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Abstract—We consider the SFC embedding (SFCE) problem in
the Slice as a Service (SlaaS) model. In this model, a slice provider
leases resources from multiple cloud and network providers in
order to instantiate the Service Function Chain (SFC) requested
by a slice tenant. As the slice provider has no visibility on the
infrastructures of the resource providers, in which resources
may be purchased and released quite rapidly, it has to query
them to determine what are the possible allocations and their
costs. We show that when there are many resource providers
and many VNFs composing the SFC, the number of queries
to be made for discovering a minimum cost SFC embedding
grows quickly, leading to excessively long deployment times. In
order to reduce the latter quantity, we propose to query resource
providers strategically, rather than collecting the information on
all possible allocations at once. We provide bounds on the number
of queries to be made in this approach, and propose to exploit a
Shortest Path Discovery algorithm in order to reduce this number
of queries and thus the SFC deployment time. Our numerical
results suggest that this algorithm is fairly efficient, in particular
when initial estimates of allocation costs can be provided by the
slice provider, and that the deployment times can be significantly
shortened.

Index Terms—Service Function Chain, Virtual Network Func-
tion, Slice as a Service, Shortest Path Discovery

I. INTRODUCTION

A SFC is a series of network functions (e.g., traffic opti-
mizers, firewalls or Web proxies), which a packet must flow
through. With the emergence of software-centric networking
technologies such as NFV and SDN, these network functions,
which were traditionally implemented on hardwired middle-
boxes, can now be run in datacenters and operated as cloud
services. This allows SFCs to be deployed flexibly on request
and according to demand by dynamically composing Virtual
Network Functions (VNFs) [1], [2]. In Fig. 1, we illustrate an
example of a SFC characterized by an ingress node, an egress
node and a sequence of three VNFs. The edges connecting
VNF nodes represent virtual links.

The SFCE problem amounts to mapping the logical service
network corresponding to a SFC to existing network capabili-
ties. It includes the placement of VNFs on a shared computing
substrate usually composed of multiple clouds, as well as the
establishment of the virtual links between the VNFs in the
substrate networks. The solution should meet the resource
demands of the SFC at minimum cost, and possibly some other
technical constraints. For instance, some VNFs may have to
be deployed in private clouds for privacy or security reasons,
or are location dependent (e.g., proxies and caches should be
placed in proximity to end users).

Fig. 1: A service chain example.

Existing work on the SFCE problem assume that the sub-
strate infrastructures are known (taken as input) and seek
to optimize some infrastructure-related metrics. For instance,
Elias et al. [3] formulate the SFCE problem as a non-linear
optimization problem in which the goal is to minimize the
congestion of physical resources. Similarly, the authors in [4]
seek to determine the required number and placement of VNFs
that optimize network operational costs and utilization, without
violating service level agreements. On the other hand, the
authors in [5] designed a mathematical model that allows a
scalable exact solution scheme to solve the SFCE problem.
Other approaches fall into the category of heuristic-based
solutions. For example, the work in [6] proposes the SFC-
MAP algorithm, that selects and places VNFs to minimize
the embedding costs of SFC requests. Similarly, the work
in [7] proposes a heuristic solution that iteratively places the
VNFs in series using the nearest search procedure. Some work
relied om machine learning and in particular on reinforcement
learning to efficiently solve the SFCE problem [8].

In this work, we define a slice as a SFC with specific
requirements in terms of computing and storage resources
and network Quality of Service (QoS), and study the SFCE
problem in the context of the SlaaS model. As shown in
Figure 2, there are three main players under this model.
The first one is the slice tenant who requests a SFC to be
deployed. The slice tenant’s request is described by a slice
Template/Descriptor similar to the Network Slice Template
(NST) specified by ETSI in [9]. This request is forwarded
to a slice provider, which leases resources from resource
providers in order to establish the requested SFC at minimum
cost. Two categories of resource providers are considered:
on one hand, cloud providers offering the compute, storage
and network resources required to execute VNFs, and on the
other hand, network connectivity providers which can establish
virtual links between geographically distant clouds. The slice
provider queries the resource providers in order to discover
the different options of available resources that will fulfil the
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Fig. 2: Slice as a Service model.

tenant’s request requirements at minimum cost. When queried,
a resource providers replies with resource options comprising
pricing and resource details. Once all resource options have
been fetched by the slice provider, the latter chooses among the
different options one of those satisfying the SFC constraints
at minimum cost, deploys the SFC, and then informs the slice
tenant of the deployment.

