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bLAAS-CNRS, Université de Toulouse, CNRS, UPS, Toulouse, France

Abstract

This paper addresses the design of a sampled-data model predictive control (MPC) strategy for
linear parameter-varying (LPV) systems. A continuous-time prediction model, which takes into
account that the samples are not necessarily periodic and that plant parameters continuously vary
with time, is considered. Moreover, it is explicitly assumed that the value of the parameters
used to compute the optimal control sequence is measured only at the sampling instants. The
MPC approach proposed by Kothare et al. [1], where the basic idea consists in solving an infinite
horizon guaranteed cost control problem at each sampling time using linear matrix inequalities
(LMI) based formulations, is adopted. In this context, conditions for computing a sampled-data
stabilizing LPV control law that provides a guaranteed cost for a quadratic performance criterion
under input saturation are derived. These conditions are obtained from a parameter-dependent
looped-functional and a parameter-dependent generalized sector condition. A strategy that consists
in solving convex optimization problems in a receding horizon policy is therefore proposed. It is
shown that the proposed strategy guarantees the feasibility of the optimization problem at each
step and leads to the asymptotic stability of the origin. The conservatism reduction provided by
the proposed results, with respect to similar ones in the literature, is illustrated through numerical
examples.

Keywords: linear parameter-varying systems; sampled-data control; model predictive control;
guaranteed cost control; constrained control; input saturation.

1. Introduction

Model predictive control (MPC) has received a lot of attention from the control community
over the last years, both in the contexts of theoretical developments and practical applications
[1–3]. The MPC strategy consists basically in solving an on-line optimization problem over a
finite/infinite prediction horizon at each sampling instant and in applying the first element of the
optimal control sequence until the next sampling occurs. The prediction of the system variables is
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made considering a model of the controlled process. The optimization problem is then repeated in
a receding horizon policy whenever a new measurement (of the states and/or outputs) is available.
This kind of control strategy has been shown to efficiently deal with performance issues and with
state and control constraints (see for instance [2–5] for general overviews on MPC).

Linear parameter-varying (LPV) systems have been successfully used to model systems with
parametric varying uncertainties. Moreover, some nonlinear systems can also be cast in the so-
called quasi-LPV form by an appropriate conversion of the nonlinearities in the product of states
and varying parameters [6]. Several practical applications of the LPV modeling can be found, for
instance, in [7]. Hence, LPV models can be used in MPC strategies to take into account parameter
uncertainties and nonlinear effects. A relevant approach in this context is the one originally proposed
by Kothare et al. [1]. It basically consists in solving an infinite horizon guaranteed cost control
problem, based on a linear matrix inequalities (LMI) framework, and then repeat the procedure at
each sampling instant using the measurement of the current state. It is shown that this procedure
guarantees feasibility, respect to control constraints and asymptotic stability, provided that the
optimization problem is feasible at the initial instant, i.e. if there exists a robust stabilizing state
feedback control law which ensures that the initial state is included in the basin of attraction of the
closed-loop system origin under constrained control. This approach has been further applied and
developed in [8–11].

It should be pointed out that all the references in the previous paragraph consider discrete-
time LPV models. A first issue in this case regards the determination of an LPV discrete-time
model from an actual continuous-time system. This is not an easy task since exact discretization
techniques (as the one for standard linear systems) cannot be applied [12]. The second issue
lies in the implicit assumption that the plant parameters are supposed to be constant between
two successive sampling instants. Note that this assumption is in general not realistic, since the
plant is a continuous-time system and the time-varying parameters evolve continuously between
two successive sampling instants. In addition, motivated by the development of networked and
embedded control systems, a special attention has been paid to the case of aperiodic sampling
[13], i.e. when the time between two sampling instants is not necessarily constant. To cope with
these issues, it is more appropriate to address closed-loop stability and performance considering
a sampled-data framework, where continuous-time evolution of the plant under a control signal
updated only at the sampling instants is explicitly taken into account [13, 14]. In this context, the
problem of MPC for LPV systems considering a sampled-data framework is addressed in [15, 16].
In these references, the MPC strategy of Kothare et al. [1] is employed and a time-delay approach
(similar to those proposed in [17–19]) is used to cope with the sampled-data problem.

Motivated by the aforementioned issues, we focus here on the problem of sampled-data MPC for
LPV systems. It is explicitly assumed that the parameters and the plant states evolve in continuous-
time, while their measurements to update the control signal are taken only at the sampling instants.
We adopt the MPC strategy proposed by Kothare et al. [1], where an infinite guaranteed cost
control problem is solved at each sampling time, using an LMI-based formulation. With this aim,
we first derive LMI conditions for computing a sampled-data stabilizing LPV control law aiming
at providing a guaranteed cost for an infinite horizon quadratic criterion under input saturation.
Thus, a strategy that consists in solving convex optimization problems in a receding horizon policy
is proposed. It is shown that this strategy leads to the feasibility of the optimization problem at
each step and guarantees the asymptotic stability of the origin.

The main contributions of this paper and the differences with respect to previous literature are
summarized below:
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• In most works following Kothare’s approach, a formulation in the discrete-time framework
(e.g. [8–11, 20]) is considered. In this case, it is implicitly assumed that the parameters are
constant between two samples and that the sampling is periodic. Our approach considers
directly continuous-time LPV models, which allows to cope with the aperiodic sampling case
and the fact that plant parameters can vary between two successive sampling instants.

• Based on the information about the bounds on the parameters variation rate, differently from
[15], we propose a model that explicitly captures the mismatch between the continuous-time
plant parameter and its last sampled value used for control purposes. Moreover, to derive the
stabilization conditions, we consider a looped-functional. In this context, the approach origi-
nally proposed in [21, 22] is extended to consider parameter-dependent looped-functionals as
done in [23]. In particular, differently from classical Lyapunov-Krasovskii functionals (consid-
ered for instance in [15–18]), looped-functionals are not required to be positive definite. These
ingredients allow the reduction of conservatism (in terms of the guaranteed cost, maximal al-
lowable sampling interval and stability region), when compared to the approaches considered
in [15, 16].

• The problem of sampled-data guaranteed cost control of LPV systems under input saturation
(control constraints) is formalized and conditions to solve it in a regional stability context
are stated. Provided that the initial state belongs to an admissible set, described as the
level set of a parameter-dependent quadratic function, it is shown that the trajectories of the
sampled-data system under saturating control inputs converge asymptotically to the origin,
while a bound on the quadratic performance criterion is ensured. In particular, to derive
these results, a parameter-dependent version of the generalized sector condition proposed in
[24] is applied. Differently from most works following the Kothare’s approach, which consider
saturation avoidance conditions, our results allow to deal with the effective saturation of the
control signal and thus to take into account the possible nonlinear behavior of the closed-loop
system.

• The MPC algorithm is proposed based on the conditions derived to solve the sampled-data
guaranteed cost control problem under input saturation. Provided that the initial state be-
longs to an admissible set, which can also be seen as an estimate of the region of attraction
of the origin, we formally show that the proposed algorithm guarantees the feasibility of the
optimization problem at each sampling instant and the asymptotic stability of the origin.

This paper is organized as follows. The problem set up is presented in Section 2. Conditions
to solve a sampled-data guaranteed cost problem through a saturating state feedback control law
are derived in Section 3. Based on these conditions and an associated LMI-based optimization
problem, in Section 4 the proposed MPC strategy is formulated and results regarding feasibility and
the guarantee of asymptotic stability are provided. Numerical examples are presented in Section 5.
Some concluding remarks and future directions of research are pointed out in Section 6.

Notations. Throughout the article, sets N, R+, Rn, Rn×n and Sn denote respectively the set
of nonnegative integers, nonnegative scalars, n-dimensional vectors, n×n matrices and symmetric
matrices of Rn×n. For a given positive scalar T , define C n

[0,T ] as the set of continuous functions from

an interval [0, T ] to Rn. The union set of continuous functions with support in a certain range is
defined as Kn

[T1,T2] = ∪T∈[T1,T2]{C n
[0,T ]}. ‖ · ‖ stands for the Euclidean norm of a vector. For P ∈ Sn,

P> 0 means that P is positive definite. He{A} refers to A+A′, symbols I and 0 represent the identity
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and the zero matrices of appropriate dimension. Co{·} stands for a convex hull. For a polytope
B, Ver(B) denotes the set of its vertices. x(tk+s|tk) means the predicted value of x(tk+s) based on
information available at at time tk, for s = 0,1, . . . ,∞. ⊗ denotes Kronecker product and Λ(ν) is a
shortcut for ν⊗ I. A(i) and x(i) represent the i-th line of the matrix A and i-th element of the vector
x, respectively. For a square matrix A, λmax(A) denotes its largest eigenvalue. E (P,c) denotes the
ellipsoidal set E (P,c) = {x ∈Rn;x′Px≤ c}, with P = P′ > 0, c > 0, and ∂E (P,c) denotes its boundary.
Define ||x(θ)||2Z = x′(θ)Zx(θ), with Z = Z′ ≥ 0.

2. Problem Formulation

2.1. Description of the LPV System

Consider a continuous-time LPV system with saturating sampled-data control inputs given by

ẋ(t) = A(σ(t))x(t)+ Bsat(u(t)),

u(t) = u(tk), ∀t ∈ [tk, tk+1),
(1)

where x ∈Rn, u ∈Rm represent the state and the input vectors, respectively. σ(t) ∈RN is the vector
of time-varying parameters with A : RN → Rn×n and B ∈ Rn×m. The sequence of sampling time
instants {tk}k∈N, with tk ∈ R+ for k ∈ N, is such that

⋃
k∈N

[tk, tk+1) = [0,+∞). The difference between

two successive sampling instants is denoted by Tk = tk+1−tk and it is assumed that there exist T1 and
T2 in R+ such that 0 <T1 ≤ Tk ≤T2. The particular case Tk = T1 = T2, for all k ∈N, corresponds to
a periodic sampling strategy. During any sampling interval [tk, tk+1), u(t) is kept constant by means
of a zero-order hold (ZOH).

