
HAL Id: hal-03409682
https://laas.hal.science/hal-03409682

Preprint submitted on 29 Oct 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Learning to Adapt the Trotting Gait of the Solo
Quadruped

Michel Aractingi, Pierre-Alexandre Leziart, Thomas Flayols, Julien Perez,
Tomi Silander, Philippe Souères

To cite this version:
Michel Aractingi, Pierre-Alexandre Leziart, Thomas Flayols, Julien Perez, Tomi Silander, et al..
Learning to Adapt the Trotting Gait of the Solo Quadruped. 2021. �hal-03409682�

https://laas.hal.science/hal-03409682
https://hal.archives-ouvertes.fr


Learning to Adapt the Trotting Gait of the Solo Quadruped

Michel Aractingi12∗, Pierre-Alexandre Leziart1, Thomas Flayols1, Julien Perez2,
Tomi Silander2 and Philippe Souères1

Abstract— Predefined gait patterns for quadruped locomo-
tion can hardly be optimal in all situations with regard to
stability, cost of transport and velocity tracking error. Hence,
in this work, we tackle the challenge of adapting a predefined
trotting gait, implemented in the model-based controller of Solo,
to optimize both energy consumption and velocity tracking.
To this end, we propose a model-free reinforcement learning
method for adapting the timings of the contact/swing phases for
each foot. The learned agent augments a control pipeline that
was previously developed for the Solo robot. We also propose
to use a self-attention mechanism over the history of states
in order to extract useful information for adapting the gait.
Through a comprehensive set of experiments, we demonstrate
how, compared to the nominal gait, our method significantly
reduces energy consumption, better tracks the desired velocity,
and makes it possible to reach higher speeds. A video of the
method is found at https://youtu.be/ykbDUyASXs4.

I. INTRODUCTION

Quadrupedal locomotion has become an increasingly pop-
ular topic of robotics and artificial intelligence research [1],
[2], [3], [4]. Unlike wheeled robots, legged robots can
traverse challenging terrains [5]. Recently, several robotic
platforms have been developed for mastering quadruped
locomotion [6], [7], [8]. Robots like Spot, Mini Cheetah [8],
HyQ [9], ANYmal [6] or Laikago [10] provide reference
test benches for designing control approaches. Solo [7] is a
more recent alternative which provides a reliable, low-cost,
open-access quadruped within the Open Dynamic Robot
Initiative. Previous work on these platforms has managed
to develop control schemes that feature dynamic and robust
locomotion [11], [12], [13].

Many classical methods propose complex control archi-
tectures composed of sequences of blocks with hand-tuned
parameters. Each block outputs a solution to one part of
the problem based on dynamic models and estimated states.
Among them, the control scheme developed in [12] for Mini
Cheetah constitutes a reference in the domain. It combines
Model Predictive Control (MPC) and Whole-Body Control
(WBC). The MPC is tasked with long horizon planning based
on the under-actuated part of the dynamics while the WBC
handles low-level control at finer timesteps. This hybrid
architecture proved to be stable while achieving a record
running speed for this robot. A similar control pipeline,
including simplifying solutions for the computation of the
WBC, was used for Solo in [14].

Model-free reinforcement learning (RL) makes it possi-
ble to learn controllers without hand-tuning such control

1LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, France
2NAVER LABS Europe, 6 chemin de Maupertuis, Meylan, 38240, France
∗Corresponding author: michel.aractingi@naverlabs.com

blocks. RL methods have shown some success in learning
locomotion tasks [2], [15], [16], particularly in adapting
to new situations where classic controllers fail to work
satisfactorily [17]. A hierarchical RL approach was used
in [16] to train policies at two levels of control: planning
and execution. Then, in [15] a multiple actor-critic approach
was introduced for training several policies that specialize in
different maneuvers such as running, skipping and jumping.
However these learning methods require the availability
of privileged information about the terrain, which is only
feasible when running experiments in simulation. Moreover,
RL methods usually require lots of data, which limits training
to simulated environments, hence creating a problem of
transferring learned skills from simulation to hardware [1].
Learning locomotion policies for real platforms has also been
studied. For example, reference trajectories collected from
motion capture recordings of a real dog were used to train
a policy to mimic animal behaviours in [2]. In [1], a model
of the actuation dynamics of the real ANYmal was used in
simulation to produce policies that adapt to actuator noise.
A meta learning approach was used in [17] to adapt to the
noise in the dynamics when deployed on the real system. In
all cases, more work and data were required to bridge the
sim2real gap.