In contrast to previous work, we assume that the slice
provider has no knowledge about the infrastructures of the
resource providers, let alone the level of their resource usage.
Also, it has to decide where to place the VNFs and how to
interconnect them so as to meet the resource requirements
of the SFC at minimum cost. The issue is that, as resources
are dynamically purchased or released in the clouds, the slice
provider does not know whether a cloud will be able to
accommodate a VNF, let alone at what cost. Similarly, it
does not know whether a connectivity provider will be able to
offer the required connectivity between two VNFs, nor at what
price. So the slice provider has to query resource providers to
determine what are the possible allocations and their costs. It
turns out, that in practice, as discussed in Section II, the time
required to collect the information on all resource options is
much larger than the time required to compute a minimum
cost solution once this information available.

To the extend of our knowledge, the present paper is the
first one to investigate how the number of queries, and hence
the deployment time of SFCs, could be reduced in the SlaaS
model. Its main contribution is to show that the deployment
time could be greatly shortened by querying resource providers
adaptively, rather than naively collecting the information on all
resource options at once. We provide bounds on the number
of queries that need to be made to the resource providers
for solving the SFCE problem and propose to exploit an
algorithm proposed for the Shortest Path Discovery problem
in order to reduce this number of queries (and thus the
deployment time) without questioning the optimal embedding.
Our numerical results suggest that this algorithm is fairly
efficient, in particular when initial estimates of allocation costs
can be provided by the slice provider.

The paper is organized as follows. Section II is devoted
to the mathematical formulation of the problem. We review
some known results on the Shortest Path Discovery problem
in Section III, where we also obtain some bounds on the

number of queries in the SFCE problem. Numerical results
are presented in Section IV and some conclusions are drawn
in Section V.

II. PROBLEM STATEMENT

In this paper, we focus on mapping a SFC on the physical
resources furnished by multiple resource providers. Let s and
t be the source and destination nodes of the service chain,
which is represented as an ordered sequence of K VNFs
(f1, f2, . . . , fK), with some functions possibly repeated. There
are M public or private Clouds and for each VNF fk, we are
given a set Dk ⊆ M = {1, . . . ,M} of Clouds where it can
be executed. We let N > M be the total number of resource
providers and define Ni,j ⊆ N = {1, . . . , N} as the set of
resource providers offering connectivity between Clouds i and
j. We assume that if two consecutive VNFs are executed in
the same Cloud i, the connectivity between them is provided
by the Cloud provider, so that Ni,i = {i}. In contrast, the
connectivity between VNFs running in different Clouds i and
j 6= i is furnished by some of the R = N − M network
providers, so that Ni,j ∩M = ∅. Similarly, Ns,i (resp. Nj,t)
is defined as the set of network providers offering connectivity
between the source node s (resp. Cloud j ∈ M) and Cloud
i ∈M (resp. the destination node t).

For the above definitions to be consistent, we shall further
assume that if VNF fk can be deployed in Cloud i and VNF
fk+1 can be deployed in Cloud j 6= i, then the connectivity
between those Clouds can be provided by at least one network
provider, that is, Ni,j 6= ∅. Similarly, we assume that i ∈ D1

(resp. j ∈ DK) implies that Ns,i 6= ∅ (resp. Nj,t 6= ∅).
Figure 3 depicts the setting considered with a simple ex-

ample in which packets sent by source node s to destination
node t have to go through VNFs f1, f2 and f3, in this
order. In this example, we have D1 = {1, 2}, D2 = {1, 2, 3}
and D3 = {2, 3}. Connectivity between the clouds can be
provided by two different network providers. There are some
asymmetries in the connectivity pattern however, since Cloud
1 can only be reached from Network A, whereas Clouds 2
and 3 are connected to both networks A and B. Similarly,
the source node s is connected to both networks, whereas the
destination node t can only be reached via network B.

