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Delayed stabilization of parabolic PDEs via augmented
Lyapunov functionals and Legendre polynomials *
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P School of Automation and Electrical Engineering, University of Science and Technology Beijing, Beijing 100083, China
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Abstract

We first study stabilization of heat equation with globally Lipschitz nonlinearity. We consider the point measurements with constant
delay and use spatial decomposition. Inspired by recent developments in the area of ordinary differential equations (ODEs) with
time-delays, for the stability analysis, we suggest an augmented Lyapunov functional depending on the state derivative that is
based on Legendre polynomials. Global exponential stability conditions are derived in terms of linear matrix inequalities (LMIs)
that depend on the degree A/ of Legendre polynomials. The stability conditions form a hierarchy of LMIs: if the LMIs hold for N,
they hold for /' + 1. The dual observer design problem with constant delay is also formulated. We further consider stabilization
of Korteweg-de Vries-Burgers (KdVB) equation using the point measurements with constant delay. Due to the third-order partial
derivative in KdVB equation, the Lyapunov functionals that depend on the state derivative are not applicable here, which is
different from the case of heat equation. We suggest a novel augmented Lyapunov functional depending on the state only that leads
to improved regional stability conditions in terms of LMIs. Finally, numerical examples illustrate the efficiency of the method.

Key words: Parabolic PDEs, Time-delays, Lyapunov functionals, Bessel-Legendre inequality, LMIs.

1 Introduction

Control of partial differential equations (PDEs), e.g. heat
equation, becomes an active research topic [4,17]. Tt is of
interest to design a control law for PDEs using delayed in-
puts/outputs. Constructive conditions in terms of LMIs for
delayed control of PDEs were presented in [7,8]. The de-
rived conditions allow to give an upper bound on the delay
preserving the performance (e.g. exponential decay rate).
Moreover, KAV B equation has been derived as the govern-
ing evolution equation for waves propagating in fluid-filled
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elastic or viscoelastic tubes incorporating the effects of dis-
persion, dissipation and nonlinearity [5]. The objective of
the present work is the derivation of less conservative L-
MI conditions for the stability analysis of heat and KdVB
equations with time-delay. In application to chain of sub-
observers as used in [1], such conditions will allow to reduce
the order of the chain.

For the stability analysis of ODEs with time-delay, Jensen’s
inequality [10,11] and Wirtinger-based integral inequality
[19] were usually employed. Several contributions to de-
rive less conservative integral inequalities for time-delay
systems were provided in [15,27]. Recently, a novel inte-
gral inequality so-called Bessel-Legendre (B-L) inequality
that encompasses Jensen’s inequality and Wirtinger-based
integral inequality as particular cases was introduced in
[20] by using Legendre polynomials. The latter presented
a hierarchy of LMI conditions that are competitive with
[10,11,15,19,27] in terms of conservatism and of complexi-
ty. In [3], stability analysis of a coupled ODE-heat equation
was presented via a new B-L inequality.

In the present work, we consider stabilization of heat and
KdVB equations in the presence of constant output de-
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lay. Note that in the case of constant delay, input delay
can be always moved to output by changing the time. We
first study stabilization of heat equation under the point
measurements with constant delay by using spatial decom-
position approach (as introduced in [8]). For the stability
analysis of the closed-loop system, we suggest an augment-
ed Lyapunov functional depending on the state derivative
and that is based on Legendre polynomials. Such function-
als extend the Lyapunov constructions of [1,8]. Sufficient
stability conditions are derived in terms of LMIs that are
parameterized by the degree N of the polynomials. The
same LMIs are also applicable to the case of stabilization
under the spatially averaged measurements with constan-
t delay. As a by-product, for the stability analysis of heat
equation with constant state delay, we present the LMIs
that appear to guarantee the exponential stability of de-
layed ODEs and that in the numerical example recover the
analytical upper bounds on delay with a finite degree of the
polynomials. We also formulate the dual observer design
problem.

We further consider stabilization of KdVB equation under
the point measurements with constant delay as studied in
[13]. Due to the third-order partial derivative in KAVB e-
quation, the Lyapunov functionals that depend on the s-
tate derivative are not applicable here, which is different
from the case of heat equation. We suggest a novel aug-
mented Lyapunov functional encompassing the Lyapunov
functional introduced in [13] as a particular case that leads
to improved regional stability conditions.

As in [20,21], the derived stability conditions form a hier-
archy of LMIs: if the LMIs hold for A/, they hold for N +1.
By solving the LMIs, improved upper bounds on delay that
preserve the stability are found. Finally, numerical exam-
ples illustrate the efficiency of the method. Some prelimi-
nary results for the scalar heat equation were presented in
[28].

1.1 Notation and Preliminaries

Throughout the paper, R™ denotes the n-dimensional Eu-
clidean space with the vector norm |-|, R™*™ is the space of
all n x m real matrices. The notation P > 0, for P € R™"*"
means that P is symmetric and positive definite. O, %, (0,)
stands for the matrix in R™*™ (R™*™) whose entries are
zero. For any square matrix X, He{X} = X + XT. L%(0,1)
stands for the Hilbert space of square integrable vector (or
scalar for n = 1) functions z : (0,{) — R™ with the norm

Izl 20 = A/ fy 27 (x)z(@)de. H(0,1) (i = 1,2) are the
Sobolev space: H'(0,1) = {z : % € L*(0,1) V0 < j < i}

with the norm ||z3:(0.) = \/z;:0 12211220, -

The notation (%) refers to the binomial coefficients given
by ﬁ Let L;(s) (k € Np) be the shifted Legendre

polynomials over interval [—h, 0]:

Li(s) = X o(~1)ik (k) (B+9) ()" (1)

These polynomials satisfy the following properties:

Property 1.1 (i) Orthogonality:
Vk,i€No, [°, Li(s)Lils)ds = { ,

(ii) Boundary conditions:
Vk e No, Lx(0)=1,
(i41) Differentiation:

Li(—h)=(~1F.  (1.3)

. 0, k=0,
Li(s) = {Zf__ol L}J{l(l — (=) Li(s), k>1.