Combining model-based control and RL has been pro-
posed before. Such methods often replace or augment certain
control blocks with function approximators such as neural
networks that can be trained to optimize decisions that are
difficult to model. Recently, a policy that learns to choose
the next contact sequence from a set of predefined contacts
was proposed in [3]. In [5], the authors proposed learning
a swing phase delta-variable, which decides the contact
phase of the foot, along with the displacement of the step
position. A method to learn gait transitions by learning the
gait schedule as a function of the reference velocity was
introduced in [18]. Modification of the guided policy search,
where learning is guided by an MPC with the objective of
optimizing the control Hamiltonian, was proposed in [19].
Learning of high-level decision variables for a low-level
MPC was also proposed to adapt to difficult situations [20].
Model-based motion planning was used in [4] to train a gait
planner and gait executioner policies when moving on non-
flat terrains. With learning, one can obtain context-dependent
control parameters that are automatically adapted to better
generalize the decisions. Moreover, limiting the use of RL
to specific sub-problems of the control naturally requires less
data than learning the full control from scratch.

In this paper, we study the problem of how to adapt the

 https://youtu.be/ykbDUyASXs4


Fig. 1: Description of the controller. A user commands the reference velocity and gait. The planner outputs a gait matrix
Gt which is updated by the RL policy. Considering this updated value, the MPC plans contact forces for the ground feet
while the swing feet trajectories are determined by a planner. The information from both blocks are sent to the whole-body
control that outputs reference torques and reference joint positions and velocities. An impedance controller finally computes
the joint torques based on encoders measurements.

gait of a quadruped in order to improve its spent energy
and velocity tracking. Our motivation comes from the fact
that humans and animals can lower their cost of transport
by adapting their gait depending on their velocity [21]. Our
main contribution is a method that uses a model-free deep
RL policy to adapt the timings of the contact/swing phases
of each foot independently. We use this policy to augment
a model-based controller that was previously developed to
endow the Solo quadruped with trotting, walking and static
gait capabilities [14]. We show that the proposed method can
adapt the nominal trotting in different situations between a
walking trot pattern to a rapid trot. This improves the energy
consumption and reference velocity tracking of the controller.
Another contribution is the policy architecture. We argue that
the prediction of events that would impact future decisions
can be improved by considering a history of states. To take
advantage of this history, we propose using self-attention
mechanisms [22] that are commonly used in language tasks
to handle sequences of inputs. The experiments demonstrate
improvements in the convergence and performance of the
learning.

The paper is organized as follows. Description of back-
ground information about the controller and RL is summa-
rized in section II. The method and experimental results are
outlined in section III and section IV respectively.

II. PRELIMINARIES

The robotic platform used in this paper is the Solo12
quadruped, a 12 degrees of freedom (DoFs) version of the
Solo8 quadruped, introduced in [7], with three actuators
per leg. The task is to follow a user-defined reference
velocity. The RL approach in this paper is complementary
to the model-based controller proposed by [14], with minor
modifications to the foot trajectory generator, so that the
planned trajectory of the swing feet can be modified and
adapted by the RL agent on the fly. In the following section
we briefly describe the controller used and the RL formalism.

A. Nominal Controller Architecture

The nominal controller is centered around two main con-
trol blocks: a MPC and a WBC. The MPC computes a
sequence of ground contact forces based on the centroidal
dynamics model and the location of current and future
footholds. Its objective is to have the body track the reference
velocity. The WBC takes as inputs the desired contact forces,
for the feet in stance phase, and the desired motion of feet
in swing phase and outputs desired torques, positions and
velocities for the 12 actuators. The final torque values sent
to the actuators are the WBC torques values to which are
added the feedback torques of a PD controller. While the
WBC solves an instantaneous problem and provides low-
level commands at high frequency (500 Hz), the MPC plans
over a prediction horizon knowing the future footholds but at
lower frequency (50 Hz) due to computational requirements.