We shall assume that the resource requirements of each
VNF fk in the chain, as well as the resource requirements
for the virtual links interconnecting the VNFs, are known
beforehand. However, we assume that the slice provider does
not know the infrastructures of the resource providers and
that it has to query them to determine what are the possible
allocations and their costs. We note that the resource options
proposed by the resource providers may have different tech-
nical characteristics, in addition to their price. In all cases,
we assume that the slice provider is able to compare different
resource options and to assign a unique cost to each one. We
assume that this cost is infinite when a resource providers
cannot provide the requested resources.

Once the possible allocations and their costs are known,as
observed in [10], the SFCE problem can then be cast as
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that of finding a shortest s − t path in a layered directed
multigraph G = (V, E). As illustrated in Figure 4, the set
of nodes is V =

⋃K+1
k=0 Vk, where V0 = {s}, VK+1 = {t} and

Vk = {vk,j : j ∈ Dk}∪
{
v′k,j : j ∈ Dk

}
for k = 1, . . . ,K.

The nodes vk,j and v′k,j are used to represent the allocation
of VNF fk to Cloud j ∈ Dk. The set of edges E is composed
of a directed edge e = (vk,j , v

′
k,j) for all k ∈ {1, . . . ,K}

and all j ∈ Dk, whose cost ce represents the cost of
running VNF fk in Cloud j ∈ Dk (ce = +∞ if Cloud j
cannot accommodate VNF fk). The other edges represent the
interconnection possibilities between VNFs and the associated
costs, which again shall be assumed to be +∞ when a virtual
link cannot be afforded. There is a directed edge from node
v′k,j to node vk+1,j whenever j ∈ Dk ∩ Dk+1. This edge
represents the connectivity between VNFs fk and fk+1 within
Cloud j and its cost is the cost of setting up a virtual link
with the desired characteristics in this Cloud. For each network
provider n, there is also an edge from node v′k,i to node vk+1,j

associated to this network provider whenever n ∈ Ni,j , for all
i, j ∈ M, j 6= i. Finally, for each network provider n and
each Cloud j ∈ D1, there is a directed edge from s to v1,j if
n ∈ Ns,j , and similarly there is a directed edge from v′K,j to
t for each Cloud j ∈ DK such that n ∈ Nj,t .

Note that the above model assumes linear costs. Hence, if
two or more VNFs are allocated to the same cloud, the costs
just add up, i.e., there is no economies of scale for running
several VNFs in the same cloud. Similarly, if two or more
virtual links are established between the same pair of clouds,
they cannot be ”aggregated”, and the costs add up as well in
this case. The latter assumption is particularly justified when
the virtual links have different QoS requirements.

If the costs of the edges in the graph G were known, solving
the SFCE problem described above would be as simple as
finding a shortest s−t path in G. The issue is that, as explained
above, these costs are not known by the slice provider and have
to be discovered by querying the resource providers. The total
number of queries to be made corresponds to the number of
edges in the graph G, which is

TABLE I: Number of queries as a function of network
configuration.

Parameters # of queries
K = 5 K = 10 K = 15

M = 3, R = 3 117 237 357
M = 5, R = 3 315 665 1015
M = 7, R = 5 973 2093 3213

|E| = β0 +

K∑
k=1

(nk + βk) , (1)

where nk = |Dk| is the number of possible placements for
VNF fk. The quantity βk =

∑
i∈Dk

∑
j∈Dk+1

|Ni,j | repre-
sents the total number of virtual links that can be established
for connecting the potential locations for VNF fk with the
potential locations for VNF fk+1, for k = 1, . . . ,K− 1. Sim-
ilarly, β0 =