We will employ extended Bessel-Legendre inequality that
is obtained by integration in = € [0,] of the inequality of
Lemma 3 of [20]:

Lemma 1.1 Consider a function z € L*([—h,0]; L?(0,1)),
and scalars h > 0 and l > 0. Then for any n X n matrix

R > 0, the following inequality holds for all N € Ny:
fol fEh 2T (x,t + 8)Rz(x,t + s)dsdx 15)

N l .

> Yo 2B [ (©F(x, 1)) RO (2, t)du,

where ©F(z,t) (k € Ng) correspond to the projection of
z(x,t + s) over L(s) given by (1.1):

Ok (z,t) = [°, Li(s)z(x,t + s)ds, keNo.  (16)

2 Stabilization of heat equation with an output
delay

2.1 Problem formulation

Consider the following semilinear diffusion equation:
zi(z,t) = Apz(x,t) — Bze(2,t) + Az(z,t)
+o(2(,t), 2, t) + BY 0 bi(x)uy(t), (2.1)
t>0, z€[0,], 1>0
under the Dirichlet boundary conditions
2(0,t) = 2(I,t) = 0. (2.2)

Here z(z,t) = [2Y(z,t),...,2"(z,t)]T € R™ is the state,
uj(t) € R" (j = 1,...,N) are the control inputs, A € R**™
and B € R™ " are constant matrices and 5 € R™*" is the
diagonal matrix of convection coefficients. The diffusion
term is given by

Apz(z,t) = [%(dl ()2k(z,1)),..., %(dn(x)z;?(a:, t))
(2.3)

]T



with d;(z) € C! satisfying 0 < df < d;(z) (i = 1,...,n)
for z € [0,1].

Following [2], we assume that for some positive definite
U € R™*", function ¢ € C! satisfies

o7 (2,2, 0)p(2,2,t) < 2102 (2.4)

for all z € R™, z € [0,1], ¢ > 0. It is well known that the
open-loop system (2.1) (with u;(¢) = 0) under the Dirichlet
boundary conditions (2.2) may become unstable if || ¥|| in
(2.4) is large enough (see [4] for ¢(z,x,t) = dp2).

Asin [7,8], the control inputs wu;(t) enter (2.1) through the
shape functions

bj(x):{l’ TEY LN (25)
0, otherwise,

where Q; = [z;_1,2;) (j = 1,...,N) divide the domain
[0,] into N sub-intervals. Here points 0 = 29 < x1 <
o< azy =lsatisfy z; —x;_1 = A; < A, where A >0
is a known parameter. Such shape functions correspond to
actuation covering all the domain [0, [].

Assume that N sensors are placed in the middle of each
interval €2; given by

oo Tj—1tTj
;= 51,

j=1,...,N. (2.6)
In addition, the measurement is affected by a time-delay
which is assumed to be constant, denoted hereafter by
h > 0. For the control design, our method works also for
unknown but constant h that belongs to a prescribed in-
terval [h1, ho]. Then, point measurements are provided by
N sensors distributed over the whole domain [0, ]:

0’ tgha .
y;(t) = B j=1,...,N. (2.7)
Z(xj’t_h)7 t>h7

Note that our model (2.1) may present a metal bar of the
length of [ that is heated along its length. In this case we
measure the temperature in the spatial points along the
bar (see e.g. Example 1.1.2 in [4]). Another application of
spatially sampled measurements was recently given in ap-
plication to multi-agents in [25], where the measurements
are provided by leaders placed in the points Z;.

We design for system (2.1) a stabilizing controller

u;(t) = —Ky;(t),

with the gain K € R"*". Denote by the errors between the
delayed state z(z,t — h) and point measurements z(zZ;,t —
h):

t>0, j=1,...,N (2.8)

Filwt—h) = 2zt —h) — 2(3;,t — h)

x e Qj,
(2.9)

j=1,...,N.

Then the closed-loop system (2.1), (2.7), (2.8) has the form:
ze(z,t) = Apz(z,t) — Bzg(x,t) + Az(x, t)

—|—¢(Z(Z‘,t),.7), t) - BK(I — X[0,h] (t))
x[z(z,t —h) — fi(z,t —h)], t>0,

(2.10)

where x € Q;, j =1,..., N and xjo ) (t) denotes the char-
acteristic function of the time interval [0, h].

Now we consider the well-posedness of system (2.10). Let
H5(0,1) = {6 € H'(0,1) : 6(0) = 6(1) = 0} and
D(A) = {6 € H?(0,1) : 6(0) = (1) = 0}

By using the step method (see e.g. [8]), it can be shown
that for any initial condition z(-,0) € H(0,1), there exists
a unique strong solution of (2.10) such that

z € L?(0,00; D(A)) NC([0,00); H3(0,1)),

2 € L?(0,00; L?(0,00)) and equation (2.10) hold almost
everywhere on [h, 00).

2.2 Improved stability conditions

For the stability analysis of system (2.10), we suggest the
following augmented Lyapunov functional (that extends
the Lyapunov constructions of [1,8]):

Vi (t) = Vpy + Ve, + Vs, + Vs, + Vk, (2.11)

where N € Ny, and

Vo = Jo (i@, P (z, t)da,

Ve, = S0, [y Pidi() (24, 1)*da,

Vs, = fy fl 7200702 (2,5) S, 2(x, s)dsde,
Vs, = fol ftt_h €_2a(t_s)zf($7 8)S2z.(x, s)dsdz,

Vg = hfol ftt,h e=20=9)(s —t + h)2L (x,5)Rzs(x, 8)dsdx
(2.12)

t>h,

with
Cv(w,t) = col{z(x,t),0%w, t),. .., @N_l(a:, t)}

and with (M + 1)n x (N + 1)n matrix Ppr, n X n matri-
ces Py = diag{Py,..., Py} > 0,5 > 0,5 >0, R >0,
a scalar @ > 0 and ©F(x,t) (k = 0,...,N — 1) given
by (1.6). The terms Vs, and Vi are the PDE extensions
of the standard Lyapunov functionals for delay-dependent
analysis [6,9]. The term Vg, is introduced to compensate

(2.13)

fol 2z (x,t—h)dz (instead of Halanay’s inequality employed
in [8] for the case of time-varying delays). Note that z(-, s)
for s € [0, ] in (2.12) is defined as solution of (2.10), (2.2)
with the initial condition z(-,t) € H(0,1).

