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Abstract

We propose a versatile, parameter-less approach for solving the shape matching

problem, specifically in the context of atomic structures when atomic assignments

are not known a priori. The algorithm Iteratively suggests Rotated atom-centered

reference frames and Assignments (Iterative Rotations and Assignments, IRA). The

frame for which a permutationally invariant set-set distance, namely the Hausdorff

distance, returns minimal value is chosen as the solution of the matching problem.

IRA is able to find rigid rotations, reflections, translations, and permutations be-

tween structures with different numbers of atoms, for any atomic arrangement and

pattern, periodic or not. When distortions are present between the structures, opti-

mal rotation and translation are found by further applying a standard Singular Value

Decomposition-based method. To compute the atomic assignments under the one-

to-one assignment constraint, we develop our own algorithm, Constrained Shortest

Distance Assignments (CShDA). The overall approach is extensively tested on sev-

eral structures, including distorted structural fragments. Efficiency of the proposed
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algorithm is shown as a benchmark comparison against two other shape matching

algorithms. We discuss the use of our approach for the identification and compari-

son of structures and structural fragments through two examples: a replica exchange

trajectory of a cyanine molecule, in which we show how our approach could aid the

exploration of relevant collective coordinates for clustering the data; and an SiO2 amor-

phous model, in which we compute distortion scores and compare them with a clas-

sical strain-based potential. The source code and benchmark data are available at

https://github.com/mammasmias/IterativeRotationsAssignments.

1 Introduction

Shape matching is the ability to find the transformation that best matches a set of points

to another set of points. In the context of atomic structures, shape matching techniques are

exploited in a broad variety of applications, ranging from computer-aided drug discovery,1–3

to global structure optimization approaches, such as genetic-algorithm4–6 and Basin-hopping

Monte-Carlo.7,8

Formally, two sets of vector elements are considered congruent or equivalent if they are

related by a transformation that preserves distances, i.e. isometric transformation. Such

transformations are rigid translations, rigid rotations, reflections, and permutations of in-

distinguishable vectors. The isometric transformation that fulfills the congruence relation

between two structures gives a solution to the shape matching problem. This problem can

be addressed from different perspectives. In the following, it is stated as an optimization

problem.

If sets A and B represent two atomic structures, e.g. two sets of atomic positions, the

congruence relation between them can be written as:

PBB = RA+ t (1)
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where PB is a permutation matrix of atomic indices, R is a transformation corresponding to

either rigid rotation, reflection, or combination of both, and t is a translation vector.

The problem of finding PB, R, and t that best matches one structure to another can be

reformulated as an optimization problem:

arg min
R,t

{
D(RA+ t, B)

}
, (2)

in which D is a general distance function between two sets, that is i) variant under R and t, ii)

invariant under permutation PB, and iii) returns value 0 when R and t are such that Eq. (1) is

satisfied, i.e. when the best match is found. It is important to highlight that D does not rely

on an internal structural description (encoding), but rather it directly compares the ”raw”

state of the two structures, since R and t depend on their relative reference frames. When

distortions and/or deformations are present, the transformation that minimizes Eq. (2),

does not strictly return a 0 distance, but some minimum value. In that case, the relation

between A and B is called a near-congruence, and the isometric transformation R and t is

formally referred to as a near-isometry. This minimum distance value provides a measure

of the quality of the congruence, i.e. a measure of the similarity between the structures.

Beyond near-isometry, it is not straightforward to assign a meaning to the distance and

transformation that is returned from the optimization of Eq. (2). Therefore, a similarity

measure obtained from shape matching cannot be thought of only and strictly as a generic

similarity metric for arbitrary structures.

A widely used set-set distance function, in particular in computational (bio)-chemistry,

is Root-Mean-Square-Deviation (RMSD), which is usually defined as:

RMSD(A,B) =

√√√√ 1

N

N∑
i

d(ai, bi)2 (3)

where N is the number of points, and d(ai, bi) denote an Euclidean distance between points
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ai ∈ A and bi ∈ B. It can immediately be noted that Eq. (3) depends on the ordering of

points i in the two sets, its value depends on the permutation PB. In other words, RMSD

depends on atomic assignments, i.e. which atom from one structure is assigned to which

atom from the other structure. In addition, if we cast the matching problem as finding a

global minimum in the phase space of rotations, reflections, and permutations (neglecting

for a moment the translations), the definition of RMSD in Eq. (3) does not guarantee the

existence of a single connected path from an arbitrary point to the global minimum. For

an example see Fig. 1: a change in the permutation of atoms can lead to a discontinuous

Figure 1: RMSD as a function of rotations R and permutations between two identical cubes
A and B, shown above the plot. Cube A is fixed while B is rotated around the z-axis only,
for simplicity. Each color in the plot represents a different permutation of the rotated cube,
some of them are explicitly labelled. Not all permutations are pictured, as there are in total
NP = 8! = 40320 possibilities.
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jump in RMSD value. For this reason RMSD is not directly suitable for a shape matching

problem as formulated by Eq. (2). In Refs. 9 and 10, authors suggested a re-definition of

RMSD based on shortest distances, as an attempt to obtain a permutationally invariant

quantity. Ref. 11 noted that RMSD draws a picture of similarity in an averaging fashion,

and proposed an additional criterion for similarity based on the maximal deviation for any

atom of A with respect to that atom in B. Despite the Eq. (2) providing stringent criteria

for choosing distance functions, in practice there is always some arbitrariness in the choice.

Approaches for finding rotations when the atomic assignments are known and the two

structures have the same number of atoms are well established. Generally they rely on

symmetrization of a special matrix, or minimization of a cost function. 1 Examples of the two

ideas include Lagrange multiplier method,12 matrix symmetrization,13,14 decomposition of a

matrix into orthonormal and positive semidefinite matrices,15 Singular Value Decomposition

(SVD),16–18 and quaternion eigensystem problem19–22 (a review of quaternions can be found

in Ref. 23, and more recently in Refs. 24,25). Usually the cost function minimized is the

RMSD distance.

Finding the assignments between points of two structures is usually called the Linear

Assignment Problem (LAP). The most widely used general-purpose LAP algorithm is the

Hungarian algorithm,26,27 however others exist, see for example Ref. 28. Briefly, it is a

mapping from indices of one set to indices of another set, which minimizes a given cost

given in the form of a matrix. When applied to atomic structures, an atom represents an

index of a point, and the atomic structure represents a set of points. Solving this problem

might seem simple, but without the knowledge of any intrinsic relation between the atoms,

the complexity increases very quickly as the total number of possible permutations NP of

indistinguishable vectors (atoms) in a structure grows as NP =
∏m

k=1 nk!, where m is the

total number of different atomic types present, and nk is the number of atoms of atomic type

k.