The saturation function is component-wise defined as follows:

sat(i)(u) = sign(u(i))min{|u|(i), ū(i)},

for i = 1, ...,m, where ±ū(i) are the symmetric bounds on the ith input signal.
We assume that each component of σ(t), i.e. each time-varying parameter, is continuously

differentiable and bounded both in amplitude and rate as follows:

σ ( j) ≤ σ( j)(t)≤ σ ( j),

ξ
( j)
≤ σ̇( j)(t)≤ ξ ( j),

j = 1, . . . ,N. (2)

In other words, σ(t) and σ̇(t) belong to the following convex polytopes with 2N vertices in RN :

σ(t) ∈Bσ = Co{ν1,ν2, . . . ,ν2N},
σ̇(t) ∈Bσ̇ = Co{η1,η2, . . . ,η2N},

where ν j and η j ∈ RN , j = 1, . . . ,2N , denote the vertices of Bσ and Bσ̇ , respectively.
Matrix A(σ(t)) is assumed to be affine with respect to σ(t) and can be generically represented

as follows:

A(σ(t)) =A0 +
N

∑
j=1

σ( j)(t)A j = (A0 +A[σ(t)⊗ I]) = A0 +AΛ(σ(t)), (3)

with A j ∈Rn×n being constant matrices for j = 0, . . . , N, A
∆
= [A1 . . . AN ], and Λ(ν) being a shortcut

for ν⊗ I.
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2.2. Guaranteed Cost Sampled-data LPV Control Problem

As a control objective, consider the minimization of an upper bound γk to the following quadratic
cost function

J(tk,∞) =
∫

∞

tk
(||x(θ)||2Z + ||sat(u(θ))||2H) dθ =

∫
∞

tk
(x′(θ)Zx(θ)+ sat(u(θ))′Hsat(u(θ))) dθ , (4)

where Z ≥ 0 and H > 0 are symmetric weighting matrices with appropriate dimensions. We consider
that Z = Z̄′Z̄, with Z̄ ∈ Rq×n and q≤ n.

Assuming that the parameters can be measured, we consider a sampled-data LPV state feedback
control law, i.e. the control signal is assumed to be computed from the values of σ(t) and x(t)
obtained at the sampling instants t = tk. In particular, we consider an LPV state feedback control
law given as follows:

u(t) = K(σ(tk))x(tk), ∀t ∈ [tk, tk+1), ∀k ∈ N, (5)

where K(σ(tk)) ∈Rm×n is an LPV gain matrix that depends affinely on the parameters measured at
sampling instant t = tk, i.e.:

K(σ(tk)) = K0 +
N

∑
j=1

σ( j)(tk)K j = K0 +KΛ(σ(tk)), (6)

with K j ∈ Rm×n being constant matrices for j = 0, . . . , N and K = [K1 . . . KN ].
Note that u(t) is supposed to be kept constant over the interval [tk, tk+1) with the value computed

from σ and x measured at the instant t = tk. At each sampling time, the gain matrix K(σ(tk)) is
therefore updated based on the new measurement of the time-varying parameters. It is worth
noticing that the plant and parameters evolve in continuous-time, while the controller signal (5)
is computed and updated only at the sampling instants t = tk. To take this fact into account, the
scheduling function σ(t) can be decomposed as follows [25]:

σ(t) = σ(tk)+(σ(t)−σ(tk)) = σ(tk)+ δk(t), ∀t ∈ [tk, tk+1), (7)

where δk(t) denotes the possible variation of σ(t) in the intersampling interval. Assuming that

ξ ( j) ≥ 0, ξ
( j)
≤ 0, δ̇k(t) = σ̇(t) and taking into account that Tk ∈ [T1,T2], it follows from (2) that:

T2ξ
( j)
≤ δk( j)(t) ≤ T2ξ ( j),

ξ
( j)
≤ δ̇k( j)(t) ≤ ξ ( j),

j = 1, · · · ,N. (8)

From the bounds defined in (8), it follows that

σ(tk) ∈Bσ = Co{ν1,ν2, . . . ,ν2N},
δk(t) ∈Bδk

= Co{β1,β2, . . . ,β2N},
δ̇k(t) ∈B

δ̇
= Bσ̇ = Co{η1,η2, . . . ,η2N},

(9)

with β j = T2η j, j = 1, . . . ,2N . Based on (7), we can therefore rewrite A(σ(t)) given in (3) as follows:

A(σ(t)) = (A0 +A[(σ(tk)+ δk(t))⊗ I]) = A0 +AΛ(σ(tk)+ δk(t)).
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As pointed out in [23], at the sampling instant tk, the model of the closed-loop system formed
by (1) and (5) depends on parameter σ(tk), that can take any value in Bσ . On the other hand,
in the interval (tk, tk+1), the dynamics depends also on the continuous evolution of δk(t), which
evolves in the polytope Bδk

. It should be noticed that, depending on the maximal admissible
intersampling time T2 and the bounds on the derivative of the plant parameters, Bδk

is potentially
much smaller than Bσ . This formulation leads to a conservatism reduction when compared to the
approach considered in [15], where the sampled-parameter used for control purposes (σ(tk)) and
the continuous-time plant parameter (σ(t)) are treated as independent variables taking arbitrary
values in Bσ .

On the other hand, it is worth noting that, due to the saturation function in (1), the closed-loop
system formed by (1) and (5) is nonlinear. Hence, global stabilization of the origin may not be
achievable [26]. In this case, the set of all initial conditions (x(0) ∈Rn) such that the corresponding
trajectories of system formed by (1) and (5) converge asymptotically to the origin defines the so-
called region of attraction of the origin (Ra) [26]. Since the analytical determination of Ra is in
general not possible, a problem of interest consists in ensuring asymptotic stability for a set of
admissible initial conditions R0 ⊂Ra ⊆Rn, taking into account both the input constraints and that
the interval between two successive sampling instants may vary, while it is ensured that J(tk,∞)≤ γk
for some γk > 0.

Then, based on this formulation we are concerned by the following problem:

Problem 1. Compute K j, for j = 0, . . . ,N, such that an upper bound γk to the criterion J(tk,∞)
defined in (4) is minimized and the trajectories of the closed-loop system formed by (1) and (5)
converge asymptotically to the origin provided that x(tk) ∈R0.

This problem is the core of the MPC strategy to be proposed. Conditions to provide a solution
to it will be given in Section 3.

Remark 1. Note that the measurement of the time-varying parameters is the central idea of LPV
control laws. If the time-varying parameters cannot be measured, the control law cannot depend on
them. In this case, we refer to a robust control problem, i.e. a parameter-independent control law
that ensures stability and performance for the given range of parameter variation is considered. In
our case, this solution would correspond to the following particular case of (5):

u(t) = K0x(tk), ∀t ∈ [tk, tk+1), ∀k ∈ N,

i.e. the matrices K j, j = 1, . . . ,N are set equal to zero.

2.3. MPC Strategy

In this work, we follow the MPC approach proposed in [1] and [11], where at each sampling
instant tk, based on the measurement of the states and the parameters, a state feedback control law
is computed in order to minimize an infinite-horizon quadratic criterion as given in (4).

With this aim, from the LPV system (1), the following prediction model is considered:

ẋ(t) = A(σ(t))x(t)+ Bsat(u(tk+s|tk)), t ∈ [tk+s, tk+s+1), s≥ 0, (10)

where u(tk+s|tk) denotes the control signal to be applied in interval [tk+s, tk+s+1) from the control
law computed at instant t = tk. In this work, we consider an LPV state feedback control law as
given in (5), i.e.

u(tk+s|tk) = Kk(σ(tk+s))x(tk+s|tk), t ∈ [tk+s, tk+s+1), s≥ 0, (11)
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where x(tk+s|tk) denotes the state x(tk+s) predicted at time tk, respectively, for s = 0, 1, . . . ,∞. Matrix
Kk(σ) is the solution to an optimization problem, computed at time tk, aiming at minimizing the
upper bound γk on the quadratic criterion J(tk,∞) given in (4) using the prediction model (10).
Considering the initial condition x(tk), the computed control law (11) must ensure the asymptotic
convergence of the trajectories to the origin of (1) for any function σ(t), t ∈ [tk,∞), satisfying (2).
Hence, the optimal control sequence obtained at time tk is, in fact, given by the solution of Problem 1
considering x(tk) as initial condition. Then, the first element of the control sequence u(tk|tk) is applied
to the plant, until a new sample is available. Following a receding horizon policy, at next sampling
time, tk+1, new measurements x(tk+1) and σ(tk+1) are obtained and a new parameter-dependent
feedback gain Kk+1(σ) is computed to minimize an upper bound γk+1 on J(tk+1,∞).

The LPV-MPC sampled-data control strategy can therefore be summarized in the following
algorithm.

Algorithm 1.

Step 1: Set k=0;

Step 2: Measure the states and the parameters at the instant tk;

Step 3: Compute Kk(σ) = Kk,0 +
N
∑
j=1

σ( j)Kk, j, i.e. determine matrices Kk, j, j = 0, . . . ,N, such that Prob-

lem 1 is solved;

Step 4: For t ∈ [tk, tk+1), apply the control signal u(t) = Kk(σ(tk))x(tk) to the system;

Step 5: Set k← k + 1 and wait for the next sampling instant, then go to Step 2.

From this algorithm, the dynamics of the closed-loop system can be described by

ẋ(t) = A(σ(t))x(t)+ Bsat(Kk(σ(tk))x(tk)), ∀t ∈ [tk, tk+1), ∀k ∈ N. (12)

It should be noticed that σ(t) is not considered constant neither over the prediction horizon
nor between two successive samples. This is, by the way, a difference of this work with respect
to classical discrete-time approaches [8–11, 20]. Prediction model (10) assumes that the system
dynamics depends continuously on σ(t). On the other hand, the control signal applied between
[tk, tk+1) depends only on the value of σ(tk). As σ(t) is assumed to evolve in the set Bσ , the
computation of the control signal at time tk and the associated upper bound γk for J(tk,∞) must
implicitly consider all the possible trajectories for σ(t) from tk to ∞ that satisfy the bounds given
in (2). This will be ensured by convexity properties, as it will be seen in Theorem 2 in the next
section.