Theorem 2.1 For given positive scalars h, I, A, o and a
positive integer N, assume that there exist (N +1)n x (N +
1)n matriz Py, n X n matrices P, = diag{P},..., Pl'},



P, = diag{Ps,..., Py} > 0,8 > 0,5 >0, R >0,
W >0 and a scalar Ay > 0 that satisfy

Py >0, (2.14)
Trn +An+Un <0, (2.15)
W —e2eh g, <0, (2.16)
where
Py = Py + +e 20185 diag{0,1,...,2N — 1},
Ty = He{GX Py Hp} + 2aG K PG
—e=20h SN 2k + 1)TT (k) RT pr(k),
GN _ x5 XN ’
Onnxn ONnxsn PInm
T
Hy = [ F T%50) . TRV -1 ]
F/\/ =10, I 0n><(./\/'+4)n:| )
FN(k) = [Im Onx2n, (_1)k+11n7 On><2n7'7j0\/kln’ T 77/\/’k I"]
. k y . .
I RO RS R G A P
0, if j >k,
Un = Lz iag{03,, W — 72" S5, O s2)n }
(2.17)

and A = {As;} is symmetric matriz composed of

A= He{PlA} + S + >\¢\I’7 Aio=—P + ATPQ,

Ay = 7A16 = —-PBK, A15 =P,
Aoy = 2P, + h2R, Agz = _PQBv
Aoy = —Agg = —P2BK, Aos = P,
Ags = So + He{Do(aP, — P1)},  Ayy = —e7 2005y,
Ass = —Agln, Aes = *Z*ZW, A7z = Opnm
(2.18)
with O given by (2.4) and Dy = diag{d},...,dy}. Then

there exists My > 0 such that a unique strong solution of
(2.10), (2.2) initialized with z(-,t) € H(0,1) fort € [0, h)
satisfies the inequality

—2a(t—h) h 2
12C, B34 0.0y < Moe ¢ 2)f0 2G93 0,0 (2.19)
+||ZS('73)HL2(0,1)]d37 t>h,

meaning that (2.10), (2.2) is exponentially stable with a de-
cay rate a. The bound in (2.19) is finite for the strong so-
lutions of (2.10), (2.2) on [0, h]. Moreover, if the strict in-
equalities (2.14)-(2.16) are feasible with a = 0, then (2.10)
(2.2) is exponentially stable with a small enough decay rate
a=aqay > 0.

Proof: Consider Lyapunov functional Vjs(t) given by
(2.11). Lemma 1.1 gives a lower bound as follows

V() > [y K, )P (a, t)da
+fol fttfh e20(t=9) T (1, 5) S, 2(x, s)dsdx,
> fol C}\} T t)PNQ\/(x t)dx
e 2ah fo ft n 2 (w,8)S12(x, 5)dsdx
> fo (2, )Pl (, t)da.
'(TQh?ZS the positivity of Vs (t) results from Py > 0 given by

For t > h, differentiating Vp,, along (2.10) yields
Vi = 2 fy (el ) Pacc(a, t)da, (2:20)
where
éN(xv t) = COI{Zt(xv t)a @?(’JZ, t)v B 6?[_1(333 t)}

Via (2.10) and (2.13), the definitions of Gy and Fjs given
by (2.17) yield

CN(x’t) =

where

nn,j = col{z(x, 1), z¢(w, 1), 2. (2, 1), 2(z,t — h),
o(z(x,t),z,t), fi(x,t — h), %@O({Lt), cee %@N_l(x,t)}

with f;(z,t — h) defined by (2.9).

Gnnnygs 22, t) = Exna g, (2.21)

Then, an integration by parts ensures that

O (z,t) = Li(s)z(z,t+s)I]__,,
0 [ Lel)) ot 4 )ds (222
:FN(k>77/\/',j7 kZO,...,N7

where we applied (1.3) and (1.4) with Tar(k) given by
(2.17). From (2.20), (2.21) and (2.22), it follows that

Vey =230, Lo ke s GR PN Ha gd, (2:23)
where H s is given by (2.17).
We have
Ve, = 2500, fy Pidi(w)2i(2,1)20, (2, )dw,  (2.24)
Vs, +2aVs, = fo (x,t)S12(x, t)dx (2.25)
_QO‘hf (x,t — h)Sy1z(x,t — h)dx,
Vs, +2aVs, = fo 2T (2, 1) S22, (2, t)dz (2.26)
—e2ah fol 2T (x,t — h)Soz,(x,t — h)da. -
Note that zi, (i = 1,...,n) in Vp, are well-defined as in

Remark A.1 of [7].



Further by using Lemma 1.1 and taking into account (2.22),
we obtain

Vi + 20V = h? fol 2l (2, t) Rz (z,t)dw
—h fol ftt_h e=20(t=9) Tz s)Rz,(x, s)dsdx
< h? fol 2l (2, t) Rz (2, t)dw — e~ 20 ZQ/:O(QIC +1)
XY o A TR (B) RO (R) .
(2.27)

To cancel the term of the right hand side of (2.24), we
employ the descriptor method [6,8], where the right-hand
side of

0 =2 [1[zT (2, )Py + 2] (2, ) Po] [~ 24(, )
+Apz(x,t) — Bzp(z,t) + Az(x,t) + (b( (x,t),2,t)
,BKz(z,t—h)]d:erQZ] 1ij (x,t) Py
+2] (z,t)P3) BK f;(x,t — h)dx
(2.28)

with some n x n matrix P, = diag{ P}, ..., P} is added

to Vi (t) + 2aVir(t).

