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Market-based Multi-robot coordination with HTN planning

Antoine Milot1,2,3, Estelle Chauveau2, Simon Lacroix1 and Charles Lesire3

Abstract— We propose a decentralized approach that simul-
taneously allocates and decomposes high level tasks among
various robots. The approach exploits HTN structures and
algorithms, that are used within an auction-based allocation
scheme, and aims at dealing with complex tasks with causal
or temporal relations. The paper formalizes the approach, and
depicts how HTN planning processes are used to estimate bids
and distribute tasks. Results on a statistical series of coverage
problems are presented and their performance is assessed
through a comparison with a state of the art algorithm.

I. INTRODUCTION

A key ingredient in multi-robot systems is the ability
to distribute the tasks to achieve within the robots. When
the problem is not trivially solved, e.g. for small sets of
robots and tasks or if robots and tasks are typed so that
a distribution is readily defined, one must solve the Multi-
Robot Task Allocation (MRTA) problem, for which the
literature has proposed a whole corpus [1]. Given a set of n
robot R = (r1, . . . , rn) and a set of s tasks Q = (q1, . . . , qs),
solving the MRTA problem consists in finding an allocation
A : Q → R, i.e. allocate each task q ∈ Q to a robot
r ∈ R. But if the mission to accomplish is expressed at
a rather high level, and not directly as a series of tasks,
it has to be decomposed into tasks, sub-tasks, down to
elementary actions. This decomposition can typically be
achieved by a planner, that optimises some criteria while
satisfying the problem constraints. The task allocation and
decomposition problems are clearly not independent, and
both decompose-then-allocate and allocate-then-decompose
methods have drawbacks and yield sub-optimal solutions [2].

We propose in this paper an approach to solve both the
planning and allocation problems in a unified manner. As a
supporting context, we consider the problem of naval mine-
hunting, in which a fleet of autonomous underwater vehicles
(AUVs) is tasked to localize, identify and neutralize mines to
secure a given area or channel. If some accomplished works
exist regarding the trajectory optimisation of one AUV [3],
[4], multi-robot technologies applied to minehunting are still
in an exploratory phase [5], and improvements in intelligent
embedded signal processing [6], [7] give meaning to this
research area.

While the initial mission planning phase amounts to a
multi-robot coverage problem, this operational context brings
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various dynamic contingencies, as the system needs to cope
with execution failures and allocation of new tasks. These
unforeseen events come directly from the mission definition,
during which mine identification and neutralization tasks will
only be triggered at execution time by a mine detection for
instance, and also from the mission environment. Besides,
underwater communications are severely constrained [8]:
this may imply the establishmnt of communication relays,
for example to transmit large data to the operators for
identification purposes, which introduces temporal and causal
constraints in the mission. Importantly, it precludes the use
of a centralized approach to ensure the proper execution of a
mission. Furthermore, the underwater environment yields un-
certainties in task execution, for instance underwater currents
are difficult to precisely predict, whereas they significantly
impact robots motions. All these elements cannot be initially
accounted for: they require repair procedures that must be
executed online, and which may call for a revision of the
initial allocations.

Our approach integrates two well known allocation and
planning paradigms: market-based allocation (MBA) [9], and
Hierarchical Task Network (HTN) planning [10] (Fig. 1).

3. Winner Determination

1. Announcement2. Bids
Estimation

4. Rewards 4. Rewards

2. Bids
Estimation

Fig. 1. Overview of the approach. The whole mission decomposed as a
HTN is auctioned. Each robot bids on the sub-tasks, a winner determination
process allocates the tasks and sends them to the robots (“rewards”).

MBA approaches rely on auctions: an auctioneer issues
tasks to be allocated, and robots reply with bids that express
the utility for them to execute the tasks. The auctioneer
then allocates tasks to robots through solving a Winner
Determination Problem (WDP). This approach is a solu-
tion of choice for underwater contexts, as it is naturally
decentralized and offers a common way to handle MRTA
problems in communication restricted environments [11],
[12]. Communications with the auctioneer are only required
during auctioning phases, and the system is designed such
that any robot can become an auctioneer. This feature is a



very flexible way to repair and update plans: for example
a robot can become an auctioneer to resell tasks that it can
no longer achieve, or to handle new tasks to achieve (e.g. a
detected mine to be identified).