3. Guaranteed Cost Sampled-data LPV Control under Saturating Inputs

In this section, we propose a solution to Problem 1, which is required in Step 3 of Algorithm 1.
With this aim, we firstly introduce some preliminary results regarding saturation operators and
parameter-dependent quadratic functions. Then, we present the looped-functional approach, which
will be applied to obtain LMI based conditions to design the LPV control law (5) in order to solve
Problem 1.

In particular, we extend the original results proposed in [21] and [22] to consider parameter-
dependent functionals. Furthermore, to cope with control saturation, a similar approach to [27] is
considered.
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3.1. Saturation Handling

From the saturation function definition and (5), for t ∈ [tk, tk+1), the following vector-valued
deadzone function can be defined:

ψk = ψ(u(tk)) = sat(K(σ(tk))x(tk))−K(σ(tk))x(tk). (13)

Regarding the nonlinear function ψk, a parameter-dependent version of the generalized sector
condition proposed in [26] is stated in the following Lemma.

Lemma 1. [28] Consider the deadzone nonlinearity defined in (13) and a matrix S(σ(tk)) ∈ Rm×n.
If x(tk) is such that ∣∣∣(K(σ(tk))−S(σ(tk)))(i) x(tk)

∣∣∣≤ ū(i), for i = 1, . . . ,m, (14)

then the following inequality is satisfied for any diagonal positive definite matrix U(σ(tk)) ∈ Rm×m:

ψ
′
kU(σ(tk))(ψk + S(σ(tk))x(tk))≤ 0. (15)

In what follows, as K(σ(tk)) is affine on σ(tk), we will consider that S(σ(tk)) is also affine on
σ(tk), that is:

S(σ(tk)) = S0 +SΛ(σ(tk)),

where S = [S1 . . .SN ].

3.2. Parameter-Dependent Quadratic Function

Consider a parameter-dependent quadratic function (PDQF) V : Rn×Bσ → R+ given by

V (x,σ) = x′P(σ)x, (16)

with P(σ)∈ Sn and P(σ)> 0, for all σ ∈Bσ . Assuming again an affine dependence on the parameter,
it follows that

P(σ) = P0 +P[σ ⊗ I] = P0 +P

(
2N

∑
f =1

λ f ν f ⊗ I

)
=

2N

∑
f =1

λ f
(
P0 +PΛ(ν f )

)
, (17)

where P = [P1 . . .PN ], λ f ∈ [0,1], with ∑
2N

f =1 λ f = 1, and ν f given in (9).
For c > 0, the level set associated to the PDQF (16) is given by

LV (c) = {x ∈ Rn;V (x,σ)≤ c,∀σ ∈Bσ}=
⋂

σ∈Bσ

E (P(σ),c), (18)

where E (P(σ),c) = {x ∈ Rn;x′P(σ)x≤ c}.

Inspired by the results of [29], the following lemma can be stated.

Lemma 2. x ∈LV (c) if and only if x ∈
⋂

f∈{1,...,2N}
E (P0 +PΛ(ν f ),c).
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Proof. The sufficiency holds directly from the fact that
⋂

σ∈Bσ

E (P(σ),c) ⊆
⋂

f∈{1,...,2N}
E (P0 +

PΛ(ν f ),c). To demonstrate the necessity, note that if x ∈
⋂

f∈{1,...,2N}
E (P0 +PΛ(ν f ),c) then x′(P0 +

PΛ(ν f ))x≤ c, for all f = 1, . . . ,2N . Since σ ∈Bσ , it follows that σ =
2N

∑
f =1

λ f ν f , with
2N

∑
f =1

λ f = 1 and

λ f ∈ [0,1]. Hence from (17), we obtain:

x′
[

2N

∑
f =1

λ f (P0 +PΛ(ν f ))

]
x = x′

[
P0 +P

(
2N

∑
f =1

[
λ f ν f ⊗ I

])]
x = x′ [P0 +P [σ ⊗ I]]x = x′P(σ)x ≤ c,

that is, x ∈LV (c). �
Defining now ∆V (k) = x′(tk+1)P(σ(tk+1))x(tk+1)− x′(tk)P(σ(tk))x(tk), the following lemma can be

stated.

Lemma 3. Consider V : Rn×Bσ → R+ as defined in (16) and a domain D ⊂ Rn containing the
origin in its interior. If

∆V (k) <−µ ‖x(tk)‖2 , ∀x(tk) ∈D\{0}, ∀k ∈ N, (19)

along the trajectories of system formed by (1) and (5) with µ being a positive scalar, then, for any
initial condition x(t0) ∈LV (c)⊆D , it follows that:

(i) LV (c) is an invariant and contractive set with respect to the trajectories of system formed
by (1) and (5) at the sampling instants.

(ii) x(tk) converges to zero as k→ ∞.

Proof. Suppose that x(t0) belongs to the boundary of LV (c0), i.e.

x′(t0)P(σ(t0))x(t0) = c0,

with c0 ≤ c. Since x(t0) ∈ ∂LV (c0)⊆LV (c)⊆D , it follows from (19) that

x(t1) ∈ ∂LV (c1)⊂LV (c0), with c1 < c0.

Repeating this reasoning for k = 1, . . . ,∞, we conclude the proof of item (i). Since LV (c) is a
compact set, item (ii) directly follows. �

3.3. The Looped-Functional Approach

Following the notation in [22], i.e. considering xk(τ) = x(tk +τ) and σk(τ) = σ(tk +τ), for τ ∈ [0,Tk)
and for k ∈ N, the dynamics of the closed-loop system between two successive sampling instants is
given by:

ẋk(τ) = A(σk(τ))xk(τ)+ BK(σk(0))xk(0)+ Bψk. (20)

Considering (20), the following theorem is the basis for the so-called looped-functional approach
[21, 22] to ensure the asymptotic stability of sampled-data LPV systems under saturating controls,
while providing a bound on the cost function J(tk,∞) defined in (4). It can be seen as a parameter-
dependent version of Theorem 1 proposed in [27], applied to the stability and guaranteed cost
analysis of LPV systems.
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Theorem 1. Consider a parameter-dependent function (PDF) V : Rn×RN → R+ that satisfies

µ1 ‖x‖p ≤V (x,σ)≤ µ2 ‖x‖p , (21)

with p> 0, 0< µ1≤ µ2 and a parameter-dependent looped-functional1 (PDLF) V0 : [0,T2]×Kn
[T1,T2]×

KN
[T1,T2]× [T1,T2]→ R verifying

V0(0,xk,σk,Tk) = V0(Tk,xk,σk,Tk). (22)

Define the functional W (τ,xk,σk,Tk) = V (xk(τ),σk(τ))+V0(τ,xk,σk,Tk) and let Ẇ (τ,xk,σk,Tk) be
the derivative of W (τ,xk,σk,Tk) with respect to τ along the trajectories of system (20). If there
exist positive scalars µ and γk, a matrix S(σk(0)) ∈ Rm×n and a diagonal positive definite matrix
U(σk(0)) ∈ Sm such that the following inequalities are satisfied2∣∣∣(K(σk(0))−S(σk(0)))(i) xk(0)

∣∣∣2 ≤ ū2
(i)

V (xk(0),σk(0))

γk
, ∀i = 1, . . . ,m, (23)

Ẇ + ||xk(τ)||2Z + ||sat(uk(τ))||2H −2ψ
′
kU(σk(0))(ψk + S(σk(0))xk(0)) <−µ

∥∥∥∥[xk(τ)
xk(0)

]∥∥∥∥p

,

for

[
xk(τ)
xk(0)

]
6= 0, (24)

for all τ ∈ [0,Tk), ∀Tk ∈ [T1,T2] and ∀σk(τ) ∈Bσ , σ̇k(τ) ∈B
δ̇
, then, provided that x(tk) = xk(0) ∈

LV (γk) = {x ∈ Rn;V (x,σ)≤ γk,∀σ ∈Bσ} it follows that:

(i) the corresponding trajectories of the closed-loop system formed by (1) and (5), with σ satis-
fying (2) and intersampling time Tk ∈ [T1,T2], converge asymptotically to the origin;

(ii) J(tk,∞) < γk.

Proof. Suppose x(tk) = xk(0) ∈LV (γk). Thus V (xk(0),σk(0))≤ γk and, if (23) is satisfied, it follows
that ∣∣(K(σk(0))(i)−S(σk(0))(i))xk(0)

∣∣≤ ū(i),

for i = 1, ...,m. From Lemma 1, this implies that

ψ
′
kU(σk(0))(ψk + S(σk(0))xk(0))≤ 0. (25)

Taking (25) into account and integrating (24) over any sampling interval gives that

∫ Tk

0

{
Ẇ + ||xk(τ)||2Z + ||sat(uk(τ))||2H

}
dτ <

2
∫ Tk

0
ψ
′
kU(σk(0))(ψk + S(σk(0)))xk(0)dτ−µ

∫ Tk

0

∥∥∥∥[xk(τ)
xk(0)

]∥∥∥∥p

dτ <−µ

∫ Tk

0

∥∥∥∥[xk(τ)
xk(0)

]∥∥∥∥p

dτ. (26)

1See definition of looped-functionals in [21] for more details.
2For simplicity, the argument of Ẇ (τ,xk,σk,Tk) will be omitted.
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Since from (22) we have V0(0,xk,σk,Tk) = V0(Tk,xk,σk,Tk), it follows from (26) that

V (xk(Tk),σk(Tk))−V (xk(0),σk(0))+
∫ Tk

0
(||xk(τ)||2Z + ||sat(uk(τ))||2H) dτ <

−
∫ Tk

0
µ

∥∥∥∥[xk(τ)
xk(0)