1Symmetrization or minimization algorithms for rotations require square matrices. As such, the rotations
can not be found if the structures have a different number of atoms, without a pre-processing.
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One can also quickly realize that the optimal assignment or mapping of points depends

on the relative rotation of the two structures. However, algorithms for finding rotations

alone are not able to switch permutations by themselves, while algorithms for finding atomic

assignments provide the permutation order that minimizes a distance function at fixed ro-

tation, but are not able to suggest rotations that would further minimize it.

To try to overcome such limitations, some strategies have been proposed and are in use in

different communities. For instance, the algorithm Iterative Closest Point (ICP)29 exploits

the idea of self-consistent iteration, where each step combines an assignment procedure

and consecutive rotation procedure, until a solution is found. However, ICP might remain

trapped in local minima of the transformation space.30 Local minima are a consequence

of structural symmetries, see also Fig. 1. Authors in Ref. 31 suggested an algorithm in

which the space of possible rotations and reflections is discretized into a uniform grid of

points. For each grid-point R the optimal atomic assignment PB is obtained as the optimal

assignment of an inter-structure distance matrix with the Hungarian algorithm,26 which is

then used to minimize rotations with SVD.17 Such strategy is however difficult to optimize,

as the number of grid points is not directly related to any property of the system. A

slightly different approach has been proposed in Ref. 11, with an atomic-centered grid of

approximate rotations, in which the farthest atoms from the center are selected as the basis

for aligning the reference frames and to find approximate rotations. The atomic assignments

are obtained via finding optimal assignment of the inter-structure distance matrix with the

Hungarian algorithm. The authors in Ref. 32 propose an approach for the alignment of

molecules based on ideas from image recognition, which relies on filtering methods to obtain

atomic assignments. Optimal rotations are later resolved by applying an SVD minimization.

Alternatively, finding a rough equivalent reference frame (or Eckart frame33,34) through, for

example principal axes of inertia, might also provide a good-enough rotation for identifying

reasonable assignments, see for instance Refs. 35–37. The principal axes idea is however

not suitable for isotropic or compact structures, and crystalline or bulk environments, since
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the principal axes might be ambiguously defined due to the symmetry of the structures.

Moreover, the computation of principal axes of inertia requires the knowledge of associated

weights, i.e. atomic masses. A successful Monte-Carlo-based decision scheme for finding the

global minimum of RMSD 38 has also been reported.

In this work, we present an alternative and versatile, parameter-less approach that solves

the general shape matching problem by finding isometries and near-isometries between two

(sub-)structures when the assignment is not known a priori, named Iterative Rotations and

Assignments (IRA). Isometries and near isometries can be found even in the case of structures

with different numbers of atoms and belonging to some periodic lattice. The proposed

algorithm iteratively suggests rotated atom-centered reference frames of one structure, to

find an approximate rotation in which the matching to the other structure is best. This

best match provides the one-to-one atomic assignment, thus the permutation PB. When

structural distortions are present between the structures, the optimal rotation R, is later

found via SVD.18 To avoid the ambiguity in the mitigation of improper rotations in SVD and

to enable the matching of mirror structures, reflection symmetries are taken into account

by also proposing a reflected configuration at each step of the iteration. To assess the

matching, our approach exploits a truly permutationally invariant set-set distance function,

namely the Hausdorff distance.39 This distance measure is often exploited in the computer

vision community, where the shape matching problem is referred to as point set registry.

In our implementation, the Hausdorff distance is evaluated after imposing the one-to-one

atomic assignment.

We first test the reliability of our proposed matching approach (Sec. 3.1), by applying

random rigid transformations and permutations to a range of structures, and then applying

the shape matching algorithm to re-find them. Later, the performances are compared to two

other algorithms, namely ArbAlign37 and fastoverlap.10 In all benchmarks, IRA performs

significantly better. To test behavior in near-congruent structures, we apply the algorithm

to two short finite-temperature Monte Carlo trajectories (Sec. 3.2). We next apply it to
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match and analyse the distortion of cyanine molecule fragments (Sec. 3.3) along a replica-

exchange molecular dynamics trajectory from Ref. 40. We also discuss the use of Eq. (2) as

a definition of a similarity relation to blindly identify, compare and analyze local structures

or fragments. Such sub-structures can be connected or not, and the larger structure to be

matched might or not include lattice periodicity.

2 Our Approach

Similarly to other matching techniques briefly summarized in the introduction, we address

the general matching problem (Eq. (2)) in two parts. The first part iteratively solves the

approximate rotation, which makes it possible to compute the correct atomic assignments.

The second part uses the atomic assignments to compute the final optimal rotation via stan-

dard Singular Value Decomposition (SVD). We develop the approach Iterative Rotations

and Assignment (IRA, Sec. 2.1), to obtain the approximate rotation in the first part of our

algorithm. To compute the atomic assignments, we develop our own algorithm: Constrained

Shortest Distance Assignment (CShDA, Sec. 2.1.1), that solves the Linear Assignment Prob-

lem (LAP) under the one-to-one assignment constraint. The flowchart representing the full

algorithm is shown on Fig. 2, where the first part of the algorithm is colored in blue, the

second part in green, and the final matching solution is colored in red.

2.1 Iterative Rotations and Assignment (IRA)

A rigid rotation and translation of a structure by R and t is equivalent to rotating and

translating its reference frame. As the distance D in Eq. (2) directly compares the ”raw”

state of the two structures, and R and t depend on their relative reference frames, the

shape matching problem can be addressed as finding a common approximate reference frame

between structures A and B. The reference frames that are evaluated in our algorithm are

atom centered, with basis vectors chosen as follows.
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Figure 2: Flowchart of the algorithm. First part of the algorithm colored in blue gives an
approximate solution to rotations and translations, and solution to the permutations PB

needed in the second part of the algorithm colored in green, which finds the optimal rotation
and translation by utilising the SVD method. Final solution of the matching algorithm is
colored in red.

The atom closest to the geometrical center of A is taken as the central atom and reference

frame origin of A, i.e. all atoms in A are shifted by the former atomic coordinate vector

−rc (in case of periodic structures, periodic boundary conditions are applied). Two non-

colinear atomic coordinate vectors are subsequently chosen and orthonormalized with the

standard Gramm-Schmidt procedure such that ê1 points to an atom. The last reference-

frame basis vector is obtained as vector product of the other two, such obtaining a set of

three orthonormal basis vectors ê1, ê2 and ê3. The coordinates of A in the new basis can be

obtained as:

A{ê} = Ω†(A− rc), (4)

where Ω† is the transformation matrix from original reference frame of A to A{ê}, formed

by the vectors êi. To find a similar atom-centered reference frame in B, all atoms of the

same atomic type as central atom of A are designated candidate central atoms. For each

candidate central atom J , an ensemble of reference frames, and their mirrors are generated

by the same procedure as for A. Namely, {ê′
1, ê′

2, ê′
3 = ê′

1 × ê′
2} and their mirror {ê′

1, ê′
2,

ê′
3 = ê′

2 × ê′
1}. Each candidate central atom J has its atomic vector rJc , and an ensemble of
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transformation matrices UJ , one for each reference frame guess {ê′}J , such that

B{ê′}J = U †
J(B − rJc ) (5)

where U †
J is formed by the vectors ê′

i.