The trajectory of a foot during swing phase is planned
using polynomial functions to link its current position to a
target position on the ground. The foot trajectory generator
outputs a reference position, velocity and acceleration at each
time step of the swing phase. These values are used by the
WBC as references for the inverse kinematics and torques
computation. A footstep planner outputs the target locations
of footsteps using heuristics that rely on the gait, the current
and desired body velocities to be tracked. The controller has
shown successful trials on the real Solo12 platform. The
controller works well for gaits where two or more feet are
in contact with the ground, i.e., it supports various trotting,
walking and static gaits. We refer to the controller’s main
paper for more details [14].

In general, a gait is defined as a periodic pattern of limb
movements made during locomotion, both for robots and
animals. Animals often have the ability to adapt their gait
depending on the environmental conditions and desired char-
acteristics such as speed, stability, manoeuvrability or energy
efficiency. Formally, Solo’s trotting sequence is determined
at time t by a binary gait matrix Gt ∈ {0, 1}M×4 that



Fig. 2: Multi-headed self-attention layers, with h = 8 heads, are used as the base of the policy. The actions modify the
contact sequence given by the oscillations of each leg. The bottom plot shows an example of the nominal sequence of
contact/swing in bold. Depending on the current contact state of foot j, the dotted line draws the new oscillation after the
shifts in timings given by the policy are taken into account.

describes the planned feet contacts for the incoming M time
steps. Column j of the matrix describes the future ground
contact states for foot j. The ith row of Gt describes the
ground contact states of the four feet that the controller
should consider for the i-th time step of the MPC prediction
horizon, i.e, at time t+ i×∆tmpc, where ∆tmpc is the length
of one MPC time step.

A trotting gait is defined by having two diagonally op-
posite feet in contact with the ground while the other two
are in a swing phase. The policy can adapt the gait period
and the duration of both stance and swing phases within one
period, and therefore the potential overlap of those phases
between the feet. These modifications can lead to variations
of the hard-coded trot that have different properties in terms
of speed, energy consumption, reactivity and robustness. The
controller’s gait matrix is pre-defined to trotting with a period
of 0.32s. Our work offers a method to adapt the value of the
period by modifying the timings of the contact/stance phases.

B. Reinforcement learning formalization

We model the RL learning environment as a Markov
decision process (MDP) [23]. An MDP is defined by the
tuple (S,A,R, T , P0), where S is a set of states and A
is a set of actions. Taking an action a in a state s yields
a stochastic reward, expectation of which is defined by a
function R : S × A → R. The environment dynamics is
described by a conditional transition probability distribution
T : S × A × S → R+, with the interpretation that
T (s, a, s′) = p(st+1 = s′|st = s, at = a) is the probability
(density) that the next state is s′ given that the current state is
s and that action taken is a. P0 is the initial state probability
distribution. In RL setting, only spaces S and A of the

MDP are known by the learning agent. By acting in the
environment, the learning agent receives samples from the
reward and state transition distributions.

We define a policy πθ(h, a) = pθ(at = a | ht = h) param-
eterized by θ that gives the probability of taking an action
a given a state-action history h = (s0, a0, s1, a1, ..., st). The
learning objective is to find the parameters θ of the policy
that maximize the value of the expected discounted sum of
rewards J(θ) := Eπθ,P0,T [

∑H
t=0 γ

tR(st, at)], where H is
the horizon of the episode and γ ∈ [0, 1] is the discount
factor. Section III-B defines the core components of the MDP,
i.e., state space, action space and reward function, that are
used throughout this paper.

III. METHOD

We propose a method to learn how to adapt the contact
patterns for each foot in order to improve the control per-
formance. We choose to formalize the task as a sequential
decision problem and solve it with RL techniques. One
can write a trajectory optimization program, based on an
optimal control solution, to adapt the contact phases of the
gait [24]. However, such a method would require intensive
computations at each MPC cycle, whereas with a policy
learned with deep RL the decision is made with a single
forward pass through the network.