]∥∥∥∥p

dτ ≤−
∫ Tk

0
µ ‖xk(0)‖p dτ ≤−Tkµ ‖xk(0)‖p . (27)

Recalling that by continuity xk(Tk) = xk+1(0) and σk(Tk) = σk+1(0), from (27) we have that

∆V (k) <−Tkµ ‖xk(0)‖p ≤−T1µ ‖xk(0)‖p . (28)

As a consequence of (28), we can conclude that lim
k→∞

xk(0) = 0. Moreover, since the open-loop

system is linear and σ(t) is bounded in Bσ , it is possible to conclude (see details in [23]) that there
exists a positive scalar µm such that ||xk(τ)|| ≤ µm||xk(0)||, ∀k≥ 0. Hence, if lim

k→∞
xk(0) = 0, it follows

that xk(τ) = x(tk +τ)→ 0 as k→∞, for any τ ∈ [0,Tk). This reasoning concludes the proof of item (i).
Now we prove item (ii). Noting that∫ Tk

0
(||xk(τ)||2Z + ||sat(uk(τ))||2H)dτ =

∫ tk+1

tk
(||x(t)||2Z + ||sat(u(t))||2H)dt,

from (26) one gets:

k+s

∑
a=k

∫ Ta

0

{
Ẇ + ||xa(τ)||2Z + ||sat(ua(τ))||2H

}
dτ = V (xk+s+1(0),σk+s+1(0))−V (xk(0),σk(0))

+ J(tk, tk+s+1) < 0,

and, consequently,

J(tk, tk+s+1) <−V (xk+s+1(0),σk+s+1(0))+V (xk(0),σk(0)). (29)

Now considering s→ ∞ in (29) and the fact that lim
s→∞

xk+s+1(0) = 0, we conclude that

J(tk,∞) <V (xk(0),σk(0))≤ γk.

�

3.4. Stabilization Conditions

From Theorem 1, we derive now conditions to compute a parameter-dependent state-feedback
gain matrix that solves Problem 1. With this aim, we consider the PDQF V (x,σ) defined in (16)
and a PDLF candidate V0(τ,xk,σk,Tk) defined as follows:

V0(τ,xk,σk,Tk) = (Tk−τ)

{
(xk(τ)− xk(0))′[2G(σk(τ))xk(0)+ F(σk(τ))(xk(τ)− xk(0))]

+τ

[
xk(0)

ψk

]′
X(σk(0))

[
xk(0)

ψk

]
+
∫

τ

0
ẋ′k(θ)Rẋk(θ)dθ

}
, (30)
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where X(σk(0)) ∈ Sn+m, F(σk(τ)) ∈ Sn , G(σk(τ)) ∈ Rn×n and R ∈ Sn, with R = R′ > 0. Moreover, we
assume that:

F(σk(τ)) = F0 +F[σk(τ)⊗ I] = F0 +FΛ(σk(τ)),

G(σk(τ)) = G0 +G[σk(τ)⊗ I] = G0 +GΛ(σk(τ)),

with the matrices F = [F1 . . . FN ] and G = [G1 . . . GN ] of appropriate dimensions. Notice that
V0(τ,xk,σk,Tk) satisfies (22).

Next, based on the PDLF V0(τ,xk,σk,Tk) given in (30) and the PDQF V (x,σ) defined in (16),
constructive conditions to verify (23)-(24) of Theorem 1 are proposed.

Theorem 2. If there exist symmetric matrices P̃j, F̃j ∈ Sn, X̃ j ∈ Sn+m, matrices G̃ j, Ỹ ∈ Rn×n,
Q̃ j ∈ R3n+m×n, K̃ j, S̃ j ∈ Rm×n, diagonal matrices Ũ j ∈ Sm, for j = 0, 1, · · · ,N, a positive definite
matrix R̃ ∈ Sn and positive scalars ε and γk satisfying the following matrix inequalities:

Ψ1(ν ,β ,η ,Tr) < 0, (31)

Ψ2(ν ,β ,η ,Tr) < 0, (32)[
P̃0 + P̃Λ(ν) (K̃0 + K̃Λ(ν))′(i)− (S̃0 + S̃Λ(ν))′(i)

∗ ū2
(i)

]
> 0, (33)

Ũ0 + ŨΛ(ν) > 0, (34)

P̃0 + P̃Λ(ν + β ) > 0, (35)

for all (ν ,β ,η) ∈Ver(Bσ )×Ver(Bδk
)×Ver(B

δ̇
), ∀i = 1, ...,m and ∀r = 1,2, with

Ψ1(ν ,β ,η ,Tr) =Π̃1(ν ,β ,η)+Tr(Π̃2(ν ,β ,η)+ Π̃3(ν)) M′1Ỹ ′Z̄′ M′2(K̃0 + K̃Λ(ν))′+ M′4(Ũ0 + ŨΛ(ν))
∗ −γkI 0
∗ ∗ −γkH−1

 ,
Ψ2(ν ,β ,η ,Tr) =
Π̃1(ν ,β ,η)−TrΠ̃3(ν) Tr(Q̃0 + Q̃Λ(ν + β )) M′1Ỹ ′Z̄′ M′2(K̃0 + K̃Λ(ν))′+ M′4(Ũ0 + ŨΛ(ν))

∗ −TrR̃ 0 0
∗ ∗ −γkI 0
∗ ∗ ∗ −γkH−1

 ,
(36)

where

Π̃1(ν ,β ,η) = He{M′1(P̃0 + P̃Λ(ν + β ))M3−M′12(G̃0 + G̃Λ(ν + β ))M2− (Q̃0 + Q̃Λ(ν + β ))M12

+(εM′1 + M′3)(−Ỹ M3 +(A0 +AΛ(ν + β ))Ỹ M1 + B(K̃0 + K̃Λ(ν))M2

+ B(Ũ0 + ŨΛ(ν))M4)−M′4(S̃0 + S̃Λ(ν))M2}−M′12(F̃0 + F̃Λ(ν + β ))M12

+ M′1P̃Λ(η)M1−2M′4(Ũ0 + ŨΛ(ν))M4,

Π̃2(ν ,β ,η) = He{M′3((G̃0 + G̃Λ(ν + β ))M2 +(F̃0 + F̃Λ(ν + β ))M12)+ M′12G̃Λ(η)M2}+ M′3R̃M3

+ M′12F̃Λ(η)M12,

Π̃3(ν) = M′24(X̃0 + X̃Λ(ν))M24,

(37)
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M1 =
[

I 0 0 0
]
, M2 =

[
0 I 0 0

]
, M12 = M1−M2,

M3 = [ 0 0 I 0 ], M4 =
[

0 0 0 I
]
, M24 = [M′2 M′4]′,

(38)

then the sampled-data control law (5) with the gain matrix

K(σ(tk)) = K0 +K[σ(tk)⊗ I],

where K j = K̃ jỸ−1, j = 0, 1, . . . ,N is such that ∀x(tk) ∈LV (γk), where LV (γk) is defined as in (18)
with P(σ(t)) defined by matrices Pj = γk(Ỹ ′)−1P̃jỸ−1, for j = 0, 1, . . . ,N, ensures that:

(i) the corresponding trajectories of the closed-loop system formed by (1) and (5), with σ satis-
fying (2) and intersampling time Tk ∈ [T1,T2], converge asymptotically to the origin;

(ii) J(tk,∞) < γk.

Proof. This proof is based on the results of Theorem 1, considering the PDQF V (x,σ) and the
PDLF V0(τ,xk,σk,Tk) defined in (16) and (30), that satisfy (21) and (22), respectively. Differenti-
ating W (τ,xk,σk,Tk) = V (xk(τ),σk(τ))+V0(τ,xk,σk,Tk) with respect to τ one obtains

Ẇ = 2ẋ′k(τ)P(σk(τ))xk(τ)+ x′k(τ)Ṗ(σk(τ))xk(τ)− (xk(τ)− xk(0))′[F(σk(τ))(xk(τ)− xk(0))

+ 2G(σk(τ))xk(0)]+(Tk− τ)[2ẋ′k(τ)F(σk(τ))(xk(τ)− xk(0))+ 2ẋ′k(τ)G(σk(τ))xk(0)

+(xk(τ)− xk(0))′Ḟ(σk(τ))(xk(τ)− xk(0))+ 2(xk(τ)− xk(0))′Ġ(σk(τ))xk(0)]

+(Tk−2τ)

[
xk(0)

ψk

]′
X(σk(0))

[
xk(0)

ψk

]
+(Tk− τ)ẋ′k(τ)Rẋk(τ)−

∫
τ

0
ẋ′k(θ)Rẋk(θ)dθ ,

(39)

where
Ṗ(σk(τ)) = PΛ(δ̇k(τ)), Ḟ(σk(τ)) = FΛ(δ̇k(τ)), Ġ(σk(τ)) = GΛ(δ̇k(τ)).

Consider now a matrix Q(σk(τ)) = Q0 +QΛ(σk(τ)), with Q = [Q1 Q2 . . .QN ] and Q j ∈R(3n+m)×n

for j = 0, . . . ,N, and define
χk(τ) = [x′k(τ) x′k(0) ẋ′k(τ) ψ

′
k]
′.