The LAP (Sec. 2.1.1) is solved for all reference frames and central atoms, and the com-

bination of reference frame and central atom guess J that return the lowest set-set distance

function D(A{ê}, B{ê′}J ), defines permutation PB, the approximate rotation matrix Rapx,

and approximate translation vector tapx:

Rapx = UJΩ† (6)

tapx = rJc −Rapxrc.

The distance D is evaluated with the help of our CShDA algorithm, and is equal to the

Hausdorff distance, see Sec. 2.1.1, and Sec. 2.1.2.

To reduce the number of combinations to be tested in B, vectors in A are sorted according

to their norm, such that the two atoms taken to generate the basis are as close as possible

to the central atom. The largest norm among these two atomic vectors is taken as a cutoff

distance, which is multiplied by a factor (1.2 by default) to account for possible distortions,

and taken as maximal-norm threshold for possible basis vectors in B. The total number

of rotations tested NR thus depends on the compactness (density) and number of nearest

neighbors, and goes as NR = nC(nC − 1), where nC are the number of neighbors. For a

highly compact crystal structure the number of atoms nC in this sphere can be large (e.g.

15-20), while for molecular structures it is usually much lower (e.g. 5-8). The overall order

of the procedure is therefore well below O(N3), where N is the total number of atoms (see

also the Discussion section). In addition, contrary to the uniform grid proposed in Ref. 31,

our approach does not require blind and massive checks on the number of grid points and
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their completeness in parsing the rotation space/manifold.

When A and B contain the same number of points/atoms, the search over possible

central atoms of B is not required. In that case rc and rJc is replaced by the coordinates of

the geometrical centers of A and B, respectively. If any other point that is common to both

A and B is known, that particular point can also be used as the center.

If A and (a subset of-)B are exactly congruent, i.e. no atomic deformations, the algorithm

would already return the PB, R, and t that exactly minimize Eq. (2), asD(RapxA+tapx, B) =

0.

2.1.1 LAP algorithm: CShDA

For the shape matching algorithm presented here, we develop our own atomic assignment

algorithm based on shortest distances dij, the Constrained Shortest Distance Assignment

(CShDA). It gives an assignment, or mapping between two atoms i → j, such that each

atom gets a minimum possible cost, under the constraint that each atom can only have one

and only one match, so-called one-to-one assignment. The idea is that the distances from an

atom ai ∈ A to all atoms b ∈ B are used as a cost for computing the assignment of atom ai,

such that shortest distances are prioritized for each atom ai locally. To showcase, an atom

ai gets assigned an atom bj with the shortest distance d(ai, bj) among all atoms b. However,

if during the algorithm an atom ai ∈ A is assigned an atom bj ∈ B with some distance

d(ai, bj), and another atom ai′ ∈ A gets assigned the same atom bj ∈ B with a distance

d(ai′ , bj) < d(ai, bj), the atom ai′ will be prioritized for this bj, and the atom ai gets assigned

a different atom. Symbolically, CShDA iteratively assigns a single atom ai ∈ A to a single

atom bj ∈ B following:

ai → bj | min
bj∈B

d(ai, bj) ∀ai ∈ A (7)

with the constraint that bj has not yet been assigned with a distance lower than d(ai, bj),

where d is the Euclidean distance between the points. When applied to a general set of

points, this kind of local assignment is sometimes referred to as bottleneck LAP.41
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With respect to one of the most widely known general-purpose LAP solvers, the Hun-

garian algorithm,26,27 there are two main differences with our proposed CShDA algorithm,

explained in the following.

Firstly, the criteria for the assignment of two atoms differ. The Hungarian algorithm

assigns indices such that the total sum of the cost is minimized, where the cost of assignment

is the distance between two points. In CShDA, each assignment cost is minimized separately,

under the one-to-one constraint, where the assignment cost is the distance between points.

The CShDA algorithm tends to concentrate the maximum deviations on a small number

of atoms, contrary to the Hungarian algorithm that favours smaller deviations, but spread

over several atoms. Practically, it means that the Hungarian prefers globally ”distorted”

solutions over rigid single mismatches, see Fig. 3.

The second difference is that the Hungarian algorithm requires two structures to have

equal number of atoms, as the cost of assignment is computed from an all-to-all distance

matrix, which needs to be square. While it is true that any square matrix can be made to

be non-square by the addition of ghost rows or columns at specific indices, this is not trivial

since it is not known a priori which should these indices be. Our proposed CShDA algorithm

does not have such a constraint. The only requirement for CShDA is that the number of

atoms nA in structure A is nA ≤ nB, where nB is the number of atoms in structure B (this

point is also addressed in the Discussion). In the case when the two sets contain a different

number of atoms, there will be some points of B that are left unassigned. We enforce that

the permutation PB of set B will in this case be such that the points of A will be assigned

to the first nA points of PBB. The unassigned points of B will be permuted to the end of

the set.

2.1.2 The set-set distance function

A distance function that fulfils the requirements for solving the shape matching problem as

formulated by Eq. (2) is the Hausdorff distance function.

12



A

A

B

B

Hungarian (Munkres):

Hungarian (Munkres):

CShDA algorithm:

CShDA algorithm:

Final score:

Rotation 2

Rotation 1

1.1 2.9

Figure 3: A schematic of the assignment problem, solved for structures A and B in two ro-
tated states. On the left the assignment by the Hungarian algorithm following the algorithm
proposed by Munkres,27 and on the right by our CShDA algorithm. The colors show final
assignments of atoms, e.g. a blue atom is assigned to a blue atom, yellow atom to yellow,
etc. The final scores are computed as max(d(ai, bi)). The first rotated state could represent
a particular intermediate step within the iterative rotations procedure (IRA).

The Hausdorff distance dH(A,B) between two structures A and B is formally defined as

dH(A,B) = max(h(A,B), h(B,A)) (8)
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where

h(A,B) = max
a∈A

min
b∈B

d(a, b) (9)

where d(a, b) is an Euclidean distance between points a ∈ A and b ∈ B. The value of h(A,B)

is the largest value among the smallest distances from points in A to points in B.