HTN planning is a major research field in planning, whose
core concept is to reason with primitive tasks and compound
tasks. Primitive tasks are tasks that can be directly executed
by agents, and compound tasks can be broken down into
others compound or primitive tasks, and their definition
encodes expert knowledge on the problem domain [10]. In
our approach, HTN planning is used for two distinct purposes
during the MBA protocol: for robots to define their bids,
and more interestingly for the auctioneer to solve the WDP.
Indeed, posing the WDP as a planning problem allows to
integrate task dependencies, such as temporal and causal
constraints, which can be handled with an HTN approach,
thanks the expressivity of the problem representation and the
efficacy of HTN solvers [13], [14].

By integrating these two allocation and planning
paradigms, our ambition is to lay down the foundations of a
principled approach that includes task dependencies and con-
straints to solve complex multi-robot mission planning and
execution supervision problems. In this paper, we formalize
the problem and describe its cornerstone, i.e. how to solve
one auction with HTN planning. The next section reviews the
related work, and section III introduces the basic concepts
of auction-based allocation and HTN planning. Section IV
is the core of the paper: it introduces how the bidding and
winner determination processes of an auction scheme are
formalised and solved as HTN planning problems. Section
V presents and analyses a series of results.

II. RELATED WORK

Market-based approaches to solve the MRTA problem
have been studied for long [9]. Noteworthy, these approaches
are naturally decentralized and hence allow to handle MRTA
problems in communication restricted environments [11],
[12]. In classic MRTA problems, a set of simple tasks
has to be allocated. Traditional auction-based approaches
handle these cases with good performances [15], [16], [17].
These schemes usually do not consider task dependencies
and constraints. Moreover, when dealing with complex tasks
having more than one way to be accomplished, i.e. when
several solutions solve the problem, their plan quality is
sorely dependant on the order in which tasks are allocated.

Some work focused on integrating precedences or time
windows constraints. In [18], temporal constraints are dealt
with a global Simple Temporal Network (STN) and an
iterated auction scheme. However, because their approach
uses a fixed plan, it is unable to handle complex tasks.

On the other hand, to cope with more complex MRTA
problems with auction-based approaches, the auctioneer, by
reasoning on hierarchically linked tasks, can choose and sell
parts of a plan. For example in [19], which is a reference
work on merging auction schemes and hierarchically linked
tasks, items for sale are replaced by task trees: hierarchical
constraints are represented with AND and OR nodes, that

allows complex tasks to be decomposed into less complex
ones. A direct benefit is to interleave decomposition and
allocation, a key element to get better performances while
solving a complex MRTA problems. Indeed, by selling parts
of a task tree, auction schemes can deal with the expression
of dependencies between tasks, reason on plans to solve a
complex problem, and simultaneously sell several tasks at
once. Leveraging on [19], an architecture based on auctions
on task trees, while implementing the possibility for local
bidders to buy a task for other teammates, is presented
in [20]. In the same vein, [21] integrated the possibility to
resell a task if the winner finds a better decomposition.

In these works, the WDP solution is found in a greedy
manner, by running a breadth-first search algorithm on the
best offers received. This efficiently produces good solutions,
but their quality depends on the order in which nodes are
visited. Moreover, these algorithms do not fully tackle depen-
dencies and constraints between tasks. In [20], the number
of temporal constraints over a node is used to order the
allocation process but cross-schedules dependencies induced
by these temporal constraints are never checked, while [19],
[21] only suggest some perspectives relying on consensus
and opportunistic subteam formation.