Next, we consider an upper bound for the integral term that appears in (39). Since R > 0, it

follows that
(
ẋk(θ)−R−1Q′(σk(τ))χk(τ)

)′R(ẋk(θ)−R−1Q′(σk(τ))χk(τ)
)
≥ 0, for θ ∈ [0,τ]. Integrating

this inequality over the interval [0,τ] leads to [30]:∫
τ

0
ẋ′k(θ)Rẋk(θ)dθ ≥ 2χ

′
k(τ)Q(σk(τ))(xk(τ)− xk(0))− τχ

′
k(τ)Q(σk(τ))R−1Q′(σk(τ))χk(τ). (40)

Considering now (39) and (40), the auxiliary matrices defined in (38) and that σk(τ) = σk(0) +
δk(τ), one obtains the following:

Ẇ −2ψ
′
kU(σk(0)) [ψk + S(σk(0))xk(0)]+ x′k(τ)Zxk(τ)+ sat(uk(τ))′Hsat(uk(τ))≤

χ
′
k(τ)

[
Π̂1(σk(0),δk(τ), δ̇k(τ))+(Tk− τ)Π2(σk(0),δk(τ), δ̇k(τ))+(Tk−2τ)Π3(σk(0))

+τ(Q0 +QΛ(σk(0)+ δk(τ)))R−1(Q0 +QΛ(σk(0)+ δk(τ)))′
]

χk(τ)

+ x′k(τ)Zxk(τ)+ sat(uk(τ))′Hsat(uk(τ)),

(41)
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with

Π̂1(σk(0),δk(τ), δ̇k(τ)) = M′1PΛ(δ̇k(τ))M1−2M′4U(σk(0))M4 + He{M′3(P0 +PΛ(σk(0)+ δk(τ)))M1

− (Q0 +QΛ(σk(0)+ δk(τ)))M12−M′12(G0 +GΛ(σk(0)+ δk(τ)))M2

−M′4U(σk(0))(S0 +SΛ(σk(0)))M2}−M′12(F0 +FΛ(σk(0)+ δk(τ)))M12,

Π2(σk(0),δk(τ), δ̇k(τ)) = M′3RM3 + He{M′3(F0 +FΛ(σk(0)+ δk(τ)))M12 + M′12GΛ(δ̇k(τ))M2

+ M′3(G0 +GΛ(σk(0)+ δk(τ)))M2}+ M′12FΛ(δ̇k(τ))M12,

Π3(σk(0)) = M′24X(σk(0))M24.

(42)

Moreover, from (20) one has

(Y1xk(τ)+Y2ẋk(τ))′ [A(σk(τ))xk(τ)+ Bψk− ẋk(τ)+ BK(σk(0))xk(0)] = 0,

for any matrices Y1 and Y2 of appropriate dimensions. Define now

Π1(σk(0),δk(τ), δ̇k(τ)) = Π̂1(σk(0),δk(τ), δ̇k(τ))+ He{Θ(σk(0),δk(τ))}, (43)

with

Θ(σk(0),δk(τ)) = (Y1M1 +Y2M3)′((A0 +AΛ(σk(0)+ δk(τ)))M1

+ B(K0 +KΛ(σk(0)))M2−M3 + BM4).

In order to eliminate the products between variables (such as the ones between matrices Y1
and Y2 and (K0 +KΛ(σk(0)))) and to obtain conditions in LMI form, aiming at guaranteeing that
Ẇ < 0, we perform now a congruence transformation. With this aim, consider Y1 = εY2 and suppose
now that Y2 is nonsingular, Ȳ = Y−1

2 and Ū(σk(0)) = U(σk(0))−1 = Ū0 +Ū [σk(0)⊗ I]. Thus, defining
χ̃(τ) = Ξ−1χ(τ), with Ξ = diag{Ȳ ,Ȳ ,Ȳ , Ū(σk(0))}, and recalling that Z = Z̄′Z̄, it is possible to rewrite
(41) as follows:

Ẇ + ||xk(τ)||2Z + ||sat(uk(τ))||2H −2ψ
′
kU(σk(0))(ψk + S(σk(0))xk(0))≤

χ̃
′(τ)[Ξ′Π1(σk(0),δk(τ), δ̇k(τ))Ξ +(Tk− τ)Ξ

′
Π2(σk(0),δk(τ), δ̇k(τ))Ξ

+(Tk−2τ)Ξ
′
Π3(σk(0))Ξ + τΞ

′(Q0 +QΛ(σk(0)+ δk(τ)))R−1(Q0 +QΛ(σk(0)+ δk(τ)))′Ξ

+ Ξ
′M′1Z̄′Z̄M1Ξ + Ξ

′(M′2(K0 +KΛ(σk(0)))′+ M′4)H((K0 +KΛ(σk(0)))M2 + M4)Ξ]χ̃(τ)

= χ̃
′(τ)Ψ(σk(0),δk(τ), δ̇k(τ),τ,Tk)χ̃(τ). (44)

From (44), if the condition

Ψ(σk(0),δk(τ), δ̇k(τ),τ,Tk) < 0 (45)

holds for all σk(0) ∈Bσ , δk(τ) ∈Bδk
, δ̇k(τ) ∈B

δ̇
, τ ∈ [0,Tk) and Tk ∈ [T1,T2] and provided that Ξ is

nonsingular, it follows that (Ξ−1)′Ψ(σk(0),δk(τ), δ̇k(τ),τ,Tk)Ξ−1 < 0. In this case, let the maximal
eigenvalue of (Ξ−1)′Ψ(σk(0),δk(τ), δ̇k(τ),τ,Tk)Ξ−1, considering all admissible values for σk(0), δk(τ)
and δ̇k(τ), be denoted by λmax Thus, there exists a positive scalar µ =−λmax such that:

χ̃
′(τ)Ψ(σk(0),δk(τ), δ̇k(τ),τ,Tk)χ̃(τ) = χ

′(τ)((Ξ
−1)′Ψ(σk(0),δk(τ), δ̇k(τ),τ,Tk)Ξ

−1)χ(τ)

≤−µ
∥∥χ(τ)

∥∥2 ≤−µ

∥∥∥∥xk(τ)
xk(0)

∥∥∥∥2

,
(46)
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and, consequently, condition (24) of Theorem 1 holds with p = 2.
We show now that (31) and (32) imply that (45) holds for all σk(0)∈Bσ , δk(τ)∈Bδk

, δ̇k(τ)∈B
δ̇
,

τ ∈ [0,Tk) and Tk ∈ [T1,T2]. Applying Schur’s complement to (45) and multiplying the result by
γk, it follows that (45) is equivalent to

Ψ̃(σk(0),δk(τ), δ̇k(τ),τ,Tk) =
Π τ(Q̃0 + Q̃Λ(σk(0)+ δk(τ))) (Ỹ M1)′Z̄′ ((K̃0 + K̃Λ(σk(0)))M2 +(Ũ0 + ŨΛ(ν))M4)′

∗ −τR̃ 0 0
∗ ∗ −γkI 0
∗ ∗ ∗ −γkH−1

< 0, (47)

where

Π = Π(σk(0),δk(τ), δ̇k(τ),τ,Tk) = Π̃1(σk(0),δk(τ), δ̇k(τ))+(Tk− τ)Π̃2(σk(0),δk(τ), δ̇k(τ))

+(Tk−2τ)Π̃3(σk(0)),

with matrices defined in (42) and the following change of variables:

Ỹ = γkȲ , Ξ̃ = γkΞ, P̃j = γ
−1
k Ỹ ′PjỸ , F̃j = γ

−1
k Ỹ ′FjỸ , G̃ j = γ

−1
k Ỹ ′G jỸ , Q̃ j = γ

−1
k Ξ̃′Q jỸ ,

X̃(σk(0)) = X̃0 + Λ(σk(0)) =

[
Ỹ 0
0 Ũ(σk(0))

]′
γ
−1
k X(σk(0))

[
Ỹ 0
0 Ũ(σk(0))

]
,

S̃ j = S jỸ , Ũ(σk(0)) = γkU(σk(0))−1, K̃ j = K jỸ , R̃ = γ
−1
k Ỹ ′RỸ .

(48)

Then, provided that Ξ is invertible, a sufficient condition to verify (24) is given by the matrix
inequality (47). Furthermore, as Ψ̃(σk(0),δk(τ), δ̇k(τ),τ,Tk) depends affinely on σk(0), δk(τ) and
δ̇k(τ), by convexity, a necessary and sufficient condition to ensure (47) consists in satisfying this
inequality at the vertices of polytopes Bσ , Bδk

and B
δ̇
. We should therefore verify

Ψ̃(ν ,β ,η ,τ,Tk) < 0, (49)

i.e.
Π(ν ,β ,η ,τ,Tk) τ(Q̃0 + Q̃Λ(ν + β )) (Ỹ M1)′Z̄′ ((K̃0 + K̃Λ(ν))M2 +(Ũ0 + ŨΛ(ν))M4)′

∗ −τR̃ 0 0
∗ ∗ −γkI 0
∗ ∗ ∗ −γkH−1

< 0,

(50)
for all (ν ,β ,η)∈Ver(Bσ )×Ver(Bδk

)×Ver(B
δ̇
). Moreover, as (50) is affine in τ and Tk, by applying

convexity arguments twice, we conclude that the verification of (31) and (32) for r = 1,2 is equivalent
to satisfy (50), ∀τ ∈ [0,Tk], ∀Tk ∈ [T1,T2].

Note now that, if (32) is verified, it follows that Π̃1(ν ,β ,η)−TrΠ̃3(ν) < 0. Then, from the
definition of Π̃1(ν ,β ,η) and Π̃3(ν) in (37), and taking into account that M3M′1 = M3M′2 = M3M′4 =
M3M′12 = 0 and M′3M24 = 0, it follows that:

M3(Π̃1(ν ,β ,η)−TrΠ̃3(ν))M′3 =−Ỹ − Ỹ ′ < 0,

which implies that, if (32) is verified, Ỹ is a nonsingular matrix. Moreover, from (34), one has that
Ũ(σk(0)) is nonsingular for all σk(0) ∈Bσ . Hence, we conclude that matrix Ξ is nonsingular. Thus,
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the satisfaction of (31) and (32) for r = 1,2 indeed ensures that (46) holds for some µ > 0 and the
condition (24) of Theorem 1 is satisfied.

As (33) is verified ∀ν ∈ Ver(Bσ ), by right and left-multiplying (33) by diag{Ỹ−1, I} and its
transpose, respectively, and then using convexity arguments, it follows that[

(P0+PΛ(σk(0)))
γk

(K0 +KΛ(σk(0)))′(i)− (S0 +SΛ(σk(0)))′(i)
∗ ū2

(i)

]
> 0, (51)

which, from Schur’s complement, implies that condition (23) of Theorem 1 is satisfied (see for
instance [26] for details).

