the degree of the polynomial N increases, but at the cost of additional decision variables. Moreover, the maximal value of h remains Note that the analytical upper bound for the asymptotic stability of the latter ODE is h = π (see Chapter 2.3.2 in [START_REF] Fridman | Introduction to time-delay systems: analysis and control[END_REF]). It is clear that our method recovers the analytical upper bound with a finite degree N = 4 of the polynomials. 4.3) that preserves the exponential stability of the closed-loop system for any initial values satisfying z 0 H 1 per < 0.044. It is clear that the improvement on the upper bound of delay is achieved as the degree N of the polynomial increases and the maximal value of h remains as 2.4442 × 10 -3 when N ≥ 3. We find also the feasible solutions of the LMIs, e.g. The latter allows to choose a larger initial condition (comparatively to z 0 (x) = 0.0025sin(2πx), 0 ≤ x ≤ 1 in [START_REF] Kang | Distributed stabilization of Korteweg-de Vries-Burgers equation in the presence of input delay[END_REF]), e.g. z 0 (x) = 0.0037sin(2πx), 0 ≤ x ≤ 1 satisfying In this paper, stabilization of heat equation and KdVB equation under constant output delay has been studied. By constructing two augmented Lyapunov functionals that respectively depend on the state derivative and the state only, sufficient conditions in terms of LMIs that preserve the exponential stability have been derived. The resulting LMI conditions show improvements in numerical examples. The suggested augmented Lyapunov functionals can be used for delayed control of various PDEs via spatial decomposition method: Kuramoto-Sivashinskii equation (as considered in [START_REF] Kang | Distributed sampled-data control of Kuramoto-Sivashinsky equation[END_REF]), damped wave and beam equations (see e.g. [START_REF] Terushkin | Network-based control of a semilinear damped beam equation under point and pointlike measurements[END_REF][START_REF] Terushkin | Network-based deployment of nonlinear multi agents over open curves: a PDE approach[END_REF]).

  ), Λ N (z) = {Λ ij } and Φ N (z) = {Φ ij } are symmetric matrices composed ofΦ 11 = 2P 11 λ + S 1 + R 1 h, Λ 11 = Φ 11 -2α 1 P 11 , Φ 12 = -Φ 17 = -P 11 K, Φ 14 = Λ 14 = W 1 , Φ 15 = Λ 15 = [ P 12 . . . P 1(N +2) ]hλ, Φ 22 = Λ 22 = -S 1 e -2αh , Φ 24 = -Φ 47 = P K, Φ 25 = -Φ T 57 = -[ P 12 . . . P 1(N +2) ]hK, Φ 33 = -2P 11 β + 2P λ + 2αP + S 2 + R 2 h + 2W 1 , Λ 33 = Φ 33 -2α 1 P, Φ 34 = Λ 34 = P z, Φ 35 = Λ 35 = -[ P 12 . . . P 1(N +2) ]hz, Φ 36 = Λ 36 = -[ P 12 . . . P 1(N +2) ]hβ, Φ 44 = Λ 44 = -2P β, Φ 77 = -W π 2 ∆ 2 , Φ 46 = Λ 46 = [ P 12 . . . P 1(N +2) ]h, Φ 55 = Λ 55 = -R 1 he -2αh diag{1, . . . , 2N + 1}, Φ 66 = Λ 66 = -R 2 he -2αh diag{1, . . . , 2N + 1}, (3.22)other blocks are zero matrices. If (3.11) holds, then for any initial state z 0 ∈ H 3 (0, l) ∩ H 1 per (0, l) satisfying the compatible conditions (3.6) with z 0 H 1 per < C, system (3.3) under the periodic boundary conditions (3.2) possesses a unique weak solution in the sense that for any T > 0, z(x, t) ∈ C(0, T ; H 1 per (0, l)). Moreover, the solution of (3.3) satisfies (3.13) for all t ≥ h. Proof : First, Lemma 1.1 ensures the following inequality VP N + VS1 ≥ l 0 ζT N (x, t) PN ζN (x, t) + ρ l 0 z 2 (x, t)dx, where matrix PN > 0 is given in (3.21) and guarantees VN (t) ≥ VP N + VS1 + P l 0 z 2 x (x, t)dx ≥ ρ l 0 z 2 (x, t)dx + P l 0 z 2
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 2 given by (3.16) if LMIs (3.18)-(3.20) are feasible. From (3.32)-(3.34), it follows that LMIs (3.18)-(3.20) guarantee (3.9), (3.10) and (3.12) respectively. Finally, assertion of Theorem 3.1 follows from Lemma 3.1. Numerical examples Example 4.1 Consider the chemical reactor model from [18,22] governed by heat equation (2.1) under the Dirichlet boundary conditions (2.2) with the measurements (2.7), where n = 2, r = 1, l = 10, D 0 = diag{0.01, 0.005}, β = diag{0.011, 1.1}, φ = [φ 1 (z 1 ), 0] T , Ψ = diag{10 -4 , 0} and