∑
i∈D1

|Ns,i| represents the total number of edges
outgoing from node s, whereas βK =

∑
i∈DK

|Ni,t| represents
the total number of edges incoming to node t. For the simple
example of Figure 3, it already yields |A| = 27 queries to
be made to the resource providers. More generally, in the
symmetric case where all VNFs can potentially be deployed in
all Clouds and where all the R = N −M network providers
can establish virtual links between any pair of Clouds, we
have β0 = βK = RM and βk = M (1 + R (M − 1))
for k = 1, . . . ,K − 1, and the total number of queries to
be made is |E| = M {2(R+K)− 1 + (K − 1)R(M − 1)}.
Table I shows the required number of queries in this symmetric
case for some network configurations. As should be apparent
from the values in Table I, in practice the cost of solving the
SFCE problem will be significantly dominated by the cost of
collecting the edge costs of the layered graph G, which of
course has a direct impact on the deployment time of the SFC
(e.g., the time required to collect all edge costs is almost 2
minutes in the simple case K = 5, M = 3 and R = 3,
assuming each request requires 1 second). It follows that the
main lever for reducing the deployment time of service chains
in the SlaaS model is to reduce the number of queries made
to the resource providers. As discussed in Section III, this
problem perfectly falls in the scope of the so-called Shortest
Path Discovery (SPD) problem introduced in [11].

III. SHORTEST PATH DISCOVERY PROBLEM

In the SPD problem, we are given a directed graph G =
(V, E), a function c : E → R+ assigning to each edge e ∈ E
a cost ce > 0, and two distinguished vertices s, t ∈ V such
that at least one directed path from s to t exists in G. As
in the classical shortest path problem, one seeks for a path
connecting s and t with the least cost, where the cost of a
path π is defined as c(π) =

∑
e∈π ce. The issue is that the

edge costs are initially unknown. However, their values can
be discovered by querying an Oracle. The goal is therefore to
discover a shortest s − t path with the minimum number of
queries to the Oracle. In order to do so, we may have some
initial knowledge in the form of a function c(0) : E → R+
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Fig. 4: Layered multigraph for the example of Figure 3. Blue solid edges represent virtual links provided by network provider
A, whereas green dashed edges are those provided by network provider B. Thick solid edges in violet represent virtual links
established within a datacenter by a Cloud provider.

providing estimates of the edge costs such that c(0)e ≤ ce for
all edges e ∈ E . When c(0)e = 0 for all edges e ∈ E , there is
no initial knowledge and we say that the edge costs are totally
unknown.

We review some known results for the SPD problem in
Section III-A, and provide bounds on the number of queries
for the SFCE problem in Section III-B.

A. Known results on the SPD problem

Given an instance P = (G, c) of the SPD problem, and
possibly some initial cost estimates c(0), any algorithm A for
solving SPDs must propose when it terminates a path π from s
to t, and be able to certify that this path is of minimal cost. This
clearly implies that the algorithm has to discover the cost of
some of the edges by querying the Oracle. For short, we shall
say that the algorithm uncovers an edge when it queries the
Oracle for its cost. Let CA ⊆ E be the set of edges uncovered
by algorithm A when it terminates1. Following [12], we say
that CA is a certificate for path π if π ⊆ CA and if π is a
shortest s− t path in the graph G with edge costs

c′e =

{
ce if e ∈ CA,
c
(0)
e otherwise.

(2)

As proved in [11], a fundamental property of any correct
algorithm A for solving SPDs is that the set of edges it
uncovers is a certificate for the s− t path it proposes when it
terminates. An algorithm A is optimally effective on instance
P = (G, c) if for any other algorithm A′ it holds that
|CA| ≤ |CA′ |, that is, if the number of edges uncovered by
A′ is not smaller than the number of edges uncovered by A.
The algorithm A is optimally effective if the above inequality
holds on all problem instances. As observed in [11], a direct
consequence of the previous property is that an ”optimally
effective algorithm can and should stop when the shortest path
w.r.t. the best estimate of the cost has no unknown edges”.

1The set CA of uncovered edges obviously depends on the problem instance
P and on the initial estimates c(0). We do not make this dependance explicit
in order to simplify notations.