An integration by parts and substitution of the Dirichlet
boundary conditions (2.2) lead to

2f0 (2, t) Py + 2L (z,t) P) A pz(z, t)dw

=2Y00, [y[Pi2(@,t) + Pizi(w, )] 2 (di(w) 2L (2, 1)) da
= 251, fy Pldi(e) (24 (e, 0)2dw = Ve,
(2.29)
—fo (2, t)P1Bzy(z,t)dx = fo T(x,t)P1Bz(x, t)dx.
Thus, by noting that matrix P, is diagonal, we have

2f0 (z,t)P1 Bz, (z, t)dx = 0. (2.30)

To “compensate” the cross terms in (2.28) with f;(x,t—h)
given by (2.9), for any n x n matrix W > 0 application of
Wirtinger’s inequality (see e.g. (3.177) in [6]) yields

S @t = W f(x,t = h)da

= [0 [JE AT = hydg| W[ [ 2l t - h)de] da
DS ATt — e W[ zele t - h)de] da

e MWW zy(z,t — hYdz, j=1,...,N.

T
s 1 % (x,t—

Thus, the following inequality holds:
N .
> e 9:_”71 [zf(:m t—h)Wz,(z,t —h)

2 fT (wt— R)W f (@t — h)]dm > 0. (231

From (2.4) we have

0< X fol (2T (@, ) U2(z,t) —

o7 (z, 2, t)P(z,2,1)] dx
(2.32)

with some scalar Ay > 0.

Condition Tphr + Ay + Uy < 0 in (2.15) implies So +
He{Dgy(aP, — P1)} <0, thus, aP, — P; < 0. Taking into
account dj) < d;(z ) (i=1,...,n) we have

2Ty o) - PO o) .
< fo ! x,t)He{Do(an — P1)}ze(z, t)dz.
Finally, in view of (2.23)-(2.27), (2.29), (2.

)
adding the right-hand side of (2.28) to Vir(t) + 2aVr(t)
and applying S-procedure with (2.31) and (2.32), we have

Vi (t) + 22V (t)

<YL L ke (T + A dee
ffo T(x,t —h)(e 2" Sy — W)z, (x,t — h)dx

<3N [ ol (Y + AN+ Un )y jdz, ¢ = h,

(2.34)
where we applied Wirtinger’s inequality with (2.16). Here
YT and Uy are given by (2.17) and A is composed of
(2.18). Thus, from (2.15) we have V(t) +2aV(t) < 0 for
all t > h implying Vi (t) < e=22E=PV(h) for all t > h.
Due to the positivity of Vs(t), there exists some M; > 0
such that

Vn(t) = Ml|z(-t

30) and (2.33),

2
Wpsion £ h (2.35)

Moreover, Vr(h) can be upper bounded by

h
Var(h) < My 1120 )l 0 + 17 )3 o s

(2.36)
for some My > 0, where the bound is finite due to the well-
posedness Then (2.19) follows from (2.35) and (2.36) with
My = Ml
The feasibility of the strict inequalities (2.14)-(2.16) with
a = 0 implies the feasibility of (2.14)-(2.16) with the same
decision variables and with small enough a@ = 9 > 0, and
thus guarantees a small enough decay rate. O

Remark 2.1 Note that direct substitution of z;(x, t) by the
right-hand side of (2.10) leads to the quadratic variable dif-
fusion term ||Apz(x, t)||i2(0 ) that cannot be compensated

under the Dirichlet boundary conditions (2.2). Therefore,
the descriptor method (e.g. in (2.28)) allows to overcome
this difficulty.

Remark 2.2 For the case of the averaged measurements

0, ift <h,

() = - j=1,...,N
y](t) Efmjl (ft— )d£7 1ft>h, J ’ [
we obtain (2.10) with

filwt—h) S & [ (2@t = h) = 2(&,t — h)]dé.

(2.37)



Since f;ﬂl fi(&t=h)dé =0 and L fi(z,t—h) = z, (2, t—
h), for any n x n matric W > 0 the Poincaré’s inequality
[16] leads to

J5 f @t — )W f(x,t — h)da

Tj—1

A%z d 2
<A [0 [E @t =Wt —n)| de
< %féj_l [LfT (@t — h)] W [ fi(x,t — )] da,
= %f::; 2z, t — W)Wz, (x,t —h)dw, j=1,...,N.

1
Then, we obtain (2.31) with f;(x,t — h) given by (2.37).
Thus, LMIs of Theorem 2.1 are applicable to the case of
spatially point or averaged measurements with time-delay.

Consider next d;(z) = d) (i = 1,...
[ = 0 and the measurement

,n), ¢(z,x,t) = 0,

0, if t <h,
y(t) = _ (2.38)
z(z, t —h), ift>h.
Thus, system (2.1) becomes
zi(xz,t) = Apz(x,t) + Az(x,t) + Bu(t),
t>0, z€][0,d], 1>0
that is stabilized by a state-feedback
u(t)=—Ky(t), t>0 (2.40)

with y(t) given by (2.38) and K € R"*™. Then the resulting
closed-loop system has the form

zi(x,t) = Dozgq(x,t) + Az(x,t)
_BK(l_X[O,h](t))z($7t_h)a t>0

with Dy = diag{d},...,d}} and constant matrices A €
R™" B € R™" K € R™™ and xo,)(t) defined below
(2.10). Since the diffusion term in (2.41) is constant, we
choose P in (2.28) as a non-diagonal matrix (see e.g. [23]):
fol 2T (2, t)He{ Py Do} 20 (2, t)dx
= - fol 2 (2, t)He{ Py Do}z, (z, t)d.