A. Controlling the gait timings

While we could in theory directly control the binary
indicators in the gait matrices Gt, this would create an
intractable action space with 24M actions, most of which
would not correspond to any relevant locomotion. Since the
nature of quadrupedal locomotion is periodic, we propose to



view the creation of the gait matrices through parameterized
oscillation functions. We define a base oscillation f̄(t; τ0, τ1)
where τ0 < τ1 are the timings for which a change in value
occurs:

f̄(t; τ0, τ1, T ) =

{
0, if τ0 < t mod T < τ1, and
1, otherwise.

Given C(j), a binary indicator of the current contact
state of foot j ∈ {1 . . . 4}, the oscillation function fj(t) :
R+ → {0, 1} describes the future contact states of foot j
as a function of time t. The oscillation is parameterized by
two switch timing parameters τ js and τ jc , which indicate
the beginning of the swing and stance phases of foot j
respectively. fj is then defined as1:

fj(t; τ
j
s , τ

j
c ) = δ1,C(j) ∗ f̄(t; τ js , τ

j
c , T

j)

+ δ0,C(j) ∗ (1− f̄(t; τ jc , τ
j
s , T

j)),

where the period length is defined as T j = max(τ js , τ
j
c ).

In order to control the four oscillation functions we
introduce a 4× 2-dimensional continuous action space, A =
{(a1, a2, a3, a4)} with aj = (∆τ js ,∆τ

j
c ) ∈ R2. For each

foot j there are two actions that define the displacement
with respect to the timings of the nominal trotting gait, τ jn =
(τ js,n, τ

j
c,n), that are hardcoded in the controller. Controlling

the deltas of the timing values rather than the values directly
is the key for the method to work as it reduces the exploration
space.

The gait matrix can be created by assigning Gt[i, j] =
fj(i ∗ ∆tmpc; τ

j
n + ajt ), where i ∈ {1, . . . ,M} and j ∈

{1, 2, 3, 4}. We will next describe the nature of the state
space, reward function and policy architecture that make the
RL agent learn to effectively adapt contact timings.

B. MDP definition

The MDP is defined over fixed discrete timesteps. The
RL policy runs at a frequency of 10Hz. We found that this
frequency gives the policy enough time for executing an
action and receiving a useful learning signal, while keeping
its reactivity in adapting gait sequences quickly enough.

State definition: We define the observation Ot ∈ Rd=65 to
contain proprioceptive information ot ∈ R57 about the robot
at time t along with the last eight-dimensional command
at−1. The elements composing the observation are the base
height and orientation qbase ∈ R4 , base velocity q̇base ∈ R6,
joint angles q ∈ R12 and velocities q̇ ∈ R12, feet positions
relative to the body frame pfeet ∈ R12 and the current and
past gait contact sequences, both four-dimensional binary
vectors. The velocity reference command q̇ref ∈ R3 is added
to the observation so that the policy is aware of the command.
The observation is thus constructed Ot = (ot, at−1).

The history of the last N = 16 observations are con-
catenated to construct the state st ∈ RN×d. We argue that
having a history of observations, especially when the period

1The mod refers to the modulus operation to indicate that after period
T j the time resets to zero.
δi,j refers to the Kronecker delta, i.e., δi,j = 1 if i = j else 0.

between each RL action is very short, is necessary for deci-
sion making in order to detect changes in the environment
dynamics.

Reward definition: We design a basic reward function
based on three terms: (1) a positive constant c per timestep
to encourage the policy not to commit any actions that would
end the episode early, (2) the squared distance between the
commanded velocity and the velocity of the robot and (3) an
energy penalty term to encourage the policy to learn actions
that save energy.