One can realize that our LAP algorithm corresponds to the min part of the Hausdorff

distance in Eq. (9), with the additional constraint of one-to-one assignment. The evaluation

of Eq. (9) is then the maximal distance d(ai, bi) among all points i, where the order of atoms

bi follows the assignment provided by the LAP algorithm.

2.2 Final Optimal Rotation

In the case in which the two systems are not equivalent, i.e. in the case of near-congruence,

after finding the atomic assignments by our IRA algorithm, the optimal rotations are found

via an SVD-based algorithm as follows.

Point sets A and B are shifted to their geometrical centers, obtaining A′ = {a′i = ai−ac}

and B′ = {b′i = bi − bc} where ac and bc are the vectors of geometric centers of A and B

respectively. A 3x3 matrix H is constructed from nA points which are common to A′ and B′

(to enable the decomposition for sets with different number of atoms).

H =

nA∑
i

|b′i〉〈a′i|, (10)

with a′i and b′i the vector points of A′ and B′, and |..〉〈..| denoting outer vector product. The

SVD returns three matrices, U, S, and V, such that SV D(H) = USVT , where U and V

are orthonormal matrices corresponding to rotations, and S contains the singular values on

its diagonal. The rotation matrix R is then found as

R = UVT , (11)
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and if det(R) = −1, then R is multiplied by diag(1, 1,−1). The translation vector t is found

as

t = ac −Rbc. (12)

Rotation R and translation t found in this way, are such that the RMSD(A,B) is minimized

(details on SVD can be found in Ref. 18).

It is commonly believed that SVD-based algorithms are not particularly suited for match-

ing purposes, due to the ability of SVD to find non-proper rotations,23 i.e. rotation matrices

with negative determinant. Such improper rotations correspond to reflections (sometimes

also addressed as pseudorotations42), i.e. inversions, or mirroring over some axis, which

changes the chirality of a vector set (which is not always desired, e.g.32). It has been sug-

gested18 to mitigate this issue by multiplying the rotation matrix by diag(1, 1,−1), thus

forcing a positive determinant. This strategy might however result in a completely wrong

rotation, as the matrix H depends on the order of points (see Eq. (10)).

As our IRA approach (see Sec. 2.1) suggests permutations corresponding to both rotations

and reflections, it is always able to rigorously keep track of what has been suggested, and

properly enforce the final rotation matrix to have det(R) = 1 (corresponding to rotation),

or by multiplying it by diag(1, 1,−1) to obtain det(R) = −1 (corresponding to reflection).

Thus consistently providing a correct rotation or reflection matrix.

3 Results

3.1 Exact congruence and equal number of atoms between sets

The reliability of the algorithm has been first checked by attempting to find the matching

between a structure A and a randomized version of that same structure B. The randomized

structure B is obtained by randomly permuting, translating by random vector (with norm

in the interval (0,10]), rotating by a random angle (in the interval (0,2π]) along a random
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rotation axis, and randomly mirroring the structure A. The structures A used for this test are

from the Cambridge Cluster Database,43 more specifically we have used the TIP4P water

clusters with n = 2 to n = 21 molecules of water in the cluster, and the Lennard-Jones

(LJ) clusters of sizes n = 3 to n = 150 and from n = 310 to n = 1000 atoms, from the

same database.43 We have also used an amorphous Si structure with n = 64 atoms. Some

sample structures are shown in Fig. 4. The test is done 10000 times for each of the water

cluster structures, 100 times for each LJ structure, and 10000 times for Si structure. The

final matching is evaluated by computing distances h(A,B) and RMSD(A,B) after the

matching, they have in all cases both been below the floating point precision value (i.e.,

zero). Which implies that with our approach, the correct transformation has always been

found without mistake. The TIP4P test has also been performed by authors in Ref. 11.

Their algorithm has failed for n = 10 once, for n = 11 once, and for n = 13 once. The

same authors reported testing on five amino acids with the same procedure, however the

structures of the amino acids claimed to be included in Supporting Information of Ref. 11

have not been found.

a) b) c)

Figure 4: Some sample structures used to test the reliability of the overall algorithm: a)
amorphous bulk silicon, b) n = 11 TIP4P water cluster, and c) n = 52 Lennard-Jones
cluster.

To benchmark IRA with respect to other shape matching approaches, we have performed

the same kind of tests against ArbAlign37 and fastoverlap10 algorithms. The testing proce-

dure is identical to the previous paragraph, but done on the following datasets. From Ref.

37: datasets of Ne clusters with n = {10, 50, 100, 150, 200, 300, 500, 1000} atoms, water clus-
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ters with n = 2 to n = 21 and n = {25, 40, 60} water molecules, FGG peptides with n = 37

atoms and 4 atomic types, and S1-MA-W1 hydrates with n = 17 atoms and 5 atomic types.

From Ref. 44: Al clusters with n = 63 to n = 160 in steps of 1, and n = 160 to n = 310 in

steps of 5 or 10. From Ref. 45: GaN clusters with n = 12 to n = 96 in steps of 2 or 4. From

Ref. 46: Au26 clusters with n = 26 atoms and a varying number of atoms of a different type.

From Ref. 43: Lennard-Jones clusters with n = 5 to n = 150 and n = 310 to n = 520. Each

structure from each dataset is tried with 50 random initial transformations, and the final

matching is marked as failure if the final distance RMSD(A,B) is greater than threshold

0.001. The results of this test are reported in Table 1, containing the information on the total

number of failures for each dataset. The values of final RMSD distances, for each dataset

where failures have occurred, are given in the Supporting Information, in Figs. S2-S7.

The algorithm ArbAlign37 relies on principal axes of inertia as initial guess for rotations,

uses the Hungarian26 algorithm for the LAP, and minimizes rotations with SVD.17 It con-

siders 48 pre-defined symmetry operations applied in the reference frame of the principal

axes. The algorithm fastoverlap10 is based on kernel correlation. It uses Fourier transform

to find maximum correlation between density representations of two structures.

Table 1: Results of the efficiency test of the three algorithms. Each dataset is referred to
by its name, Ns is the number of different structures in each dataset. Each structure from
each dataset was tested with 50 random initial transformations. The tabulated values are
in the form m/n, where m is the total number of failures, and n is the number of structures
in which the failures occur. Values marked with *: the structures in this dataset include
several atomic types, which fastoverlap cannot distinguish.