Then based on Theorem 2.1, we easily obtain the following
stability result with an arbitrary N' € N:

(2.41)

Corollary 2.1 Given postive scalars h, I, A and «, let
there exist (N +1)n x (N +1)n matriz Py, n X n matrices
Pr, Py = diag{P},....,P}} > 0,5 > 0,5 > 0and R > 0
that satisfy (2.14) and

T+ A+ Uy <0, (2.42)

where Trr, Ay = [Aij] and Unr are obtained from Y ar, Ay
andUps by settingW = 0 and A1; = He{PlA—i-’lT—;DO(aPQ—
P} + S+ 7;—2252 and taking away the third, fifth and
stxth block-columns and block-rows respectively. Then sys-

tem (2.41) under the Dirichlet boundary conditions (2.2)
is exponentially stable with a decay rate o > 0. Moreover,

if the strict inequalities (2.14) and (2.42) are feasible with
a = 0, then system (2.41) under the Dirichlet boundary
conditions (2.2) is exponentially stable with a small enough
decay rate a = ap > 0.

Remark 2.3 LMIs of Corollary 2.1 with | = 7 guarantee
the exponentially stability of the vector ODE with delay

Z(t) + (Do — A)z(t) + BKz(t —h) = 0. (2.43)

Note that system (2.43) corresponds to the first modal dy-
namics (with k = 1) in the modal representation of the
Dirichlet boundary-value problem (2.2), (2.41) withl =7

56(t) + (k2Dg — A)z(t) + BKZ(t — h) =0,

2.44
k=1,2,... (2:44)

projected on the eigenfunctions of the operator Doaa—; (this

operator has eigenvalues —k? Dy, see e.g. [26]). The stability
of (2.2), (2.41) implies the stability of (2.44). Thus, LMIs
of Corollary 2.1 are tight [9].

2.8 The dual observation problem

Consider the semilinear diffusion equation

zi(x,t) = Apz(z,t) — Bze(x,t) + Az(z, t) + u(t)
+o(z(x,t),z,t), t>0, x€][0,l], >0

(2.45)
under the Dirichlet boundary conditions (2.2) with the s-
tate z(z,t) € R™ and the control input u(t) € R™. The
diffusion term is given by (2.3) and o is a known function
of class C! satisfying 0o, < ¥ with some positive defi-
nite ¥ € R"*™ where o, denotes the partial derivative of
a function o(z, z,t) with respect to z.

We suggest a nonlinear observer of the form
Zi(x,t) = Api(x,t) — B2 (x,t) + AZ(z,t) + u(t)
o (2w, t), 2,8) + LY by (@) s (1) — 2.t = h),

t>0, €0, >0
(2.46)
under the Dirichlet boundary conditions
2(0,t) = 2(1,t) = 0, (2.47)

where y;(t) (j =1,...,N) are given by (2.7), L € R"*™ is
an observer gain and Z(z,t) = 0 for ¢ € [—h,0].

Then using function x[g,5)(t) defined below (2.10), the esti-
mation error é(z,t) = z(z,t)— 2(x, t) satisfies the Dirichlet
boundary value problem

éi(x,t) = Apé(x,t) — Bég(x,t) + Aé(x,t) + ¢(é(x,t), z,t)

LYY (@)1~ xou (D)e(@j,t —h), t>0,
(2.48)



where
o(é,z,t) =o(z,x,t) —o(2,2,1)
= [ 0.(2 + €&,z t)dee
with

o7 (e, x,t) (e, 1)
< el [fy o7 (2 + 6,2, )0. (2 + 6,2, )de | ¢

Note that in the latter we applied Jensen’s inequality
[10,11]. Thus, Theorem 2.1, where BK = L, gives suf-
ficient conditions for the exponential stability of (2.48)
under the Dirichlet boundary conditions.

2.4 Hierarchy of LMIs

Following arguments for Hierarchy of LMIs in [20,21], we
find that the stability conditions of Theorem 2.1 (and of
Corollary 2.1 and Theorem 3.1 below) form a hierarchy of
LMIs.

Theorem 2.2 Given positive scalars h and «. If LMIs of
Theorem 2.1 (and of Corollary 2.1 and Theorem 3.1 below)
are feasible for N, then they are also feasible for N + 1.

Remark 2.4 Theorem 2.2 implies that LMIs of the order
N + 1 lead to, at least, the same results as LMIs of the
order N'. Thus, the augmented Lyapunov functional (see
e.g. (2.11) and (3.7) below) with extended B-L inequality
(1.5) may improve the results via the corresponding simple
Lyapunov functional (i.e. (2.11) and (3.7) with N' = 0) and
Jensen’s inequality [10,11].

3 Regional stabilization of KdVB equation with
an output delay

3.1 Problem formulation

Consider the following KdVB equation:

zi(x,t) = —z(x, 1) 2o (2, t) + A2(z,t) + Bzee (2, t)

—Zpaa (T, )—i—Z] 1bj(@)uj(t), t>0, z€(0,1), 1>0
(3.1)
under the periodic boundary conditions

Z(O7t) = Z(l,t), Z$(07t) = Z:I:(l>t)7 Zmz(oat) = Zzz(l;t>7

(3.2)
where z(z,t) € R is the state, u;(t) € R (j = 1,...,N)
are the control inputs that enter (3.1) through the shape
functions b;(z) (j = 1,...,N) given by (2.5), A and S8
are positive constants and the initial condition is given by
z(z,0) = zp(x). Note that for A = 0, the open-loop system
(3.1) has constant solutions, whereas for A > 0 the open-
loop system may become unstable.

We study the KAVB equation (3.1) under the delayed stabi-
lizing controller (2.8) with K € R that leads to the closed-
loop system for ¢t > 0

zi(x,t) = —z(x, t) 2o (2, t) + Az(z,t) + Bzea(z,t)

— K (1= xo,n(#)[z(x, t = h) = fj(x,t = h)],
(3.3)
h) is given by (2.9)

—Zrax (Z‘, t)

wherex € Q;, j=1,...,N, fj(z,t —
and x[o,5(t) is defined below (2.10).