Finally, (35) ensures that P(σk(τ)) > 0 for all σk(τ) ∈Bσ . Hence, we conclude that if (31)-(35)
are satisfied, conditions (21)-(24) of Theorem 1 are verified for all τ ∈ [0,Tk), ∀Tk ∈ [T1,T2] and
∀σk(τ) ∈Bσ , ∀σ̇k(τ) ∈B

δ̇
, and thus (i) and (ii) hold, i.e. lim

t→∞
x(t) = 0 and J(tk,∞) ≤ γk, provided

x(tk) ∈LV (γk). �

Remark 2. For simplicity, we have considered matrix B parameter-independent in the develop-

ments. The parameter-dependent case, i.e. when B(σ(t)) = B0 +
N
∑
j=1

σ( j)(t)B j = B0 +BΛ(σ(t)), with

B=[B1 . . . BN ], can also be addressed, but with more involved conditions. Note that in this case,
terms B(σk(0)+δk(τ))K̃(σk(0)) and B(σk(0)+δk(τ))Ũ(σk(0)) will appear in matrix Π in (47), lead-
ing to products B(σk(0))K̃(σk(0)) and B(σk(0))Ũ(σk(0)). Due to these products, convexity arguments
cannot be applied directly. To overcome this issue, the relaxation technique considered in [31] can
be applied, leading to two additional sets of matrix inequalities to be verified. Roughly speaking, we
should replace conditions (31) and (32) by the following ones:

Ψ1(ν f ,ν f ,βg,ηh,Tr) < 0, (52)

2
N−1

Ψ1(ν f ,ν f ,βg,ηh,Tr)+ Ψ1(ν f ,νp,βg,ηh,Tr)+ Ψ1(νp,ν f ,βg,ηh,Tr) < 0, (53)

Ψ2(ν f ,ν f ,βg,ηh,Tr) < 0, (54)

2
N−1

Ψ2(ν f ,ν f ,βg,ηh,Tr)+ Ψ2(ν f ,νp,βg,ηh,Tr)+ Ψ2(νp,ν f ,βg,ηh,Tr) < 0, (55)

for f = 1, . . . ,2N , p = 1, . . . ,2N , p 6= f , g = 1, . . . ,2N , h = 1, . . . ,2N , r = 1,2, where Ψ1(ν ,φ ,β ,η ,Tr)
and Ψ2(ν ,φ ,β ,η ,Tr) corresponds, respectively, to Ψ1 in (31) and Ψ2 in (32), with B replaced by
B0 +BΛ(φ + β ).

4. LPV-MPC Control Law

In this section, we detail Step 3 of Algorithm 1 by using the results provided in Section 3 to
solve Problem 1. Then, we show that the LPV-MPC law implemented as described in Algorithm 1
leads to the asymptotic stability of the origin of the closed-loop system. Moreover, if at instant
k = 0 there exists a feasible solution to the optimization problem to be solved in Step 3, then the
feasibility is guaranteed for all k ∈ N.

Let us recall that the basic idea of Algorithm 1 is to compute a new feedback matrix Kk(σ(tk)) at
each sampling time tk in order to minimize an upper bound γk on J(tk,∞), based on the measurements

16



of x(tk) and σ(tk). Hence, from the results stated in Theorem 2, in Step 3 of Algorithm 1 the following
optimization problem is considered to compute Kk(σ(tk)) :

min γk
subject to[

1 xk(0)′

xk(0) Ỹk + Ỹ ′k − P̃k,0−P̃kΛ(ν)

]
≥ 0,

Ψk,1(ν ,β ,η ,Tr) < 0,
Ψk,2(ν ,β ,η ,Tr) < 0,[

P̃k,0 + P̃kΛ(ν) (K̃k,0 + K̃kΛ(ν))′(i)− ((S̃k,0 + S̃kΛ(ν)))′(i)
∗ ū2

(i)

]
≥ 0,

for all (ν ,β ,η) ∈Ver(Bσ )×Ver(Bδk
)×Ver(B

δ̇
), ∀i = 1, ...,m and ∀r = 1,2,

(56)

with P̃k, j, F̃k, j, G̃k, j, K̃k, j, S̃k, j, Q̃k, j,Ũk, j, X̃k, j,Ỹk, R̃k and ε as decision variables. The subscript “k” in
the variable matrices stands for the corresponding matrix computed at sampling instant tk. From
Lemma 1 in [27] and considering the change of variables defined in (48), the first matrix inequality
in (56) ensures that

xk(0)′(Pk,0 +PkΛ(ν))xk(0) = xk(0)′Pk(ν)xk(0)≤ γk, (57)

for all ν ∈Ver(Bσ ) and, by convexity, we conclude that xk(0) = x(tk) ∈LV (γk). Hence, from Theo-
rem 2, it follows that J(tk,∞) <V (xk(0),σk(0)) = xk(0)′Pk(σk(0))xk(0) = x(tk)Pk(σ(tk))x(tk)≤ γk.

Thus, at each sampling instant t = tk, state feedback gains Kk, j = K̃k, jỸ−1
k for j = 0, . . . ,N are

computed to minimize γk and to ensure that the closed-loop system trajectories converge to the
origin. At this point, two important issues arise from the application of Algorithm 1: the opti-
mization problem (56) must be feasible at each instant and it should be ensured that lim

t→∞
x(t) = 0.

Theorems 3 and 4 in the sequel address these issues.

Theorem 3. If the optimization problem (56) is feasible for k = 0, then it is feasible for all k > 0.

Proof. The first matrix inequality in (56) ensures that xk(0) = x(tk) ∈LV (γk). Hence from
Theorems 1 and 2, it follows that

∆V (k) = x′(tk+1)Pk(σ(tk+1))x(tk+1)− x′(tk)Pk(σ(tk))x(tk)≤−T1µ ‖x(tk)‖2 , (58)

with Pk(σ) = Pk,0 +PkΛ(σ), Pk, j = γk(Ỹ ′k)−1P̃k, jỸ−1
k , j = 0, . . . ,N. Then we can conclude that

x′(tk+1|tk)Pk(σ(tk+1))x(tk+1|tk) < x′(tk|tk)Pk(σ(tk))x(tk|tk)≤ γk, (59)

which ensures that the optimal solution of (56) at t = tk is a feasible solution for t = tk+1. Repeating
this reasoning, we conclude that this solution at t = tk is a feasible one at tk+s+1, ∀s≥ 0. �

It is worth noticing that the value of γk depends on the measured value of the state at the
instant tk, i.e. x(tk|tk) = x(tk). Furthermore, from (59), we can conclude that γk always decreases as
k increases.

Theorem 4. The sampled-data LPV-MPC law computed by Algorithm 1, with Step 3 given by
the solution to optimization problem (56), ensures that the trajectories of the closed-loop system
converge to the origin as t→ ∞, provided that (56) is feasible for k = 0.
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Proof. Let Pk, j = γk(Ỹ ′k)−1P̃k, jỸ−1
k , j = 0, . . . ,N and γk obtained from the optimal solution to

(56) at instant t = tk and Pk(σ) = Pk,0 +PkΛ(σ). From Theorem 3, as the solution to (56) at instant
t = tk is feasible for t = tk+1, from (59) it follows that:

x′(tk+1|tk)Pk(σ(tk+1))x(tk+1|tk) = γ̃k+1 < γk, (60)

where γ̃k+1 is probably a non-optimal solution to (56). Consider now Pk+1, j = γk+1(Ỹ ′k+1)−1P̃k+1, jỸ−1
k+1,

j = 0, . . . ,N and γk+1 obtained from the optimal solution to (56) at instant t = tk+1 and x(tk+1|tk) =
x(tk+1|tk+1). Thus, by the optimality principle, from (60) one has that

x′(tk+1|tk+1)Pk+1(σ(tk+1))x(tk+1|tk+1) = γk+1 ≤ γ̃k+1 = x′(tk+1|tk+1)Pk(σ(tk+1))x(tk+1|tk+1) < γk. (61)

Furthermore, since from (58) one has

x′(tk+1|tk+1)Pk(σ(tk+1))x(tk+1|tk+1)− x′(tk|tk)Pk(σ(tk))x(tk|tk) <−T1µ ‖x(tk|tk)‖2 ,

it follows from (61) that

x′(tk+1|tk+1)Pk+1(σ(tk+1))x(tk+1|tk+1)− x′(tk|tk)Pk(σ(tk))x(tk|tk) <−T1µ ‖x(tk|tk)‖2 ,∀k ≥ 0. (62)

Then, we can conclude that x′(tk|tk)Pk(σ(tk))x(tk|tk) → 0 as k → ∞. Hence, since J(tk,∞) ≤
x′(tk|tk)Pk(σ(tk))x(tk|tk), it follows that lim

k→∞
J(tk,∞) = 0, which implies that x(t)→ 0 as t→ ∞. �

Remark 3. The numerical complexity of Algorithm 1 is related to the optimization problem (56),
which has to be solved at each sampling time. It should be noticed that for a fixed ε this problem is
convex, since all the constraints are LMIs. The numerical complexity that LMI solvers are able to
handle is an open topic, which is discussed in some references only when the authors find convergence
problems. It usually depends on the considered solver (e.g., LMILAB, SeDuMi or MOSEK) and
some optimization problem parameters such as number of LMI conditions (nl), maximum LMI
order (no) and number of decision variables (nv). Based on the LMI conditions in (56), these
parameters can be computed as function of the plant dimensions (n, m and N). On the other hand,
the complexity of the conditions in the present problem can be reduced by considering parameter-
independent versions of function V and/or looped-functional V0, at the expense of more conservative
solutions. In this case, one should consider P̃k(σ) = P̃k,0, F̃k(σ) = F̃k,0, G̃k(σ) = G̃k,0, S̃k(σ) = S̃k,0,
Q̃k(σ) = Q̃k,0, Ũk(σ) = Ũk,0 and X̃k(σ) = X̃k,0, i.e. assume P̃ = 0, F̃ = 0, G̃ = 0, S̃ = 0, Q̃ = 0, Ũ = 0
and X̃ = 0. For comparison purposes, the expressions of nl, no and nv are shown in Table 1 for both
cases.