Dataset Ns ArbAlign37 fastoverlap10 IRA
Al44 93 0/0 613/34 0/0
Au2646 6 186/4 *0/0 0/0
FGG37 15 0/0 *0/0 0/0
GaN45 31 50/1 *294/14 0/0
LJ43 357 45/1 1177/113 0/0
Neon37 16 100/2 82/8 0/0
S1MAW137 20 0/0 *0/0 0/0
water37 70 0/0 *217/11 0/0

From the results of our benchmark test in Table 1, we can conclude the following. The
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algorithm ArbAlign37 has problems to find the correct rigid transformation in structures

where the principal axes of inertia are ambiguous, as anticipated in our introduction. This is

very clear from the Au26 dataset from Ref. 46, which includes cylindrical shape structures,

where only the principal axis along the cylinder is well defined. We note that since each

structure was tried 50 times, the result of 186 failures in 4 structures (see Table 1) indicates

that on average, there were 46 failed attempts out of 50 trials per structure.

On the other hand, the algorithm fastoverlap10 shows a higher overall rate of mismatches,

but with broadly dispersed failures. Interestingly, the final values of distance from fastoverlap

show clustering around several distinct values for each structure (see Figs. S2-S7 in the

Supporting Information), which might be the signature of trapping on some local minima.

Our proposed IRA algorithm shows a success rate of 100% across all of the structures

tested. We can say with high confidence that it is fully reliable at finding any rigid trans-

formation between two congruent structures.

3.2 Near congruence and equal number of atoms between sets

To test the performance under conditions of near congruence, i.e. the structures present

some deformations - we perform a short NVT-ensemble Monte Carlo (MC) simulation for a

LJ-20 cluster from the Cambridge Database43 at two different temperatures. The specific

temperatures used are T = 0.02 and T = 0.3 in the reduced units. These two values have

been chosen as corresponding to ”low” and ”a bit higher”, and are only used to induce some

atomic vibration.

We take the equilibrium configuration of the cluster as reference structure A. At each

step of the MC simulation, the current structure is taken as B, and the distance RMSDini =

RMSD(A,B) is calculated. During the MC, the structure undergoes some distortion, trans-

lation, and rotation, but not permutation of atoms. We can readily apply the SVD method

to obtain rotation that minimizes RMSD(A,B) at current step, store this RMSD value

as RMSDref . Then apply random rotation, reflection, translation, and permutation to
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structure B, and run our shape matching algorithm on it, to obtain B′ aligned to A, and

calculate distance RMSDfin = RMSD(A,B′). The distance RMSDfin should be equal to

RMSDref if our algorithm has successfully found the right transformation. The results are

shown on Fig. 5. The difference RMSDref − RMSDfin on every step is on the order of

floating point precision error (i.e., zero), confirming the ability of the presented approach to

find the correct matching transformation efficiently.

Figure 5: Plot of RMSDini, RMSDfin, and the difference RMSDref −RMSDfin for tem-
peratures (top) T = 0.02, and (bottom) T = 0.3.

The non-zero value of RMSDfin, provides with a measure of the congruence between the

structures.
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Fragment

Figure 6: The fragment to be matched, and two instances of the final matching of the
molecule, the atoms of the fragment are shown with a darker shade for better distinction.
Red, blue and yellow atoms correspond to Carbon, Hydrogen and Oxygen atoms respectively,
the same color code is used in the following.

3.3 Near congruence and different number of atoms between the

sets

In order to show the ability and performances of our approach in finding the correct trans-

formation and atomic assignment that best matches the structural fragments to a larger

structure, we use a trajectory of replica-exchange molecular dynamics simulation of the cy-

nanine molecule (data provided by authors of Ref. 40). We select two kinds of fragments, a

connected one shown in Fig. 6, and a non-connected one shown in Fig. 7.

During the trajectory, the atoms move and distort the molecule, but they do not permute.

Thanks to this, we can apply a similar test for reliability as in the previous section. We

choose a fixed reference fragment A, and compute the optimal rotation of molecule B using

SVD, giving RMSDref = RMSD(A,B). Then we randomly rotate, reflect, translate, and

permute structure B, and run our shape matching algorithm on it, to obtain B′ aligned

to fragment A, and calculate RMSDfin = RMSD(A,B′). The distances RMSDref and

RMSDfin should be equal if the right transformation has successfully been found. The sum

in all RMSD calculations in this case goes up to number nA of atoms in fragment A.

The result when structure A is the connected fragment from Fig. 6, is that out of the

eighty thousand configurations in the trajectory, there are 313 instances of the difference
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RMSDref − RMSDfin being above the floating point precision value. These instances

represent structures where the algorithm has mismatched the fragment. Some of the reasons

for this behaviour are explored in the discussions section (Sec. 4). However a deep analysis

of the particular instances is beyond the scope of the current paper.

Figure 7: A disconnected fragment, and matching of a molecule.

Tracking the number of mismatches when structure A is the non-connected fragment from

Fig. 7 is not straightforward, since the two hexagons do not move rigidly. As a consequence,

RMSDref as defined previously is ambiguous.

4 Discussion

In the IRA part of the algorithm (Sec. 2.1), the evaluation of Hausdorff distance h(A,B) is

compliant with the one-to-one matching constraint of the CShDA, and strictly corresponds

to distance function D in Eq. (2). Due to the relatively low number of atoms in the atomic

structure matching, the usage and implementation of the Hausdorff distance needs some

attention. The expression for h(A,B) in Eq. (9) is only commutative when A and B contain

the same number of points, which is the reason the expression for Hausdorff distance is

generally written in the form of Eq. (8), which penalizes the situation where some points

are present in one structure but not in the other. Fig. 8 schematically shows the shortest

distances between points of set A(triangles) and points of set B(circles) as arrows, where
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the largest among them is colored in red and represents the value of h(A,B), and h(B,A)

respectively. As described in Sec. 2.1.1, the assignment of atoms is done under the one-to-one

constraint, which poses a problem for the situation of h(B,A) on the right side of Fig. 8,

where B contains more atoms than A, since two atoms of B get assigned to the same atom

of A. A mitigation for avoiding this problem is to systematically impose that the number of

atoms nA ≤ nB, which is the situation of h(A,B) on the left side of Fig. 8. This imposition

also opens up the possibility of matching fragments. However, the fragment as a whole needs

to be a substructure of the larger structure, i.e. our proposed algorithm is not finding the

largest common subset of both the structures.

Figure 8: Schematic representation of the difference between h(A,B) on the left, and h(B,A)
on the right, when A and B contain different number of points. Set A is represented by
triangles, set B by circles. Arrows show the minimum distances between points in green,
and the maximum value in red, h(A,B) and h(B,A) respectively.

As the value of h only takes the maximal distance in Eq. (9), it only contains infor-

mation about one specific atom/point. This particularity can be advantageous in cases of

low distortions between the structures, where the value of h is low, meaning that all atoms

are within a low-distance h of the reference positions. Larger distortions lead to higher h

value, which can hide the behavior of any specific atom. A high h can be due to single atom

distortion, and any information on other atoms is completely obscured. This property of

Hausdorff distance is often described as high susceptibility to noise. It opens the possibility

of a situation in our algorithm, where a ”wrong” assignment gives a transformation U †
J whose

distance D(A{ê}, B{ê′}J ) is lower than the distance D when the transformation is given by

the ”correct” assignment, which then leads to a wrong final assignment and transformation.