Our reward function is similar to the ones proposed by [3],
[18]. However, we propose using the energy instead of the
torques magnitudes. As the energy is a function of the
torques and joint angles, optimizing the torques magnitudes,
while important from a control perspective, does not equate
to minimizing the energy under certain joint angles. The
energy for joint l at t is the integration of power Pl spent over
the last RL timestep. The total energy at time t is summed
over all joints:

Et =

12∑
l=1

∫ t

t′=t−TRL
Pl,t′dt

′,

where TRL is the time period between each RL step. The
reward at time t is then defined to be:

Rt = c−
∫ t

t′=t−TRL
‖q̇ref,t′ − q̇base,t′‖2dt′ − λEt,

where λ is the coefficient that balances the importance of
energy conservation in the reward function. Throughout the
experiments we used λ = 10 and c = 1.0.

Policy design: In order to take advantage of the sequence
of observation-action pairs, we utilize self-attention layers in
our policy model [22]. Self-attention has been very success-
fully used in language tasks where the input is sequential.
We argue that with self-attention the model can focus on
parts of the state that indicate changes in the dynamics.
Moreover, it also facilitates coordination of the different
legs by contextualizing inputs from one another. To our
knowledge, this is the first time self-attention is used for
learning locomotion. In Section IV-D, we show that using a
self-attention model yields greater rewards with less samples
than a standard stack of fully-connected layers.

IV. EXPERIMENTS

In this section, we present the experimental results of
training a policy to adapt the trotting gait of the Solo12
quadruped with the proposed action space. The main ques-
tions we answer are: (1) can the policy learn to manipulate
the trot so that the robot tracks the reference velocity while
optimizing the energy consumption? and (2) What is the effect
of using a self-attention mechanism in the policy network?

Environment: The training process takes place in a syn-
thetic environment. The simulation is based on PyBullet [25]
that uses the Bullet physics engine for simulating rigid body
dynamics and detecting collisions. The Pinocchio library [26]
is used for low-level dynamics and kinematics, e.g., to get
the positions of the feet in the body frame of the robot.



Fig. 3: Top: achieved velocity of the robot when following a predefined velocity plan (dashed line). The policy is able to
get the robot closer to the desired reference in most cases. Middle: the blue dashed line represents the nominal trotting
frequency. The red line indicates the average frequency of all legs as adapted by the policy. The frequency of stepping is
slowed down and sped-up to accommodate the reference velocity. Bottom: snapshots of the achieved gaits at different levels
of the run.

Implementation details: As mentioned before, a self-
attention mechanism is used in the architecture of our
policy-network. We use the encoder layer of the Trans-
former architecture as our base model [22]. The output of
the encoder is propagated through a multi-layer perceptron
that outputs the actions. The actions are quantized into a
Multi-discrete space. As the contact patterns are quan-
tized over the timestep of the MPC, the shift in the timings
are multiples of the MPC timestep. Therefore, the action
space is implicitly discrete. We use the Proximal Policy
Optimization algorithm (PPO) [27] for learning the optimal
policy. PPO is robust for a wide range of RL tasks [27]. We
found that pretraining the policy representation on a torque
prediction task improves the overall performance of the RL
(more details in Section IV-D).

A. Adapted gaits and velocity tracking

Our experiments demonstrate that we can learn a policy
that adapts the nominal trotting gait for different reference
velocities. At zero velocity, we obtain an optimal energy
saving policy with a static gait where all feet are in contact
with the ground. As the commanded velocity increases the
gait evolves into a walking trot at low velocities. At high
velocities the policy adapts the timings to output a fast
rapid trotting which is more costly in terms of energy, but
necessary to follow the velocity command with low error.
Examples of the resulting gaits, due to the policy adaption

of the nominal trotting, are shown in Figure 32.
The learned policy shows higher fidelity in tracking the

commanded velocity at each moment. In the middle figure,
We observe a clear decrease in the frequency, making the
stepping slower, for lower velocities. For high velocities the
frequency is increased, thereby making the stepping faster
which helps stabilize the base and follow the reference
velocity.

B. Energy efficiency

We run the learned policy five times with different random
seeds in a setup where the reference velocity is gradually
increased starting from 0 m/s. Figures (4a, 4b) show the
trade-off between the average episodic energy consumption
and velocity error for the learned policy vs. the nominal
controller with fixed gait. We observe the improvement in
energy consumption particularly at low velocities where the
dynamic movement of the nominal trot is not necessary. At
higher velocities, the velocity error is lower for the learned
agent while still being comparable in energy efficiency. The
lower velocity error is due to the policy learning a rapid trot
that tracks higher velocities better.