Table 1: Numerical complexity associated to optimization problem (56).

Parameter-dependent conditions Parameter-independent conditions

nv
(5.5N + 7)n2 +(1.5N + 2 +(4N + 4)m)n 7n2 +(2 +(4 + N)m)n + 0.5m2

+(0.5N + 0.5)m2 +(1.5N + 1.5)m + 1 +1.5m + 1
nl 23N+2 + 22N +(m + 2)2N 22N+2 + 2Nm + 1
no 5n + 2m 5n + 2m

It should be noticed that the computation time can also be significantly reduced if we consider
the solution obtained in the previous sampling instant as initial guess to problem (56). Note that
for two consecutive sampling instants the optimal solution to (56) is not expected to change much.

18



Finally, we should point out that, if the solver is not able to find the optimal solution in the
available computation time, one can always use the control input computed from the gains obtained in
the previous sampling instant, i.e. u(t) = Kk−1(σ(tk))x(tk), ∀t ∈ [tk, tk+1). From the same arguments
employed in the proof of Theorem 4, the convergence of the trajectory to the origin is also guaranteed
in this case.

4.1. Estimation of the Region of Attraction

A pertinent problem is the determination of an estimate of the region of attraction of the origin
of the closed-loop system under the LPV-MPC strategy. This region corresponds, in fact, to all
initial states x(0) = x0(0) for which problem (56) is feasible at the instant k = 0.

On the other hand, a feasible solution of the matrix inequalities in Theorem 2 leads to an LPV
control law (5) that ensures the convergence to the origin of all trajectories starting in the set LV (γ0),
for all σ(t) such that σ(t) ∈Bσ , σ̇(t) ∈B

δ̇
, considering any sampling sequence satisfying 0 < T1 ≤

Tk ≤T2. Thus, a suitable estimate of the region of attraction of the LPV-MPC control law can be
done by searching a solution that leads to a maximization of LV (γ0) in terms of some size criterion.
For instance, considering a scalar α > 0, we can maximize a set E (αI,1) = {x ∈ Rn|x′αIx≤ 1} such
that E (αI,1) ⊆ LV (γ0). This can be accomplished by the solution of the following optimization
problem:

min α

subject to
(31)− (35),[

αI I
I Ỹ ′+ Ỹ − (P̃0 + P̃Λ(ν))

]
> 0,

for all (ν ,β ,η) ∈Ver(Bσ )×Ver(Bδk
)×Ver(B

δ̇
), ∀i = 1, ...,m and ∀r = 1,2.

(63)

Note that the last matrix inequality in (63) implies that E (αI,1) ⊆ E (P0 +PΛ(ν),γ0) for all
ν ∈Ver(Bσ ) (see [27]), which ensures that E (αI,1)⊆LV (γ0).

In problem (63), we can consider γ0 as a free variable. In this case, the larger admissible set
LV (γ0) will be obtained disregarding performance guarantees. This indeed leads to an estimate of
the feasibility region of the LPV-MPC strategy.

4.2. Estimation of the Maximum Inter-sampling Time

Another problem of interest regards the determination of an estimate of the maximum bound
on the intersampling time Tk, for which there exists a feasible solution considering that the initial
state belongs to a given set X0 ⊂ Rn.

For instance, considering that X0 is a ball with radius 1√
α

, i.e. X0 = E (αI,1) = {x ∈Rn|x′αIx≤
1}, the following optimization problem can be considered:

max T2
subject to
(31)− (35),[

αI I
I Ỹ ′+ Ỹ − (P̃0 + P̃Λ(ν))

]
> 0,

for all (ν ,β ,η) ∈Ver(Bσ )×Ver(Bδk
)×Ver(B

δ̇
), ∀i = 1, ...,m and ∀r = 1,2.

(64)

Note that a solution for (64) can be indirectly obtained by iteratively increasing T2 and testing
the feasibility of the constraints, with T2 fixed in (31) and (32).
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5. Numerical Examples

5.1. Example 1

Consider the numerical example adapted from [15], where the LPV system is described by3:

ẋ(t) =

[
0 1

0.1 1−1.2σ(t)

]
x(t)+

[
0
1

]
sat(u(t)),

with ū = 1 and σ(t) = a sin(bπt), which leads to |σ | ≤ a and |σ̇ | ≤ abπ. We assume that T1 = 10ms,
ε = 1.115 and a cost function described by J(tk,∞) as in (4), with the matrices H = 0.01 and Z = I.

For Tk ∈ [10, 200]ms, a = 1, b = 0.1, we consider the problem of maximizing of LV (γ0) given
in (63). Figure 1 shows sets LV (γ0) obtained from the proposed approach and the one from [15] in
solid and dash-dotted lines, respectively. It can be seen that the proposed results allow to ensure the
MPC algorithm feasibility and asymptotic stability for a larger set of admissible initial conditions.
Indeed, consider for instance the initial condition x(0) = [−0.12 −0.43]′, which belongs to the set
of admissible initial conditions obtained by our method, but not with the one in [15]. In this case,
it follows that our method leads to feasibility at k = 0, with γ0 = 38.82 and gain matrices

K0,0 =
[
−0.2041 −2.3541

]
, K0,1 =

[
−0.0476 −0.0340

]
,

P0,0 =

[
13.7705 9.9891
9.9891 203.0627

]
, P0,1 =

[
0.3641 −0.3836
−0.3836 0.2678

]
.

The simulation results are shown in Figure 2. A random sequence of Tk given in Figure 5, where
the size of the vertical bars denote the values of Tk for the corresponding sampling instants, was
considered. On the other hand, conditions of [15] are infeasible in this case.
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Figure 1: Example 1 - LV (γ0) obtained with the proposed approach (solid line) and with the one from in [15]
(dash-dotted line).

3In [15], the parameter is described by |sin(0.01πt)|, while in this example we consider σ(t) = a sin(bπt).
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(b) Trajectories of the state vector x(t).

Figure 2: Example 1 - Simulation results for x(0) = [−0.12 −0.43]′ and Tk ∈ [10, 200]ms.

Now, the values of γ0 obtained with the proposed approach and the one from [15], considering
x(0) = [2 0]′, with different values for a, b and two different admissible intervals for Tk, are compared
in Table 2. We can notice that the values of γ0 obtained from Theorem 2 are smaller than the ones
obtained from the conditions proposed in [15]. Moreover, conditions from [15] are not feasible
for |σ(t)| ≥ 1.5 and for Tk ∈ [10, 400]ms. Note also that the results obtained from [15] do not
depend on the bounds of σ̇(t) (given indirectly by parameter b). Matrices Pk and Kk obtained for
k = 0, considering Tk ∈ [10,200]ms, a = 1 and b = 0.1, are shown in Table 3 for both approaches. It
should be pointed out that considering the results in [16] for the same cases shown in Table 2, the
conditions are feasible only for a = 0.5, independently of the time-derivative bound value. In this
case, the minimum γ0 obtained is 50.0094, which is greater than the ones obtained from our method
(γ0 = 20.4123) and from the one in [15] (γ0 = 24.1676). Note that in [16], the considered control law
is a robust one (see Remark 1), i.e. it does not depend on the parameters.

The time responses of u(t) and x(t) obtained with the application of the proposed Algorithm
and the one in [15], considering a = 1, b = 0.1, Tk ∈ [10, 200]ms and the random sequence given in
Figure 5, are compared in Figure 3. Note that the convergence to the origin with the proposed
approach is faster, which indicates a performance improvement with respect to the approach in [15].
Indeed, it can be observed in Figure 4 that the values of γk obtained with the proposed method are
always smaller than the ones from [15].

5.2. Example 2

Consider the following LPV model of a single, non-isothermal continuous stirred-tank reactor
(CSTR) borrowed from [32] and also treated in [16]:

ẋ1(t) = (−1−0.6576σ1(t))x1(t)−0.0094σ1(t)x2(t)+ sat(u1(t)),

ẋ2(t) = 0.6576×10−8
σ2(t)x1(t)+(−6.34 + 0.0094×10−8

σ2(t))x2(t)−6.0842sat(u2(t)),

where the states x1 and x2 are the product concentration and the temperature inside the tank,
respectively, and the control inputs u1 and u2 correspond to the product feed concentration and the
coolant flow, respectively. We consider that the saturation limits are given by ū = [1 1]′. The varying
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Table 2: Example 1 - Obtained values of γ0, for x(0) = [2 0]′, Tk ∈ [10, 200]ms and Tk ∈ [10, 400]ms.

a b
Tk ∈ [10, 200]ms Tk ∈ [10, 400]ms*

[15] Proposed approach Proposed approach

0.5 0.1 24.1676 20.4123 21.6262
0.5 0.5 24.1676 21.5500 24.6194
0.5 0.9 24.1676 22.8302 28.4927

1 0.1 36.9144 27.2617 30.0190
1 0.5 36.9144 31.4116 45.1375
1 0.9 36.9144 36.6124 73.6624

1.5 0.1 - 35.1003 40.7236
1.5 0.5 - 44.8433 109.4602
1.5 0.9 - 61.5668 237.5040

2 0.1 - 43.3198 60.8997
2 0.5 - 65.6807 366.1544
2 0.9 - 109.7062 -
* For Tk ∈ [10, 400]ms conditions from [15] are not feasible.
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(a) Sampled-data control input u(t).
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(b) Trajectories of the state vector x(t) starting from
x(0).

Figure 3: Example 1 - Simulation results for x(0) = [2 0]′ and Tk ∈ [10, 200]ms, from Algorithm 1 (solid line) and from
Algorithm in [15] (dash-dotted line).

parameters σ1(t) and σ2(t) are assumed to be bounded in amplitude as follows: σ1(t) ∈ [1,10] and
σ2(t) ∈ [1,100]. Moreover we assume that σ̇1 ∈ [−1,1] and σ̇2 ∈ [−20,20].