Now we consider the well-posedness of system (3.3). The
solution of system (3.3) under the periodic boundary condi-
tions (3.2) should be understood in the weak sense. Name-
ly, we define the space

Hper(0,0) = {g € Hl(o 1) :9(0) =9},
||9||3411] L =Pu fo dﬂH—Pfo ¢ (z)]?dx,

where P;; and P are positive constants that are re-

lated to the Lyapunov functional (see (3.7) below).

Given T > 0, a weak solution of (3.3) on [0,7] is a

function z(x,t) € C(0,T;H.,.(0,1)) such that 2z, €
l

(3.4)

L0, T L2(0, 1)) N L2(0, T Hg( 1)) and
4 e t)g( d£ = = [La(E 1)z (6, DD (€)de
A S 2(6,6)B(E)dE + Bfo (6 )0c(E)de
- Iy z§g<s,t ¢g< JdE = K S50, [ (1= xpo (1))
x[2(&,t — ) — f(€,t — h)|$(€)de

hold for any ¢ € 'Hper(

(3.5)
1) and almost all ¢ € [0, 7.

The condition (3.5) is motivated via the integration-
by-parts formula. Based on the Galerkin approximation
method (see, e.g. [17]), one can show that (3.3) has a
unique weak solution for all 7" > 0 provided the initial
value zg € H?(0,1) N H},,.(0,1) satisfies the compatible
conditions [13]:

24(0) = (1), (3.6)

3.2 Improved regional stability conditions

For the stability analysis of system (3.3), an augmented
Lyapunov functional depending on the state z(xz,t) only
(rather than the state derivative z;(x,t)) was introduced
in [13] to derive the stability conditions in terms of LMIs
that allow to find an upper bound on the delay that pre-
serves regional stability. To obtain improved regional sta-
bility conditions, we here consider a novel augmented Lya-
punov functional via Legendre polynomials:

Vn(t)=Vpy +Vp+ 30 (Vs, + Va,), N €N,

(3.7)



where
Vpy = Jy (. ) PaCac (@, ),
Vp = Pfé 22(z,t)dx,
s =51 fol [, e720=9)22(z, 5)dsd,
Vs, = S fol ftt,h e’za(t*s)zﬁ(x, s)dsdx,

Vi, = Ry fy fl_, e (s =t + )22 (w, 5)dsd,
Vi, = R [y [, €20 (s — t + 1) 23(w, 5)dsd
with
Cnv(,t) = [2(x, 1), 00, t), ..., 0N (2,1)]7,

and with (V' +2) x (N +2) matrix Py = {P;; }, scalars P >
0,5 >0,R; >0 (i=1,2) and a > 0. Here ©%(z,t) (k =
0,...,N) are given by (1.6). For N’ = 0, Vj\(t) coincides
with the Lyapunov functional introduced in [13].

Since the solution of (3.3) does not depend on the values
of z(z,t) for t < 0 [14], we redefine the initial condition to
be a function

z(z,t) = zo(z), t<O0.
Thus, we have
Var(0) = [P1y + 2Pioh + Pash? + Sih + ] fol 28 (z)dx
+(P + Sh + B2l [Tz (2))?de,

where we applied (1.2). Note that the latter coincides with
that for the case of N’ = 0 considered in [13]. Thus, we em-
ploy the following results borrowed from [13] that guaran-
tee simple bounds on Vjr(h) and z(x,t), and that present
a solution of (3.3):

Lemma 3.1 [13] Consider system (3.3) and the function-
als Var(t) and V(t) respectively given by (3.7) and

V(t) = P fy 22z, t)dz + P [} 22(z, t)dz (3.8)

with scalars P11 > 0 and P > 0 that are related to the
functional Vs (t). Denote

M 2 max {(Pyy + 2Pioh + Poh? + Sth + B2 yprt
(P + Sah + B2h2)p1} 4 g2euh

where S; (i = 1,2) are from functional Va(t), h and «
are positive scalars, and oy s a positive tuning parameter.
Given positive tuning parameters C and C.

(i) Assume that along (3.3)

V(t) =21 V(t) <0, te[0,h], (3.9)

V() + 20V (t) — 204V(t) <0, te[0,h], (3.10)
and

MC? < C3, (3.11)

hold. Then
Vnv(h) < M [7311 JE2(2)de + P [l (x 2dx} <c?

if\|z0||3{}17 =Pu fo 2§ (x)dx + Pfo 2dx < C2.

Assume additionally that along (3.3)
Vi (t) +2aVn(t) <0, t>h (3.12)
holds. Then the solution of (3.3) satisfies
Vne(t) < Me~20(=h) [7911 Jh2(@)yde + P [ (x)]zda:}

(3.13)
forallt > h.

(1) If, in addition to the conditions of (i), there exist scalars
P >0,p>0and o> 0 such that

Vv ( >pf0 xtdm—l—Pfo 22(z,t)dx, (3.14)
- 1
0>1+p, [ ] < 0. (3.15)
* —p
Then
z(x,t) € (-C1,C1) Vzel0,1], t>0. (3.16)

We now present improved conditions in terms of LMIs to
guarantee (3.9), (3.10), (3.12) and (3.14):

Theorem 3.1 Given positive scalars h, I, A, o, K > A,
and positive tuning parameters ay > A, C and C1, let there
exist scalars (N 4 2) x (N + 2) matriz Py = {Ps;} and
scalars P> 0,5, >0,R; >0(i=1,2), W >0,W,p>0
and ¢ > 0 such that (2.16), (3.15) and