Building on this observation, the authors of [11] propose a
simple algorithm for solving SPDs, see Algorithm 1 below.
The algorithm maintains the set C of uncovered edges as
well as the best estimate of the edges costs c′e, which are
updated using (2). At each iteration, the algorithm computes
a shortest path π from s to t using the cost estimates c′e, and
then uncovers the unknown edges of this path if any, before
updating the estimates c′e and the set of uncovered edges C.
The algorithm stops when the cost of all edges of the shortest
path π are known. This algorithm is termed greedy because
it uncovers all edges of the best path w.r.t the weights c′e. As
observed in [11], it should be possible to reduce further the
number of queries by uncovering those edges one by one, in
some strategic order.

Algorithm 1 The Greedy SPD Algorithm

Require: G = (V, E), s, t ∈ G, c and c(0)

C = ∅
c′ = c(0)

repeat
π ← Shortest path from s to t with weights c′

n = |π \ C|
if n > 0 then

Query all edges e ∈ π \ C
Set c′e = ce for all edges e ∈ π \ C
C ← C ∪ π

end if
until n = 0
return π

Using the example in Figure 4 and assuming some values
of the edge costs ce and of the initial estimates c(0)e , Figure 5
illustrates how the Greedy SPD algorithm works. By exploit-
ing the initial knowledge on the edge costs, the algorithm is
able to uncover only 12 out of the 27 edges.

Up to now, it has been assumed that the initial estimates
provide lower bounds on the true costs, that is, c(0)e ≤ ce.
As shown in [11], this restriction can be removed for integer-
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Fig. 5: Illustration of the Greedy SPD algorithm for the layered multigraph of Figure 4. The values c(0)e /ce are shown next to
the edges. The thick edges are those that are uncovered by the algorithm. The table indicates the best path π found at each
iteration (only the main intermediate points are indicated, as the others are obvious), as well as its estimated cost c′(π) and
its true cost c(π).

valued costs, provided that the estimates c′e are updated as
follows

c′e =

{
c
(0)
e + ce L0 if edge e is uncovered,
c
(0)
e otherwise,

(3)

where L0 ≥ maxπ c
(0)(π) is an upper bound on the cost of

any s− t path w.r.t. the initial cost estimates c(0)e .

B. Bounds on the number of queries for the SFCE problem

In the following, we shall consider the directed graph G =
(V, E) associated to an instance of the NSE problem. This
graph has the structure described in Section II. We recall that
nk is the number of directed edges between nodes u, v ∈ Vk
for k = 1, . . . ,K, whereas βk is the number of edges between
nodes u ∈ Vk and nodes v ∈ Vk+1 for k = 0, . . . ,K. As we
have assumed that Ni,j 6= ∅ for all i ∈ Dk and all j ∈ Dk+1

and for all k = 1, . . . ,K − 1, and also that Nj,t 6= ∅ for all
j ∈ DK , we have nk ≤ βk for all k = 1, . . . ,K. Similarly, the
assumption that Ns,i 6= ∅ for all i ∈ D1 implies that β0 ≥ n1.

Exploiting the specific structure of the graph G, we first
obtain a lower bound on the number of queries to be made
when the edge costs are totally unknown.

Lemma 1. In the NSE problem with no previous knowledge,
the number of requests to be made to the resource providers
is at least 2K +mink=1,...,K(nk).

Proof. Consider an instance of the NSE problem and let G =
(V, E) be the associated directed graph. Let A be an SPD
algorithm, and let π be the path it proposes and CA be its
certificate. Note that π ⊆ CA implies that c(π) > 0. The
cardinal of CA represents the number of requests made using
algorithm A.

We first show that CA contains a cut-set in G such that the
corresponding cut places s in one set of the partition and t
in the other. The proof is by contradiction. Assume that CA
does not contain such a cut-set. This implies that there exists
at least one s − t path π′ ⊆ E \ CA. As the edges of π′

have not been uncovered, nothing is known about their costs,

and we have c(π′) =
∑
e∈π′ c

(0)
e = 0 < c(π), which is a

contradiction because π is supposed to be of minimum cost.
We thus conclude that CA contains a cut-set separating s and
t.