At high velocities the energy consumption of the nominal
controller and of the learned policy appear to be almost
equal. However, it is important to note that Figure 4a is
plotted as a function of the reference commanded velocity

2These views are snapshots of one of the policy test runs that are presented
in the attached video in the supplementary material.



(a) Energy consumption. (b) Velocity error (c) Policy architecture. (d) Pre-training.

Fig. 4: Figures (a, b) are comparisons between the learned policy and the nominal controller at test time over an increasing
forward velocity reference. (a) Plot of the average energy consumption per episode. (b) Plot of velocity error. The nominal
trotting fails after 1.1 m/s. The Training curves in (c,d) are averaged over five random seeds. (c) Average reward for different
policy architectures. (d) Effect of pre-training on a torque prediction task.

and not the actual velocity of the robot. As shown in Fig-
ure 4b, the model-based controller exhibits higher velocity
error when the energy consumption is similar to the policy.
Figure 3 (top) confirms that at high velocities the robot
controlled by the model-based controller is slower than when
controlled by the learned policy. Therefore, while the energy
consumption is comparable for high reference velocities, for
actual realized velocities the robot controlled by the learned
policy consumes less energy than the one controlled by the
nominal controller.

C. Maintaining stability at higher speeds

We found that the controller with the nominal gait can
reach the forward velocity up to 1.1 m/s before failing and
falling (see Figure 4b). The proposed learned policy was
able to break that limit and achieve velocities up to 2.5m/s.
The experiments were conducted by gradually increasing the
reference velocity over 2.0m/s. This implements a simple
linear curriculum over the difficulty of the task. The result
is a very rapid trot with period around 0.12s-0.16s. The
attached video shows the difference between the nominal gait
that fails and the gait adapted by the policy that is successful
in stabilizing the robot at high speeds.

D. Ablation studies

In this section, we present ablations of the policy architec-
ture and of the method of pretraining the representation using
torque prediction. We illustrate the advantages of using our
proposed method over standard approaches. Throughout this
section, we use a task where the agent is simply expected to
learn how to stay still and balanced. The agent is rewarded
for completing the task successfully without falling and it is
penalized for its energy consumption and velocity error.

Policy architecture: We train a policy using three differ-
ent setups: (1) The proposed self-attention based policy, (2)
a feed-forward neural network policy where the input is a
sequence of N + 1 last states, and (3) a feed-forward neural
network policy without history of the last N states. Figure 4c
shows the expected cumulative reward during the training
process for each setup. By using self-attention we attain
higher rewards with less training steps than using standard
neural network. For the zero reference velocity, the proposed

policy yields a static gait with all feet staying in contact with
the ground thus conserving energy. The other policies are not
able to reach such a solution in the given number of training
iterations, but they settle for a dynamic gait. This explains
their overall lower cumulative reward.

Pretraining for torque predictions: Pretraining neural
networks to improve the overall sample efficiency and per-
formance of the model is a common practice in computer
vision and NLP. Therefore, we propose to pretrain our model
to predict the torques using a fixed gait from the standard
controller. We then use the pretrained model to initialize
the policy network for learning the gait timing control task.
Figure 4d illustrates the improvement in sample efficiency
when using pretrained initialization. The overall asymptotic
performance, in terms of average reward, is also higher.
Without the pretrained representation many experiments with
different seeds failed to converge. The pretrained representa-
tion stabilizes the training process and decreases the number
of failed training runs.

V. CONCLUSION

We proposed a model-free RL method that adapts the
nominal trot pattern of a model-based controller designed for
the locomotion of the Solo quadruped. The proposed action
space consists of displacements of the contact/swing timings
for each leg independently. We propose using a self-attention
mechanism and pretraining to improve overall performance
and sample efficiency. Our experiments demonstrate that the
learned policy is able to adapt the gait according to the
reference body velocity. The resulting behaviour conserves
energy better than the nominal controller at low velocities
and tracks the commanded speed better at high velocities.
With the learned policy our robot is able to reach higher
speeds than with the original controller. In the future we
plan to investigate controllers that implement other gaits like
galloping and bounding. After these promising results with
a model-based controller that is already proven to work on
the real Solo robot, we are currently working on testing the
method on the real platform.