Py >0, (3.17)
SN(=C1) <0, En(C) <0, (3.18)
Tar+An(=C1) <0, T+ An(Cr) <0, (3.19)
Taz+ Pa(—C1) <0, Taa+Pp(C1) <0, (3.20)
where
— —2a —2ah
Py ZPN—l—diag{—p,Sle Z h7...’5162(7h2‘/\/_~_1)}7
—’Pll(al — )\) 0 %Wl
En(z) = * —PufB— Plar — X\ +W; LPz
* * —Pj
Yy = He{G},PvHyi} + 2aGL PyvGariy,  i=1,2,
Cri = 1 O1x3  Oixvan)  Oixved ] 7
Ovsnyxt Owvsnyxs  Pv+1 Ovan)x (Vi)
_ _ T
[ (2N +i+5)x1 Ff/i(()) Ff/z(N)] ’
FNz(k) = [1 ( )k+1 O1x2 '7Nk 'Yﬁk Ol><(/\/+i)
(3.21)



with Y\ey (7 = 1,...,N) given by (2.17), Ax(2) = {Ay}
and O (z) = {®;;} are symmetric matrices composed of

®11 =2P1A+ 51+ Rih,
Q13 = —P17 = P11 K,

Aip = @11 — 201 Py,
Dy = Ay =W,

P15 = Ais = [Pra ... Pivsa R,
Doy = Aoy = —51€_2ah7 ®yy = —Py7 = PK,
(1)25:7(1),%17:*[7912 Pl(J\/’JrQ)]hKa

P33 = —2P118 + 2PA + 2aP + Sy + Roh + 2W1,
A33 = P33 — 201 P, O3y = A34 =Pz

Pg5 = Ags = —[Prz ... Piwe)lhz,

P36 = Az = —[ P12 ... Pii2) 0B

Py = Nyy = 2P, Q77 = —WZ%,

Pug = Aag = [Pr2 ... Prvga I

P55 = Ass = —Ryhe 2 diag{1,...,2N + 1}, (3.22)
P = Agg = —Rohe 2" diag{1,...,2N + 1},

other blocks are zero matrices. If (3.11) holds, then for any
initial state zg € H*(0,1) N M., (0,1) satisfying the com-
patible conditions (3.6) with ||zow3,, < C, system (3.3)

under the periodic boundary conditions (3.2) possesses a
unique weak solution in the sense that for any T > 0,
z(z,t) € C(0,T;H,},,.(0,1)). Moreover, the solution of (3.3)

satisfies (3.13) for allt > h.

Proof: First, Lemma 1.1 ensures the following inequality
- - ! = = = l
V’PN + VSl > fo Cff(za t)P/\/’CN(ZU, t) + pfo Z2

where matrix Py > 0 is given in (3.21) and guarantees

V() > Vo + Vi, + P [ 22(x, t)dz
zpfolz (x t)dx—i—Pfl 2(z,t)dx,

which, together with p > 0 and P > 0, implies the posi-
tivity of Vis(t). In the next step, the objective is to show
that LMIs (3.18)-(3.20) guarantee (3.9), (3.10) and (3.12)
respectively.

(z, t)d,

For any ¢ > 0, differentiating Vp v along the trajectories of
(3.3) yields
V = 2f0 CE(x t)’PNCN(:E t)dz,
= fo NT/\/177/\[dCC+27311 fo x,t)ze(x, t)dx
+2 ZN” Pik fo OF=2(x,t)2(w, t)dx
(3.23)

where (3.5) has been used with ¢ = z, and with T given
by (3.3) and the augmented vector

h), ze(x,t), 220 (z, 1), %@O({Lt),

t),..., %@i‘/(x, ).
(3.24)

nv = [z(z,t), z(x,t —
e %@N(x,t), +09(z,

Substituting z;(z,t) by the right-hand side of (3.3) in
(3.23), integrating by parts and using the periodic bound-
ary conditions (3.2) lead to

= Jy kel ) Yiine (&, )
+27>11/\f0 (x,t)dx — 2P11 B [} 22(x,t)da
+2 ZN+2 PirA fo x,t)0F2(x, t)dr
2SN 2Py [ () 2 (0, £)OF 2w, £)dx
-2 ZN+2 P13 fo 2. (2, )02 (2, t)dx
+2 ZNH Pk fo Zew (2,8)OF =2 (2, t)dx
—2K(1 = xpo,n (1) 25— 1fx7 [P112(z,t)

+ S POk 2 (a1 [2(x,t — ) — fi(z,t — h)]da.

(3.25)
Concerning the other terms of the Lyapunov functional,
we have

Vp = 2P fol 2p (2, 1) 2t (2, 1) dT
-2P fol Zpa (T, t) 2 (2, t)d
—2P)\f xtdx—2Pﬂf Lz, t)dx
+2P fo 2(z,t) 2 (z, t)zm(x t)dw
+2PK (1 — xo,n)(t J 1f
x[z(z,t —h) — f; (m,t - h)}dm,

(3.26)

zmxt

and
Vs, +2aVs, = S fo (x,t)dx
—Se 2o fo (z,t — h)dz,
Vs, +2aVs, = S, fé 22(z,t)dx
— Spe~2ah [ 22(z,t — h)da.

0 *z
Then the application of Lemma 1.1 leads to

Vi, + 20V, = Rih fo (x,t)dx
—Ry foft W€ e 20(t=9) 22z, s)dsdx
< thf (z,t)dx
90 l
_Rle 2 th:O %T—Hfo[@k(xvt)]zdmv

(3.27)

(3.28)

(3.29)

and
Vi, + 2aVi, = Roh fol 22(z,t)dx
—Ry fé fttfh e 20(t=9)22(x, 5)dsdx
< Roh [} 22(x, t)dx
—Rye20h SN 2kd1 (Vg (4 1)]2d.
Additionally, we note that for any W7 in R, we have
2W, fo 2, ) 2ps (2, ) + 22(2,t)]dw = 0. (3.31)
Two cases may occur. When ¢ is in the first delay interval

[0,h] (ie. xjo,n(t) = 1), then adding (3.31) to Var(t) +
20V (t) yields, in light of (3.23)-(3.30), for all ¢ € [0, h]

Vi (8) 42V (8) =201 V(t) < fo 750 ar1 + A (2)] i de.
(3.32)

(3.30)



When ¢t > h (ie. xjo,p(t) = 0), we additionally apply
an S-procedure with (2.31), with parameter W > 0, to
compensate for f;(x,t — h) in (2.9) that leads to

Vi (t) + 22V (1)
< Z;’V:I ;jj_l [Tz + O (2)]iin, jdz
—(Spe~ 20 fol 22( h)dx
<y Jol g [T + ‘I’N( Niwjdz, > h,
(3.33)
where we applied (2.16). Here T pr; (i = 1,2) and 7, are re-
spectively given by (3.21) and (3.24), finx,; = [74r, [ (.t —

R)]T, and Ax(z) and ®pr(2) are symmetric matrices com-
posed of (3.22).