Replacing the h with a sum of minimal distances, which should capture a more ”collective”
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behaviour of the atoms, has not shown any significant changes in the performances with

the highly distorted cyanine molecule tests (Sec. 3.3). The mismatches still happen at large

set-set distance values. The choice of a particular set-set distance function is therefore not

crucial, as long as the distance complies with the permutational invariance, and translational

and rotational variance, imposed by Eq. (2). The ”mismatches” are rather due to attempt-

ing to match structures that are far from congruence. Which raises the general question

for any structure similarity approach, how meaningful can it be to attempt matching such

structures, and how could the results be interpreted? On the specific and known case of the

cyanine we were able to assess that there were mismatches, but for huge data sets for which

the parsing is generally blind, the meaning of large distances and their interpretation should

be of concern.

It is possible to reduce the number of mismatches by assuming some prior knowledge on

the system. The first step of our IRA algorithm (Sec. 2.1) selects a central atom in structure

A by the criteria of closeness to the geometrical center of A. The second step is to select

a basis {ê} for a reference frame in A, which is based on positions of atoms around the

central atom. Then the structure B is searched for the equivalent basis {ê′}J . When large

distortions are present in structure B, there is no guarantee that the basis found in B is

equivalent to the basis found in A, or that it even exists. If we assume that there still exist

local environments in the two structures that are congruent to each other, then the central

atom of A could be chosen as the atom for which its local environment is the most similar to

any local environment in B. Choosing the central atom in A according to that criterion in

the case of cyanine for instance, reduces the number of mismatches by an order of magnitude

(313 originally, 30 with this choice).

As already mentioned in Sec. 2.1, the total number of rotations tested NR is greatly

dependent on the structure. In this respect, the Al dataset, along with LJ and Ne datasets

from the benchmark test in Sec. 3.1, represent worst-case scenarios for IRA as all atoms

are of the same atomic type, and the structures are close-packed, which yields the highest
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number of reference frames to be tested. This number is related to the structure surrounding

the origin point, as mentioned in Sec. 2.1. For example, in the Al dataset,44 the number of

rotations tested for each member structure varies on the range [2, 154], without any apparent

rule (see also Fig. S8 in Supporting Information). In that example, there is a single origin

point, which is set to the geometrical center of the structures. A higher number of rotations

needs to be tested when the geometrical center coincides with an atomic position. In that

case, a larger number of atoms is included in the radial cutoff region, which defines the

possible reference frames. Conversely, when the geometrical center falls in between atoms,

the number of atoms in the region is lower, and thus less reference frames have to be tested.

In the case of matching structures with different number of atoms, the origin point is set

by the central atom in structure A. In that case, each possible central atom of structure B

gets tested with a number of rotations that depends on the local environment of that atom.

In any case, the number of rotations tested is not explicitly related to the total number of

atoms N , but related to the density of atoms in the region around the origin point, and the

number of possible origin points. When prior knowledge of the origin point in the form of

a known central atom is assumed, as discussed in the previous paragraph, the number of

rotations tested is given only by the local environment surrounding that specific atom. The

overall performance thus depends on the specific atomic structure, and any prior knowledge

influencing the choice of the origin point.

In situations when we know that the two structures being matched are sufficiently similar,

the multiplication factor 1.2, used for the cutoff can be reduced, but the value should in

any case remain above 1.0. This effectively reduces the search space of rotations, and the

algorithm can be faster as a result. When matching structures with different number of

atoms, making a computational effort to reduce the number of candidate central atoms, as

previously mentioned, can also be very beneficial for the speed of the algorithm, as it reduces

the set of possibilities. In situations where the equality of two structures is being tested with

a certain known threshold for equality, heuristic approaches can be used on top of the logic
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of the IRA and CShDA algorithms, to exit certain loops as soon as certain criteria are met.

This method has the potential to speed up the algorithm considerably, however at the cost

of generality. Because of the non straight-forward relationship between the speed of IRA

algorithm and the atomic structure, a discussion about scalability would hardly be useful.

As point of reference for the timing, our fortran implementation of IRA as described in this

work, running on a single core of a standard laptop: matching the LJ n = 100 cluster43 with

a randomized version of itself takes about 0.02 seconds with 40 rotations tested, and 0.15

seconds for the LJ n = 400 cluster with 12 rotations tested. However these numbers cannot

be generalized at all.

Similarly, when matching structures with different number of atoms, the best-case and

worst-case scenarios in terms of overall speed of execution, would be the following. Best-case

would be matching a fragment of a low-density structure, to a slightly larger structure with

a small number of possible central atoms, meaning the central atom of A has an atomic type

that is not very present in structure B (as is the case for example for some organic com-

pounds). The worst-case scenario would be matching a fragment of a high-density structure,

to a much larger structure with many possible central atoms (as for example in close-packed

bulk structures).

Once the transformation that best matches one structure to the other is found, the

corresponding set-set distance value becomes a similarity measure or a distortion score: a

similarity measure that is not an arbitrary choice, but that arises from a minimization.

As our approach is also able to match fragments (connected or not), including a lattice

periodicity, it can provide with a similarity measure for any part of any structure.

Exploited in (semi)-blind fragment exploration, our approach could aid in revealing the

most important collective coordinates, which ultimately cluster the data set along the rele-

vant collective axes. For example, Fig. 9 and Fig. 10 show two sample histograms of RMSD

for the final matching of the eighty thousand trajectory steps of the cyanine example (see

Sec. 3.3) with respect to two sample reference fragments. The cases of mismatching are
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RMSD=0.16

RMSD=0.44

RMSD=0.54

Figure 9: Histogram of RMSD values of the final matching for 80 thousand trajectory steps.
We clearly see four peaks, representing four clusters of structures in the MD trajectory, the
typical member structure corresponding to each peak is shown. The viewing angle is such
that the reference fragment, shown in darker colors, is kept fixed on all images.

excluded from these plots. In Fig. 9, four peaks can be identified, representing the grouping

of structures in the MD trajectory into four clusters. From the representative fragments

belonging to each cluster, we can notice that there is a H-atom (blue) that rotates around

an O-atom (yellow), and that the rest of the molecule that is attached through the bottom

C-atom (red) of the fragment is roughly oriented in two main directions. Indeed the origi-

nal paper with the cyanine molecule40 reports the dihedral angle going through the bottom

C-atom as one of the relevant axes which clusters the whole data set into two main groups.