We believe that a greedy approach for solving WDP lacks
sufficient flexibility to integrate orderings, causal, or tempo-
ral constraints between tasks efficiently. However, we see in
HTN planning, which is traditionally used for satisfaction
problems but is also able to handle cost optimization and
temporal constraints [10], an opportunity to handle these
drawbacks. Therefore, we propose to formally define in this
paper the basis of an approach exploiting HTN planning for
auction-based allocation solutions.

III. BACKGROUND

A. Basics of market-based allocation

Auctions allow items exchange between agents through
bids issuing. To produce these bids, each bidder estimates for
each auctioned item a cost1, that are afterwards compared by
the auctioneer which allocates tasks to agents by maximizing
a specified utility criteria. The most basic scheme is the
Single-Item (SI) auction [22]: in this scheme, only one item
is put for sale by the auctioneer. Each bidder produces a
single bid, and the winner determination is usually straight-
forward: the best bid wins. The steps of this scheme are
(Fig. 1): 1) Announcement: the auctioneer opens an auction
by broadcasting the information on the item for sale; 2) Bids
estimation: each bidder estimates the cost associated to
the item and sends its bid to the auctioneer; 3) Winner
Determination: once the auctioneer received all bids, or a
deadline is reached, it resolves the WDP to find an allocation;
4) Reward: if a winner has been found at the previous step,
the auctioneer sends him the tasks it has to execute.

Numerous variations of this scheme can be defined, de-
pending on the nature and number of the items that are
traded, the bidding policy, or the criteria optimized by the

1or a reward or a utility – we use costs throughout the paper



WDP. In our work, the allocation scheme is based on
Sequential Single-Item (SSI) auctions. The main difference
with respect to SI is that auctions are lists of items: each
bidder produces a bid for each item of the list. If after solving
the WDP some items remain not allocated, the auctioneer
starts a new round. The process goes on until all items are
allocated or a stop criterion is reached. In order to ensure
bids independence, a bidder can win at most one item at each
round. SSI allows robots to prioritize some items over others
and can speed up the overall allocation process, but has some
pitfalls [22]: the WDP complexity increases exponentially
with the number of items and bids, and it is difficult to
express bids dependencies. However, these two points can be
addressed by auctioning over task trees [19]: by bidding on
a subtree, bidders can express some kind of dependencies on
the tasks it contains, and from one perspective, these subtrees
are a constrained form of combinatorial solutions allowing
to avoid the computational bottleneck.

B. HTN planning

We recall here the basic concepts of HTN planning [23],
[24]. First, we define a first-order language L that con-
tains symbols used in HTN planning. L is a tuple
(V,C,P,TP ,TC ,L) where V is an infinite set of variable
symbols, C is a finite set of constants symbols, P is a finite
set of predicate symbols, TP is a finite set of primitive task
symbols, TC is a finite set of compound task symbols, and L
is an infinite set of labels. A predicate p ∈ P is said ground
if all its parameters are constants of C. From this language,
we can then define tasks:

Definition 1 (Tasks). Given a set of terms x1, . . . , xk issued
from L, and t ∈ (TP ∪TC) a task symbol, then t(x1, . . . , xk)
is a task, i.e. an instance of t on parameters x1, . . . , xk.

In HTN planning, primitive tasks are not decomposable,
and compound tasks can be decomposed into other tasks
through methods. Both primitive and compound tasks can
have preconditions, i.e. a first-order formula on L, but only
primitive tasks can change the world by applying effects,
denoted by literals over L predicates. The decomposition
of compound tasks is represented by partially ordered sub-
plans, named task networks. As tasks can appear several
times in a plan (e.g., a move to a same position by a
same robot), we need to label each occurence of a task
t(x1, . . . , xk) in the plan with a label l ∈ L.

Definition 2 (Task network). A task network tn over a set
of tasks X is a tuple (L,≺, α) with the following elements:

1) L ⊂ L is a set of labels
2) ≺ is a strict partial order over L
3) α : L→ X maps labels to tasks

A task network is grounded if its elements contain no
variable. A task network only composed of primitive tasks
is called a primitive task network.