Similarly, differentiating V() in (3.8) along the trajectories
of (3.3) yields

V(t) — 200 V(t) = 2 [ KT En(2)rde,

where k = [2(x,t), 2z (2, 1), 22 (2, 1)]T
by (3.21).

te[0,h], (3.34)

and Eps(z) is given

Since Zpn(2), Ax(z) and ®pr(z) are affine in z, Zpr(z) <0,
Ta1 + An(2) < 0 and Thao + Par(z) < 0 hold for all
€ (~C1,C1) given by (3.16) if LMIs (3.18)-(3.20) are
feasible. From (3.32)-(3.34), it follows that LMIs (3.18)-
(3.20) guarantee (3.9), (3.10) and (3.12) respectively.

Finally, assertion of Theorem 3.1 follows from Lemma 3.1.
O

4 Numerical examples

Example 4.1 Consider the chemical reactor model from
[18,22] governed by heat equation (2.1) under the Dirich-
let boundary conditions (2.2) with the measurements (2.7),

where n = 2, r = 1, 1 = 10, Dy = diag{0.01,0.005},
B = diag{0.011,1.1}, ¢ = [¢1(2'),0]T, ¥ = diag{10~*,0}
and
0 0.01 1
A= B=|1, K:@@.
—0.45 —0.2 1

This model accounts for an activator temperature z' that
undergoes reaction, advectzon and diffusion, and for a fast
inhibitor concentration z2, which may be advected by the

flow [18].

Assume that there are N = 20 in-domain sensors transmit-
ting measurements (2 7) at 7; = 2 ;,1,]' =1,...,N (the
centers of Q0 = [ N , N)) implying A = 0.5. LMIs of The-
orem 2.1 wzth various values of N and o = 0 lead to the
mazimal value of h (see Table 4.1) that preserves the stabil-
ity. As expected, better results are obtained as the degree of
the polynomial N increases, but at the cost of additional de-
cision variables. Moreover, the maximal value of h remains
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Table 4.1
Maximal value of h via Theorem 2.1 (Example 4.1).

Rmax No. of decision variables
N=0 05139 Oomiton+2
N=1 05904 4n’>+5n+1
N>2 05909 OEHNEondN+0)nt2

as 0.5909 when N > 2. Clearly, an improvement close to
15% is achieved.

Example 4.2 Consider heat equation (2.41) under the
Dirichlet boundary conditions (2.2) with | = 7, Dy = Iy

and
11 00
, K= .
-1 0] [0 1]

LMIs of Corollary 2.1 with various values of N and o =
0 lead to the maximal value of h shown in Table 4.2. As
explained in Remark 2.3, the latter results correspond also
to the stability of the following ODE with time-delay

Z(t) + [00

A:

0 -1
1 1

Z(t) + zZ(t —h) = 0.

01

Note that the analytical upper bound for the asymptotic
stability of the latter ODE is h = 7 (see Chapter 2.3.2 in
[6]). It is clear that our method recovers the analytical upper
bound with a finite degree N' = 4 of the polynomials.

Example 4.3 Consider KdVB equation (3.1) under the
periodic boundary conditions (3.2) with A = 15, 8 = 0.5
and | = 1. Assume that there are N = 10 in-domain sen-
sors transmitting point measurements (2.7) at T; = %,
j=1,...,N implying A = 0.1. By using the point mea-
surements (2.7), we study system (3.1) under the control
law (2.8) with K = 20.

LMIs of Theorem 3.1 with various values of N, o = 1, a3 =
20, C = 0.044 and C1; = 0.05 lead to the maximal value
of h (see Table 4.3) that preserves the exponential stability
of the closed-loop system for any initial values satisfying
[20[#3,, < 0.044. It is clear that the improvement on the
upper bound of delay is achieved as the degree N of the
polynomial increases and the mazimal value of h remains
as 2.4442 x 1073 when N > 3. We find also the feasible
solutions of the LMIs, e.g.

N =3:

P11 = 189.4785, P = 2.1978.

The latter allows to choose a larger initial condition (com-
paratively to zo(x) = 0.0025sin(27z), 0 < x < 1 in [13]),
e.g. zo(x) = 0.0037sin(27zx), 0 < x < 1 satisfying

= 189.478520/1 2 (g.1) + 2-1978] 129122 0.1
< 0.0442.

2
loll%,.



Table 4.2
Maximal value of h via Corollary 2.1 (Example 4.2).

N=0 N=1 N=2 N=3 N>4
hmax  1.9999  3.0344 3.1362 3.1414 3.1415
Table 4.3
Maximal value of h via Theorem (3.1) (Example 4.3).
Dmax
Kang & Fridman [13) 1.9 x 1073
Theorem 3.1 with ' =0 1.9 x 1073
N=1 24431 x 1073
N =2 24437 x107°
N >3 24442 x 1073

5 Conclusions

In this paper, stabilization of heat equation and KdVB e-
quation under constant output delay has been studied. By
constructing two augmented Lyapunov functionals that re-
spectively depend on the state derivative and the state on-
ly, sufficient conditions in terms of LMIs that preserve the
exponential stability have been derived. The resulting LMI
conditions show improvements in numerical examples. The
suggested augmented Lyapunov functionals can be used for
delayed control of various PDEs via spatial decomposition
method: Kuramoto-Sivashinskii equation (as considered in
[12]), damped wave and beam equations (see e.g. [24,25]).
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