For comparison purposes, we consider our algorithm and the ones in [15] and [16]. Considering
Z = I, H = 0.01I, Tk ∈ [10,200]ms, σ1(t) = 5.5 + 4.5sin((1/4.5)t−π), σ2(t) = (5.5 + 4.5sin((1/4.5)t−
π))× (5.5 + 4.5sin((1/4.5)t)) and the initial condition x(0) = [0.1 2]′, the closed-loop simulation
results corresponding to our approach (solid line) and the ones from [15] (dashed line) and [16]
(dotted line), are shown in Figure 6. Table 4 shows the values of γ0 with each one of the approaches.
As it can be observed in Figure 6(c), the convergence of the state to the origin obtained with our
approach is faster. Moreover, the guaranteed cost values γk computed at each sampling instant are

22



0 5 10 15

0

5

10

15

20

25

30

35

40

Figure 4: Example 1 - Evolution of γk, from Algorithm 1 (solid line) and from Algorithm in [15] (dash-dotted line).
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Figure 5: Example 1 - Values of Tk for t = tk.

Table 3: Example 1 - Matrices Kk and Pk computed at sampling instant tk = 0, for Tk ∈ [10, 200]ms and x(0) = [2 0]′.

[15] Problem (56)

K0,0 =
[
−0.2350 −2.6965

]
K0,0 =

[
−0.2570 −2.4033

]
K0,1 =

[
−0.0399 0.6587

]
K0,1 =

[
−0.1202 −0.0211

]
P0 =

[
9.2286 32.6053

32.6053 423.5449

]
P0,0 =

[
6.8109 18.1534

18.1534 171.9655

]
P0,1 =

[
0.0017 0.2966
0.2966 5.5224

]
γ0 = 36.9144 γ0 = 27.2617

depicted in Figure 6(d) for the three cases. Our approach leads to smaller values, which confirms
the performance improvement.

It should be pointed out that in [15] and [16], basically the same functional is used to derive
the stabilizing conditions. This functional can be seen as the combination of a particular version
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Table 4: Example 2 - value of γ0

Problem (56) [15] [16]
0.3561 0.807 0.831

of our function (16) and looped-functional (30), where P(σk(τ)) = P0, R = P0, F(σk(τ)) = P0 and
G(σk(τ)) = X(σk(0)) = 0. Moreover, our approach takes into account information about the pa-
rameter derivative, which is not considered in [15] and [16]. Then, as expected, our results lead to
significantly better performance.

5.3. Example 3

Consider a VTOL (Vertical Take-off and Landing) helicopter linearized dynamic model described
in [12, 33]. This system can be represented by an LPV model (1) with the following matrices

A(σ(t)) =


−0.037 0.027 0.019 −0.455
0.048 −1.010 0.002 −4.021
0.100 σ(t) −0.707 1.420
0.000 0.000 1.000 0.000

 , B =


0.442 0.176
3.545 −7.592
−5.520 4.490
0.000 0.000

 ,
where the components of the state vector x(t) represent the horizontal and vertical velocities (knots),
the pitch rate (degrees/s) and the pitch angle (degrees). The input vector u(t) corresponds to
the collective pitch control and the longitudinal cyclic pitch control. The normalized control are
given by ū = [1 1]′. The time-varying parameter σ(t) = 0.318 + (sin(2t))2 is assumed to belong
to the interval [0.318,1.318] with |σ̇(t)| ≤ 2. In this example, we consider T1 = 0.10s, ε = 2.5,
Z = I and H = 0.01I. First, we analyze the impact of the intersampling upper bound T2 on the
performance. For this, we consider the initial condition x(0) = [1 − 2 − 4 3]′. In this case, the
maximum value of T2 for which it is possible to ensure the feasibility of (56) is 0.95s. Furthermore,
Table 5 shows the minimum values of γ0 obtained for different values of T2, considering two different
sets of constraints in the optimization problem (56): a) the ones obtained with V and V0 being
parameter-dependent (Theorem 2); and b) obtained with V and V0 being parameter-independent
(as commented in Remark 3). Observe that, although the use of parameter-dependent functionals
increases the number of variables and computational complexity, smaller values of γ0 and feasible
results for greater values of T2 can be obtained. It can also be observed that, as T2 increases, the
performance tends to degrade, i.e. γ0 increases. This can also be seen by simulation in Figure 7,
where we compare the time responses considering T2 = 0.2 (solid line) and T2 = 0.95 (dash-dotted
line). Note that the computed control signals u1 and u2 effectively saturate at the first instants of
the simulation (the horizontal lines denote the control bounds).

We consider now the problem of maximizing the estimate of the region of attraction of the
origin of the closed-loop system under the LPV-MPC strategy through the solution of optimization
problem (63). The obtained values of α, for T1 = 0.01 and different values of T2, considering again
the parameter-dependent and independent cases, are shown in Table 6. It can be seen that larger
values of T2 result in larger values of α. This means that increasing T2 leads to smaller sets of
admissible initial conditions, for which is possible to ensure the LPV-MPC algorithm feasibility
and the asymptotic convergence of the trajectories to the origin. Moreover, as expected, less
conservative results (i.e. smaller values for α) are obtained with the conditions derived from the
parameter-dependent function and looped-functional.
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Figure 6: Example 2 - Simulation results for x(0) = [0.1 2]′ and Tk ∈ [10, 200]ms, from Algorithm 1 (solid line) and
from algorithms in [16] (dotted line) and in [15] (dashed line).

Finally, we address the optimization problem (64), i.e. considering given T1 and a set E (αI,1) of
admissible initial conditions, the aim is to maximize the upper bound T2 on the intersampling time.
Table 7 shows the maximum value of T2 obtained for different values of α, considering again the
parameter-dependent and independent cases and T1 = 0.10s. Note that for larger values of α, i.e.
for smaller pre-specified sets of admissible initial conditions for which we want to ensure stability
of the origin, the values obtained for the maximum allowable value of T2 are larger, as expected.
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Figure 7: Example 3 - Simulation results for x(0) = [1 − 2 − 4 3]′, considering Tk ∈ [0.10, 0.20]s (solid line) and
Tk ∈ [0.10, 0.95]s (dash-dotted line).

Table 5: Example 3 - Values of γ0, for different values of T2, considering T1 = 0.10s and x(0) = [1 −2 −4 3]′.

T2 [s] Parameter-dependent Parameter-independent
0.10 135.9174 165.1483
0.20 142.0219 173.0772
0.50 147.5659 268.2552
0.95 898.0019 infeasible

6. Concluding Remarks

In this paper, the problem of sampled-data LPV-MPC state feedback control design has been
addressed. The control signal has been assumed to be constant between two successive sampling
instants and the continuous behavior of the LPV plant has been explicitly considered. Differently
from previous approaches in the literature, the scheduling parameter is not supposed to be constant
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Table 6: Example 3 - Values of α, for different values of T2 and conditions, considering T1 = 0.10s.

T2 [s] Parameter-dependent Parameter-independent
0.10 0.0990 0.1015
0.20 0.0992 0.1029
0.50 0.1042 0.1124
0.95 0.1344 0.1712

Table 7: Example 3 - Values of T2 (s), for different values of α and conditions, considering T1 = 0.10s.

α Parameter-dependent Parameter-independent
0.095 1.22 0.80
0.1 1.25 0.86
0.15 1.41 1.10
0.20 1.47 1.17

between two successive sampling instants. Considering a polytopic approach that takes into account
the bounds on magnitude and derivative of the scheduling parameters, an LPV system is used
as a prediction model. Based on a parameter-dependent looped-functional to take into account
the aperiodic sampling effects and a parameter-dependent generalized sector condition to tackle
control saturation, conditions have been derived to the stabilization of the LPV system, such that
an upper bound on a quadratic cost function is ensured. From these conditions, an MPC based
algorithm has been proposed to compute an LPV control law at each sampling instant considering
the sampled values of states and parameters, with the aim of minimizing the upper bound on the
cost function. To do so, an LMI-based optimization problem is solved. It has been explicitly proven
that the proposed scheme ensures the asymptotic convergence to the origin, provided the initial
state belongs to a certain set in state space. Based on this LMI formulation, and differently from
previous works, an explicit characterization of this set, which can also be seen as an estimate of the
region of attraction of the origin, is provided. The fact of considering a parameter-dependent looped-
functional and also a less conservative polytopic modeling, which takes into account the bounds
on the parameters derivatives, leads to less conservative results (both in terms of performance and
the size of the set of admissible initial conditions) when compared to similar approaches in the
literature, as shown in numerical examples. The numerical complexity of the LMI problem to be
solved at each sampling instant depends on the system dimensions. In cases where the computation
time is critical, a trade-off between conservatism and complexity can be considered by using an
alternative formulation based on parameter-independent conditions.

The method can be applied to a broad class of systems that inherently present uncertain and
time-varying parameters or nonlinear systems that can be represented by a quasi-LPV model,
i.e. when some continuous nonlinearities can be converted to state-dependent parameters and the
system cast as in (1).

Future work may address the extension of the proposed sampled-data MPC strategy to some
specific classes of nonlinear systems, such as rational or Lur’e ones, whose stabilizing conditions can
be cast in an LMI framework (similar to the one considered here for LPV systems) and the design of
output feedback control laws. A special interest in this case arises from applications in robotics and
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unmanned autonomous vehicles [34, 35]. In particular the way of dealing with arbitrary references
is a special challenge. Moreover, the use of LPV models to represent autonomous vehicles should
be carefully evaluated.

Some other interesting future research directions regards the extension of the proposed approach
to consider stochastic aspects, the presence of delays [36, 37] and also the synchronization of sys-
tems networks [38] using the MPC approach and LMI methods. Although the case of asymmetric
saturation can be treated with the proposed results, by considering a worst case symmetric scenario,
this is also an open issue to be considered.
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