In the context of amorphous or disordered structures, it can also enable the character-

ization and analysis of local disorder at different scales, i.e. as a function of the number

of neighbors included in the fragment and accounted during matching. Fig. 11, shows the

Hausdorff and RMSD distance color map for SiO4 tetrahedra in silica. In this example,

IRA was used to find the matching between an ideal SiO4 tetrahedron and the whole silica

crystal, centered on each of the Si atoms. The O atoms are shown in blue, and Si atoms are

colored by the value of chosen distance function. The color map is compared to the values
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Figure 10: Histogram of RMSD values of the final matching of a disconnected fragment.
Two peaks can be identified, corresponding to the grouping of the structures into two clusters.
A representative structure from each cluster is shown.

obtained through the Keating potential,47 which is a strain-based potential, where a low

value corresponds to Si atoms with local environments closely resembling a tetrahedron (low

strain), and higher values otherwise (higher strain).

Finally, because of the ability of our approach to match non-connected fragments, it can

be also exploited to compute time correlation functions based on fragments taken at two

different times.

5 Conclusion

In this work, we have presented an alternative, parameter-less shape matching approach

that allows to find isometric transformations (rigid rotation, reflection, translation, and

permutation/atomic assignment) between congruent and near-congruent structures that do

not necessarily have the same number of atoms, and that can be part of a periodic lattice. The

best match transformation coincides with a minimum of the set-set distance, which has value

zero in case of exact congruence between the structures. As such, the set-set distance can be

interpreted as a measure of similarity, thus enabling the use of our approach for comparing

and recognizing atomic structures. The CShDA algorithm, the LAP solver we developed, is
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a) b) c)

Figure 11: Color map of distortions in a 192 atoms silica model, as obtained through a)
h(A,B), b) RMSD(A,B), and c) correlation with respect to Keating potential.47

able to compute atomic assignments for structures with non-equal number of atoms. This is

exploited in the IRA algorithm, and enables the resolution of the shape matching problem

for structural fragments. Among the performed tests, the reliability of the algorithm is 100%

in the case of exact congruence of structures (Sec. 3.1), while the performances might drop

slightly for larger deformations (99.6% in the cyanine case Sec. 3.3). When available, prior

knowledge of the structures can be exploited to reduce the number of mismatches. In the

context of finding correlations and identifying collective behaviours, our approach could aid

in revealing the most important collective axes, either in space or time.
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Data and source code availability

IRA is released under double licensing, GPL v3 and Apache v2. The source code and

data used for testing and benchmarking is available at https://github.com/mammasmias/

IterativeRotationsAssignments. For cyanine trajectory please contact authors in Ref.40
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(14) Fábri, C.; Mátyus, E.; Császár, A. G. Numerically Constructed Internal-Coordinate

Hamiltonian With Eckart Embedding and Its Application for the Inversion Tunneling

of Ammonia. Spectrochim. Acta, Part A 2014, 119, 84 – 89, Frontiers in molecular

vibrational calculations and computational spectroscopy.

(15) Horn, B. K. P.; Hilden, H. M.; Negahdaripour, S. Closed-Form Solution of Absolute

Orientation Using Orthonormal Matrices. J. Opt. Soc. Am. A 1988, 5, 1127–1135.

(16) Cliff, N. Orthogonal Rotation to Congruence. Psychometrika 1966, 31, 33–42.

(17) Kabsch, W. A Solution for the Best Rotation To Relate Two Sets of Vectors. Acta

Cryst. A 1976, 32, 922–923.

(18) Arun, K. S.; Huang, T. S.; Blostein, S. D. Least-Squares Fitting of Two 3-D Point

Sets. IEEE Transactions on Pattern Analysis and Machine Intelligence 1987, PAMI-9,

698–700.

(19) Horn, B. K. P. Closed-Form Solution of Absolute Orientation Using Unit Quaternions.

J. Opt. Soc. Am. A 1987, 4, 629–642.

(20) Kearsley, S. K. On the Orthogonal Transformation Used for Structural Comparisons.

Acta Cryst. A 1989, 45, 208–210.

(21) Kneller, G. R. Superposition of Molecular Structures using Quaternions. Mol. Simul.

1991, 7, 113–119.

31



(22) Krasnoshchekov, S. V.; Isayeva, E. V.; Stepanov, N. F. Determination of the Eckart

Molecule-Fixed Frame by Use of the Apparatus of Quaternion Algebra. J. Chem. Phys.

2014, 140, 154104.

(23) Flower, D. R. Rotational Superposition: A Review of Methods. J. Mol. Graph. Model.

1999, 17, 238–244.

(24) Coutsias, E. A.; Wester, M. J. RMSD and Symmetry. J. Comput. Chem. 2019, 40,

1496–1508.

(25) Hanson, A. J. The Quaternion-Based Spatial-Coordinate and Orientation-Frame Align-

ment Problems. Acta Cryst. A 2020, 76, 432–457.

(26) Kuhn, H. W. The Hungarian Method for the Assignment Problem. Naval Research

Logistics Quarterly 1955, 2, 83–97.

(27) Munkres, J. Algorithms for the Assignment and Transportation Problems. J. Soc. Ind.

Appl. Math. 1957, 5, 32–38.

(28) Jonker, R.; Volgenant, A. A Shortest Augmenting Path Algorithm for Dense and Sparse

Linear Assignment Problems. Computing 1987, 38, 325–340.

(29) Besl, P. J.; McKay, N. D. A Method for Registration of 3-D Shapes. IEEE Transactions

on Pattern Analysis and Machine Intelligence 1992, 14, 239–256.

(30) Pottmann, H.; Huang, Q.-X.; Yang, Y.-L.; Hu, S.-M. Geometry and Convergence Anal-

ysis of Algorithms for Registration of 3D Shapes. Int. J. Comput. Vision 2006, 67,

277–296.

(31) Blatov, I. A.; Kitaeva, E. V.; Shevchenko, A. P.; Blatov, V. A. A Universal Algorithm

for Finding the Shortest Distance Between Systems of Points. Acta Cryst. A 2019, 75,

827–832.

32



(32) Richmond, N. J.; Willett, P.; Clark, R. D. Alignment of Three-Dimensional Molecules

Using an Image Recognition Algorithm. J. Mol. Graphics Modell. 2004, 23, 199–209.

(33) Eckart, C. Some Studies Concerning Rotating Axes and Polyatomic Molecules. Phys.

Rev. 1935, 47, 552–558.

(34) Louck, J. D.; Galbraith, H. W. Eckart Vectors, Eckart Frames, and Polyatomic

Molecules. Rev. Mod. Phys. 1976, 48, 69–106.

(35) Allen, W. J.; Rizzo, R. C. Implementation of the Hungarian Algorithm to Account

for Ligand Symmetry and Similarity in Structure-Based Design. J. Chem. Inf. Model.