Now, observe that the smallest s − t cut-set in graph G
has size mink=1,...,K(nk). Indeed, we know that βk ≥ nk
for all k = 1, . . .K. We also know that β0 ≥ n1. Assuming
that each edge has capacity 1, the structure of the graph G
then implies that the maximum s− t flow is mink=1,...,K(nk),
which implies that the size of a minimum cut-set is as stated.

The result then follows from the fact that the path π, which
is of size 2K +1, is included in CA, and by observing that π
and any cut-set have at most one edge in common.

In the symmetric case, Lemma 1 implies that the number of
queries to be made is at least 2K+M . Note however that the
lower bound of Lemma 1 is optimistic, as in practice many
more queries are needed. In fact, there exists a bad instance
for which any SPD algorithm needs to uncover all edges, as
proven in Lemma 2 below.

Lemma 2. In the NSE problem with no previous knowledge,
there exists a bad instance for which the number of requests
made to the resource providers by any SPD algorithm A is
β0 +

∑K
k=1 (nk + βk).

Proof. Consider an instance of the NSE problem and let G =
(V, E) be the associated directed graph. Choose an arbitrary
s − t path in G and assume that the edge costs are fixed as
follows. For any edge e ∈ π, ce = 1, whereas for all other
edges e ∈ E \ π, ce = 1 + ε, where ε < 1

2K . It follows that
π is of cost c(π) = 2K + 1, and that it is the only shortest
s − t path in G, as all other paths have a cost greater than
or equal to 2K + 1 + ε (this lower bound being reached if
a single edge of π is replaced by a parallel edge). Given a
correct SPD algorithm A, it should return the path π for this
instance, and uncover a set of edges CA allowing to certify
that π is indeed a shortest s − t path. Assume that CA 6= E .
As π ⊂ CA, it follows that there exists at least one edge e 6∈ π
for which nothing is known. Consider an s − t path π′ such



that e ∈ π′. The estimated length c′(π′) of this path is at most
2K(1 + ε) < c(π). This implies that CA is not a certificate
for path π , which is a contradiction. Hence, CA = E for any
SPD algorithm A. The result then follows from (1).

IV. NUMERICAL RESULTS

In this section, we experimentally evaluate by how much
the deployment time of a service chain can be shortened using
the Greedy SPD algorithm. We first describe the performance
metrics to be evaluated in Section IV-A and the procedure used
for the random generation of problem instances in Section
IV-B. Numerical results are then presented in sections IV-C
and IV-D.

A. Performance metrics

We consider two different performance metrics which were
introduced in [12]. Given an instance of the problem, the
normalized number of queried edges of SPD algorithm A on
this instance is defined as

qA =
|CA|
|E|

, (4)

and the query ratio of A on this instance is

rA =
|CA|
|Cmin|

, (5)

where |Cmin| is the size of the smallest (in cardinality)
certificate for the considered problem instance.

The normalized number of queried edges qA is used to
evaluate in which proportion the deployment time of a network
slice can be reduced by querying the resource providers
strategically, as compared to a strategy in which all edge costs
would be collected at once. In contrast, the query ratio rA
measures how well algorithm A performs on a given instance,
a value close to 1 indicating that the algorithm is almost
optimal.

The evaluation of the query ratio implies to compute the
minimum certificate Cmin. This can be done by solving the
following Integer Linear Programming problem:

min
∑
e∈E

ue (6)

s.t. δ? ≤
∑
e∈π

uece + (1− ue)c(0)e , ∀π ∈ Ps,t (7)

ue ∈ {0, 1}, ∀e ∈ E (8)

where ue is the binary decision variable that indicates whether
the edge e ∈ E is uncovered or not, Ps,t is the set of all s− t
directed paths, and δ? denotes the length of a shortest path
between s and t.

B. Generation of random instances

We shall evaluate the above performance metrics for the
Greedy SPD algorithm over randomly generated problem
instances. We consider symmetrical and asymmetrical network
configurations, with different values of the parameters K, M

TABLE II: Distribution of the query ratio for 100 random
instances without initial knowledge.