REFERENCES

[1] J. Hwangbo, J. Lee, A. Dosovitskiy, D. Bellicoso, V. Tsounis,
V. Koltun, and M. Hutter, “Learning agile and dynamic motor skills
for legged robots,” Science Robotics, vol. 4, no. 26, 2019.

[2] X. B. Peng, E. Coumans, T. Zhang, T. W. E. Lee, J. Tan, and S. Levine,
“Learning agile robotic locomotion skills by imitating animals,” 2020.

[3] X. Da, Z. Xie, D. Hoeller, B. Boots, A. Anandkumar, Y. Zhu,
B. Babich, and A. Garg, “Learning a contact-adaptive controller for
robust, efficient legged locomotion,” 2020.

[4] V. Tsounis, M. Alge, J. Lee, F. Farshidian, and M. Hutter, “DeepGait:
Planning and Control of Quadrupedal Gaits Using Deep Reinforce-
ment Learning,” IEEE Robotics and Automation Letters, vol. 5, no. 2,
2020.

[5] J. Lee, J. Hwangbo, L. Wellhausen, V. Koltun, and M. Hutter,
“Learning quadrupedal locomotion over challenging terrain,” Science
Robotics, vol. 5, no. 47, 2020.

[6] M. Hutter, C. Gehring, D. Jud, A. Lauber, C. D. Bellicoso, V. Tsounis,
J. Hwangbo, K. Bodie, P. Fankhauser, M. Bloesch, R. Diethelm,
S. Bachmann, A. Melzer, and M. Hoepflinger, “Anymal - a highly
mobile and dynamic quadrupedal robot,” in 2016 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS), 2016, pp.
38–44.

[7] F. Grimminger, A. Meduri, M. Khadiv, J. Viereck, M. Wüthrich,
M. Naveau, V. Berenz, S. Heim, F. Widmaier, T. Flayols, J. Fiene,
A. Badri-Spröwitz, and L. Righetti, “An open torque-controlled mod-
ular robot architecture for legged locomotion research,” IEEE Robotics
and Automation Letters, vol. 5, no. 2, pp. 3650–3657, 2020.

[8] B. Katz, J. D. Carlo, and S. Kim, “Mini cheetah: A platform for push-
ing the limits of dynamic quadruped control,” in 2019 International
Conference on Robotics and Automation (ICRA), 2019, pp. 6295–
6301.

[9] C. Semini, N. G. Tsagarakis, E. Guglielmino, M. Focchi, F. Cannella,
and D. G. Caldwell, “Design of hyq – a hydraulically and
electrically actuated quadruped robot,” Proceedings of the Institution
of Mechanical Engineers, Part I: Journal of Systems and Control
Engineering, vol. 225, no. 6, pp. 831–849, 2011. [Online]. Available:
https://doi.org/10.1177/0959651811402275

[10] X. Wang, “Laikago Pro, Unitree Robotics,” 2018. [Online]. Available:
http://www.unitree.cc/e/action/ShowInfo.php?classid=6&id=355

[11] J. Di Carlo, P. M. Wensing, B. Katz, G. Bledt, and S. Kim, “Dynamic
Locomotion in the MIT Cheetah 3 Through Convex Model-Predictive
Control,” in IEEE International Conference on Intelligent Robots and
Systems, 2018.

[12] D. Kim, J. D. Carlo, B. Katz, G. Bledt, and S. Kim, “Highly dynamic
quadruped locomotion via whole-body impulse control and model
predictive control,” 2019.

[13] C. D. Bellicoso, F. Jenelten, C. Gehring, and M. Hutter, “Dynamic
Locomotion Through Online Nonlinear Motion Optimization for
Quadrupedal Robots,” IEEE Robotics and Automation Letters, vol. 3,
no. 3, pp. 2261–2268, jul 2018.