2014, 54, 518–529, PMID: 24410429.

(36) Wagner, A.; Himmel, H.-J. aRMSD: A Comprehensive Tool for Structural Analysis. J.

Chem. Inf. Model. 2017, 57, 428–438, PMID: 28191844.

(37) Temelso, B.; Mabey, J. M.; Kubota, T.; Appiah-Padi, N.; Shields, G. C. ArbAlign: A

Tool for Optimal Alignment of Arbitrarily Ordered Isomers Using the Kuhn–Munkres

Algorithm. J. Chem. Inf. Model. 2017, 57, 1045–1054, PMID: 28398732.

(38) Sadeghi, A.; Ghasemi, S. A.; Schaefer, B.; Mohr, S.; Lill, M. A.; Goedecker, S. Metrics

for Measuring Distances in Configuration Spaces. J. Chem. Phys. 2013, 139, 184118.

(39) Eiter, T.; Mannila, H. Distance Measures for Point Sets and Their Computation. Acta

Inf. 1997, 34, 109–133.

(40) Rusishvili, M.; Grisanti, L.; Laporte, S.; Micciarelli, M.; Rosa, M.; Robbins, R. J.;

Collins, T.; Magistrato, A.; Baroni, S. Unraveling the Molecular Mechanisms of Color

Expression in Anthocyanins. Phys. Chem. Chem. Phys. 2019, 21, 8757–8766.

(41) Burkard, R.; Dell’Amico, M.; Martello, S. Assignment Problems; SIAM e-books; So-

ciety for Industrial and Applied Mathematics (SIAM, 3600 Market Street, Floor 6,

Philadelphia, PA 19104), 2009.

33



(42) Dymarsky, A. Y.; Kudin, K. N. Computation of the Pseudorotation Matrix To Satisfy

the Eckart Axis Conditions. J. Chem. Phys. 2005, 122, 124103.

(43) Wales, D. J.; Doye, J. P. K.; Dullweber, A.; Hodges, M. P.; Calvo, F. Y. N. F.;

Hernández-Rojas, J.; Middleton, T. F. The Cambridge Cluster Database. https:

//www-wales.ch.cam.ac.uk/CCD.html.

(44) Shao, X.; Wu, X.; Cai, W. Growth Pattern of Truncated Octahedra in AlN (N ≤ 310)

Clusters. J. Phys. Chem. A 2010, 114, 29–36, PMID: 20014801.
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Graphical TOC Entry

Before

After

Pattern:

The TOC entry represents an atomic pattern
to be matched to some output trajectory of a
molecule containing this atomic pattern, in par-
ticular a replica exchange molecular dynamics
of cyanine. However, the atomic assignments
have been randomly changed. Thus the pattern
cannot be easily superposed to the molecule as
atomic assignments are unknown. This is de-
picted with the three images above the plot, the
RMSD measured in this state is large, depicted
by the orange line ”Before”. After applying our
shape matching algorithm, the atomic pattern is
found within the molecule in each step of the
trajectory. This is depicted by the three images
under the plot, the RMSD measured in this state
reaches a minimum value, depicted by the blue
”After” line in the plot.
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Results of the benchmark test

The Fig. S1 shows representative structures from each dataset included in the benchmark

test of Sec. 3.1. The collection of structures included in the benchmark test forms a diverse

set of general shapes. More details about these structures can be found in their respective

original works.1–5

A final transformation having RMSD(A,B) > 0.001 is considered a mismatch. Failures

are reported for each software in Figs. S2-S7. The horizontal axis on these plots gives the

name of the particular structure where a failure has occurred, the vertical axis is the number

of current trial, the color of a point gives the final value RMSD, and the shape of a point

is related to the particular software which returned the failure.

1

miha.gunde@gmail.com
marsamos@iom.cnr.it
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S1-MA-W1

Al 94
Au20In2

FGG GaN 18

Figure S1: Representative structures from each dataset used in the benchmark test of
Sec. 3.1. Note the diversity of general shape in the structures.
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Figure S2: Values of final RMSD for structures from the Ne dataset. Only failures are
reported. Structure name on horizontal axis, trial number on vertical, final RMSD value
in color. Failures in this dataset: 100 failures in 2 structures by ArbAlign; 82 failures in 8
structures by fastoverlap; 0 failures by IRA.
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Figure S3: Values of final RMSD for structures from the Au26 dataset. Only failures are
reported. Structure name on horizontal axis, trial number on vertical, final RMSD value
in color. Failures in this dataset: 186 failures in 4 structures by ArbAlign; 0 failures by
fastoverlap; 0 failures by IRA.
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Figure S4: Values of final RMSD for structures from the Al dataset. Only failures are
reported. Structure name on horizontal axis, trial number on vertical, final RMSD value
in color. Failures in this dataset: 0 failures by ArbAlign; 613 failures in 34 structures by
fastoverlap; 0 failures by IRA.
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Figure S5: Values of final RMSD for structures from the GaN dataset. Only failures are
reported. Structure name on horizontal axis, trial number on vertical, final RMSD value
in color. Failures in this dataset: 50 failures in 1 structure by ArbAlign; 294 failures in 14
structures by fastoverlap; 0 failures by IRA.
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Figure S6: Values of final RMSD for structures from the water dataset. Only failures are
reported. Structure name on horizontal axis, trial number on vertical, final RMSD value
in color. Failures in this dataset: 0 failures by ArbAlign; 217 failures in 11 structures by
fastoverlap; 0 failures by IRA.
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Figure S7: Values of final RMSD for structures from the LJ dataset. Only failures are
reported. Structure name on horizontal axis, trial number on vertical, final RMSD value in
color. Failures in this dataset: 45 failures in 1 structure by ArbAlign; 1177 failures in 113
structures by fastoverlap; 0 failures by IRA.

Number of rotations tested

Fig. S8 shows the number of rotations tested for all structures in the Al dataset, versus the

total number of atoms in the structure. As it can be seen, the number of rotations tested is

on the range [2, 154] and there is no apparent rule. The number of tested reference frames

is related to the structure surrounding the origin point as mentioned in Sec. 2.1, which in

the case of non-equal number of atoms is a central atom, and in the case of equal number

of atoms is the geometrical center (or any known common point). The higher number

of tested rotations occurs when the geometrical center of the structure coincides with an

atomic position. In that case, the distance to nearest atoms is the highest. A large number

of atoms is therefore included in the radial cutoff region, such increasing the number of

possible reference frames to be tested. When the geometrical center falls in between atoms,

the distance to nearest neighbors is shorter (lower number of atoms), and thus less reference

frames have to be tested.
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Figure S8: Number of rotations tested versus the number of atoms, for structures in the Al
dataset.1
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