Query Ratio Symmetric Configuration Asymmetric Configuration
Frequency

[1 - 1.2] 14% 76%
[1.2 - 1.4[ 76% 24%
[1.4 - 1.7[ 10% 0%

and R, and generate random instances for each configuration.
To generate these instances, we assume that the computational
resources required in a Cloud to run a VNF are significantly
less expensive than those required to interconnect VNFs,
and similarly, that a virtual link within a Cloud is usually
much cheaper than a virtual link between two geographically
distant Clouds. More precisely, we assume that the cost of
running a VNF is drawn from a uniform distribution in the
set {1, . . . , 20}, whereas the cost of an intra-Cloud (resp.
inter-Cloud) virtual link is uniformly distributed in the set
{5, . . . , 30} (resp. {10, . . . , 50}). We refer to the correspond-
ing edges in the associated graph as type-1, type-2 and type-3
edges, respectively.

Asymmetrical configurations are obtained as follows. For
each VNF, we choose randomly 2 (unless otherwise stated) out
of the M Clouds as potential locations. Similarly, we choose
randomly the number of network providers interconnecting
two distant Clouds.

C. Performance Metrics without Initial Knowledge

In this section, we assume that all edge costs are totally
unknown (c(0) = 0). We emphasize that, although the costs of
the different types of edges are drawn from different random
distributions, the algorithm is not aware of this and has the
same initial knowledge for all edges.

We first consider the query ratio of the Greedy SPD
algorithm in this case. As we need to solve ILP (6)-(8) for
many random instances, we restrict ourselves to relatively
small instances obtained for K = 4, M = 5 and R = 5. We
report in Table II the distribution of the query ratios obtained
over 100 random instances for symmetric and asymmetric
configurations. For symmetric instances, the Greedy SPD
algorithm is quite efficient as for 90% of the instances it
only makes 40% more queries than the minimum required.
The algorithm is even more efficient for asymmetric instances,
since 3 out of 4 instances can be solved with only 20% more
queries than the minimum required.

To evaluate the normalized number of queried edges, we
consider larger instances obtained in two scenarios. In the
first one, we set M = 5 and R = 5, whereas in the second
one we set M = 7 and R = 7. Figure 6 shows the average
value of the normalized number of queried edges as a function
of K for both scenarios and for symmetric and asymmetric
instances. Average values were computed over 500 random
problem instances, and asymmetric instances were obtained
by choosing randomly 4 out of the M clouds, and similarly 4
out of the R network providers. We observe from Figure 6 that
the Greedy SPD algorithm achieves a sensible reduction of the
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Fig. 6: Normalized number of queried edges as a function of
K in the case of no initial knowledge.

TABLE III: Distribution of the query ratio for 100 random
instances with initial knowledge.

Query Ratio Symmetric Configuration Asymmetric Configuration
Frequency

[1 - 1.2] 0% 21%
[1.2 - 1.4] 18% 57%
[1.4 - 1.6[ 40% 20%
[1.6 - 1.8[ 30% 1%
[1.8 - 2.4[ 12% 1%

number of resource requests made by the slice provider. For
instance, in the symmetric case, for K = 5 VNFs, the number
of resource requests is reduced by 20% (resp. 30%) in the first
(resp. second) scenario. For asymmetric instances, the gain is
about 15% for both scenarios when K = 5. Note that these
gains on the number of resource requests made by the slice
provider directly translate into gains on the SFC deployment
times.

D. Performance Metrics with some Initial Knowledge

We now assume some initial knowledge on the edge costs
by setting the initial estimate c(0)e to the lower bound of the
interval used for randomly drawing the cost ce of the edge
(e.g., the estimate of a type-2 edge is set to 5). Note that the
information provided to the algorithm is fairly modest as the
costs of the edges are quite variable. We study the impact of
this initial knowledge on the number of queries and on the
query ratio.

The results obtained for the query ratio are shown in Table
III. The setting considered is exactly the same as in Section
IV-C. We observe a sensible degradation of the average query
ratio, both for symmetric and asymmetric instances. This
suggests that there is probably some room for improvement
in the way the Greedy SPD algorithm handles the initial
knowledge.

Nevertheless, the initial knowledge provided has a very no-
table impact on the number of queries made by the algorithm.