[14] P.-A. Léziart, T. Flayols, F. Grimminger, N. Mansard, and P. Souères,
“Implementation of a Reactive Walking Controller for the New
Open-Hardware Quadruped Solo-12,” Dec. 2020, working paper or
preprint. [Online]. Available: https://hal.laas.fr/hal-03052451

[15] X. B. Peng, G. Berseth, and M. Van De Panne, “Terrain-adaptive loco-
motion skills using deep reinforcement learning,” in ACM Transactions
on Graphics, vol. 35, no. 4, 2016.

[16] X. B. Peng, G. Berseth, K. Yin, and M. Van De Panne, “DeepLoco:
Dynamic locomotion skills using hierarchical deep reinforcement
learning,” in ACM Transactions on Graphics, vol. 36, no. 4, 2017.

[17] X. Song, Y. Yang, K. Choromanski, K. Caluwaerts, W. Gao, C. Finn,
and J. Tan, “Rapidly adaptable legged robots via evolutionary meta-
learning,” 2020.

[18] Y. Yang, T. Zhang, E. Coumans, J. Tan, and B. Boots,
“Fast and efficient locomotion via learned gait transitions,”
CoRR, vol. abs/2104.04644, 2021. [Online]. Available: https:
//arxiv.org/abs/2104.04644

[19] J. Carius, F. Farshidian, and M. Hutter, “MPC-Net: A First Principles
Guided Policy Search,” IEEE Robotics and Automation Letters, vol. 5,
no. 2, 2020.

[20] Y. Song and D. Scaramuzza, “Learning High-Level Policies for Model
Predictive Control,” 2020.

[21] D. F. Hoyt and C. R. Taylor, “Gait and the energetics of locomotion
in horses,” Nature, vol. 292, no. 5820, pp. 239–240, jul 1981.
[Online]. Available: https://www.nature.com/articles/292239a0

[22] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones,
A. N. Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is
all you need,” in Advances in Neural Information Processing
Systems, vol. 2017-December. Neural information processing
systems foundation, jun 2017, pp. 5999–6009. [Online]. Available:
https://arxiv.org/abs/1706.03762v5

[23] R. S. Sutton and A. G. Barto, Reinforcement Learning: An
Introduction, 2nd ed. The MIT Press, 2018. [Online]. Available:
http://incompleteideas.net/book/the-book-2nd.html

[24] A. W. Winkler, C. D. Bellicoso, M. Hutter, and J. Buchli, “Gait and
trajectory optimization for legged systems through phase-based end-
effector parameterization,” IEEE Robotics and Automation Letters,
vol. 3, no. 3, pp. 1560–1567, 2018.

[25] E. Coumans and Y. Bai, “Pybullet, a python module for physics sim-
ulation for games, robotics and machine learning,” http://pybullet.org,
2016–2021.

[26] J. Carpentier, G. Saurel, G. Buondonno, J. Mirabel, F. Lamiraux,
O. Stasse, and N. Mansard, “The pinocchio c++ library – a fast and
flexible implementation of rigid body dynamics algorithms and their
analytical derivatives,” in IEEE International Symposium on System
Integrations (SII), 2019.

[27] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and
O. Klimov, “Proximal policy optimization algorithms,” CoRR,
vol. abs/1707.06347, 2017. [Online]. Available: http://arxiv.org/abs/
1707.06347

https://doi.org/10.1177/0959651811402275
http://www.unitree.cc/e/action/ShowInfo.php?classid=6&id=355
https://hal.laas.fr/hal-03052451
https://arxiv.org/abs/2104.04644
https://arxiv.org/abs/2104.04644
https://www.nature.com/articles/292239a0
https://arxiv.org/abs/1706.03762v5
http://incompleteideas.net/book/the-book-2nd.html
http://pybullet.org
http://arxiv.org/abs/1707.06347
http://arxiv.org/abs/1707.06347

	Introduction
	Preliminaries
	Nominal Controller Architecture
	Reinforcement learning formalization

	Method
	Controlling the gait timings
	MDP definition

	Experiments
	Adapted gaits and velocity tracking
	Energy efficiency
	Maintaining stability at higher speeds
	Ablation studies

	Conclusion
	References