Example 4 . 3

 43 Consider KdVB equation (3.1) under the periodic boundary conditions (3.2) with λ = 15, β = 0.5 and l = 1. Assume that there are N = 10 in-domain sensors transmitting point measurements (2.7) at xj = 2j-1 2N , j = 1, . . . , N implying ∆ = 0.1. By using the point measurements (2.7), we study system (3.1) under the control law (2.8) with K = 20. LMIs of Theorem 3.1 with various values of N , α = 1, α 1 = 20, C = 0.044 and C 1 = 0.05 lead to the maximal value of h (see Table

N = 3 :

 3 P 11 = 189.4785, P = 2.1978.

Table 4. 2 1 . 9 × 10 - 3 Theorem 3 . 1 with N = 0 1 . 9 × 10 - 3 N 3 N 3 N

 219103311910333 Maximal value of h via Corollary 2.1 (Example 4.2). N = 0 N = 1 N = 2 N = 3 N ≥ 4 hmax 1.9999 3.0344 3.1362 3.1414 3.1415 Table 4.3 Maximal value of h via Theorem (3.1) (Example 4.3). hmax Kang & Fridman [13] = 1 2.4431 × 10 -= 2 2.4437 × 10 -

  t)He{D 0 (αP 2 -P 1 )}z x (x, t)dx.

	(2.33)
	Finally, in view of (2.23)-(2.27), (2.29), (2.30) and (2.33),
	adding the right-hand side of (2.28) to VN (t) + 2αV N (t)
	and applying S-procedure with (2.31) and (2.32), we have
	VN (t) + 2αV N (t)

  L 2 (0,l) that cannot be compensated under the Dirichlet boundary conditions (2.2). Therefore, the descriptor method (e.g. in (2.28)) allows to overcome this difficulty. For the case of the averaged measurements

	ds
	(2.36)
	for some M 2 > 0, where the bound is finite due to the well-
	posedness. Then (2.19) follows from (2.35) and (2.36) with
	M 0 = M2 M1 .
	Remark 2.2

The feasibility of the strict inequalities (2.14)-(2.16) with α = 0 implies the feasibility of (2.14)-(2.16) with the same decision variables and with small enough α = α 0 > 0, and thus guarantees a small enough decay rate. 2

Remark 2.1 Note that direct substitution of z t (x, t) by the right-hand side of (2.10) leads to the quadratic variable diffusion term D z(x, t) 2

  t)dx. Then based on Theorem 2.1, we easily obtain the following stability result with an arbitrary N ∈ N: Corollary 2.1 Given postive scalars h, l, ∆ and α, let there exist (N + 1)n × (N + 1)n matrix P N , n × n matrices P 1 , P 2 = diag{P 1 2 , . . . , P n 2 } > 0, S 1 > 0, S 2 > 0 and R > 0 that satisfy (2.14) and ΛN = [Λ ij ] and ŨN are obtained from Υ N , Λ N and U N by setting W = 0 and Λ 11 = He{P 1 A+ π 2 l 2 D 0 (αP 2 -P 1 )} + S 1 + π 2 l 2 S 2 and taking away the third, fifth and sixth block-columns and block-rows respectively. Then system (2.41) under the Dirichlet boundary conditions (2.2) is exponentially stable with a decay rate α > 0. Moreover, if the strict inequalities (2.14) and (2.42) are feasible with α = 0, then system (2.41) under the Dirichlet boundary conditions (2.2) is exponentially stable with a small enough decay rate α = α 0 > 0. LMIs of Corollary 2.1 with l = π guarantee the exponentially stability of the vector ODE with delay

	ΥN + ΛN + ŨN ≤ 0, where ΥN , Remark 2.3 (2.42)

Table 4 .

 4 1 Maximal value of h via Theorem 2.1 (Example 4.1). Consider heat equation (2.41) under the Dirichlet boundary conditions (2.2) with l = π, D 0 = I 2 and LMIs of Corollary 2.1 with various values of N and α = 0 lead to the maximal value of h shown in Table 4.2. As explained in Remark 2.3, the latter results correspond also to the stability of the following ODE with time-delay

			hmax		No. of decision variables
	N = 0 0.5139 5n 2 +9n+2 2
	N = 1 0.5904 4n 2 + 5n + 1
	N ≥ 2 0.5909 (N 2 +2N +5)n 2 +(N +9)n+2 2
	as 0.5909 when N ≥ 2. Clearly, an improvement close to
	15% is achieved.			
	Example 4.2 A =	1 1	, BK =	0 0	.
			-1 0		0 1
	ż(t) +	0 -1	z(t) +	0 0	z(t -h) = 0.
		1 1			0 1
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