3 4 5 6 7 8 9 10 11 12 13 14 15
Number of VNFs (K)

0.0

0.2

0.4

0.6

0.8

1.0

q
 

Symmetric: M=5, R=5
Symmetric: M=7, R=7
Asymmetric: M=5, R=5
Asymmetric: M=7, R=7

Fig. 7: Normalized number of queried edges as a function of
K when some initial knowledge is provided.

Figure 7 shows the average value of the normalized number of
queried edges as a function of K for the scenarios described
in Section IV-C and for symmetric and asymmetric instances.
The random instances are generated exactly as described in
Section IV-C, the only difference being the initial information
provided to the Greedy SPD algorithm. We observe drastic
reductions in the number of resource requests made, and
therefore in the SFC deployment time. For instance, in the
symmetric case, for K = 5 VNFs, the number of resource
requests is reduced by around 70% (resp. 85%) in the first
(resp. second) scenario.

E. Performance Metrics with Different Edge Costs Distribu-
tions

The above numerical results suggest that a significant re-
duction of the number of resource requests made by the slice
provider can be achieved. The order of magnitude of this
reduction however clearly depends on the assumptions made
for generating the edge costs. In this section, we evaluate the
impact of the edge costs on the normalized number of queried
edges. We generate random instances with the same settings
as before, however we consider four distinct cost distribution
setups:

1) Setup-1: Same as described in Section IV-B.
2) Setup-2: Continuous cost values. Similar to Setup-1,

however the costs are drawn from a uniform distribution
in a continuous set (e.g., the cost of running a VNF is
drawn from the interval [1, . . . , 20]).

3) Setup-3: No distinction between edges types. The costs
of all the edges are drawn from a uniform distribution
in the set {1, . . . , 50}.

4) Setup-4: No intersection between the costs from dif-
ferent types of edges. More precisely, we assume that
the cost of type-1 edges is drawn from a uniform
distribution in the set {1, . . . , 20}, whereas the cost of
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Fig. 8: Normalized number of queried edges as a function of
K for a symmetric topology and no initial knowledge.

type-2 (resp. type-3) edges is uniformly distributed in
the set {21 . . . , 30} (resp. {31, . . . , 50}).

In figures 8, 9, 10 and 11, we report the normalized number
of queried edges for different network topologies (symmetric
and asymmetric) with different level of initial knowledge
(none and some initial knowledge). We observe that the cost
distribution setup has a major impact on the number of
resource requests made. In particular, when the cost values of
all edge types are drawn from the same set of values (cost
setup-3), the reduction in the number of resource requests
made is very high. For instance, in the symmetrical case
without initial knowledge, the number of requests is reduced
to below 20%. On the other hand, this number increases to
almost 100% when the edge costs of the different types of
edges are drawn from disjoint subsets(that is, setup-4 is used)
and there is no initial knowledge. This suggests that this a
quite unfavourable case for the Greedy SPD algorithm, though
we also surprisingly observe that in this case providing some
initial knowledge enables to achieve the greatest gains. We
observe less notable impact for non-integer cost values (setup-
2) compared to setup-1.

V. CONCLUSION

We have proposed a method based on a SPD algorithm for
shortening the deployment time of SFCs in the SlaaS model.
Our numerical results suggest that the deployment times could
be reduced by 20− 30% by querying adaptively the resource
providers instead of fetching all resource options at once,
and even by 70 − 80% when the slice provider is able to
provide some initial estimates of allocation costs. The gains
obtained are of course highly dependent on the assumptions
and numerical values used, but we believe that the proposed
approach can yield significant gains on deployment times in
practice.

As future work, we plan to extend our model to the case
of multiple source and destination nodes. Another interesting
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Fig. 9: Normalized number of queried edges as a function of
K for an asymmetric topology and no initial knowledge.
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Fig. 10: Normalized number of queried edges as a function of
K for a symmetric topology with some initial knowledge.

extension would be to consider the case where the slice
provider does not necessarily require a minimum cost SFC
embedding, but can be satisfied with an approximation of
guaranteed quality.
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