Definition 3 (Decomposition Method). A decomposition
method m is a pair (tc, tn) with tc a compound task and

tn a task network. It states that tc can be refined by tn, i.e.
that one way of achieving tc is to achieve the tasks of tn.

We can now define two last concepts of HTN planning:
the planning domain and planning problem.

Definition 4 (Planning Domain). A planning domain D is a
tuple (L, TP , TC ,M) with:
• L the underlying HTN language
• TP and TC sets of primitive and compound tasks
• M a set of decomposition methods s.t. ∀m = (tc, tn) ∈
M , tc ∈ TC and tn is a task network over TP ∪ TC .

Definition 5 (Planning Problem). A planning problem P is
a tuple (D, sI , tnI) where:
• D is a planning domain;
• sI is the initial state, defined as conjunction of ground

literals of L;
• tnI is the initial task network.

Solving an HTN problem P = (D, sI , tnI) consists in
finding a solution task network tn such that tn is primitive
and executable in sI , i.e., there is a sequence of tn tasks, that
respects the ordering constraints, in which the preconditions
of a task are valid in the state resulting from applying the
previous task. HTN solving algorithms generally iteratively
build tn by exploring the possible decomposition methods
that can be applied from tnI [25], [10].

IV. AUCTIONING HTN PLANS

Our approach is built upon SSI auctions using HTN
structures as items to trade. Bidders estimate bids on HTN
tasks, using HTN planning. The auctioneer allocates subtrees
of the tasks network, ensuring that no nodes are allocated
more than once, by solving the WDP using HTN planning.

A. Auction definition

Items announced by the auctionneer represent tasks on
which each robot bids. All the robots involved in the auction
must share a common knowledge about the tasks that will
be possibly announced. In addition, this common knowledge
will be combined by the robots with their own local knowl-
edge representing their local capacities.

The common knowledge is embodied in a common HTN
domain Dcom = (Lcom, ∅, TCcom ,Mcom), with Lcom a
common language defining variables, constants and symbols
known by all robots, TCcom

the common compound tasks
(note that there is no common primitive tasks), and Mcom

the methods that decompose the common tasks.
We rely on HDDL [24] in order to practically represent the

common domain. Listing 1 shows an excerpt of the common
domain in HDDL for a coverage mission. Lcom is defined by
types, predicates, variables. . . The tasks that can be allocated
to the robots are cover tasks, which can be decomposed into
other cover sub-tasks using methods m-cover-d.

Note that from the point of view of HTN planning,
L is fully known, i.e. all elements are declared before
planning. While it is reasonable for most elements in L
(variables, predicates, . . . ), it must be revised when dealing



( : t y p e s a r e a − t a s k )
( : p r e d i c a t e s ( a r e a − d e c o m p o s i t i o n ? a ? a1 ? a2 − a r e a ) )
( : t a s k c o v e r :parameters ( ? a − a r e a ) )
( :method m−cover−d

:parameters ( ? a ? a1 ? a2 − a r e a )
: t a s k ( c o v e r ? a )
: p r e c o n d i t i o n ( a r e a − d e c o m p o s i t i o n ? a ? a1 ? a2 )
: s u b t a s k s ( and ( c o v e r ? a1 ) ( c o v e r ? a2 ) ) )

Listing 1. Excerpt of the HDDL description of a coverage mission Dcom

with constants, that represent the considered objects. If these
objects can be considered known when performing a single
auction, they can evolve during the mission (e.g., new objects
discovered, new areas to cover specified by the operator). The
language constants then cannot be fully defined in Dcom, and
some constants may be sent when announcing a new auction.
When new tasks have to be allocated, the auctioneer sends an
announcement message that contains these tasks. We propose
to structure this message through a grounded HTN tree.

Definition 6 (Grounded HTN Tree). Let P = (D, sI , tnI) a
planning problem with D = (L, TP , TC ,M) the associated
domain. Without loss of generality, we assume that tnI
contains just a single ground compound task top with label
ltop ∈ L, for which there is exactly one method in M . The
bipartite tree H = (VT , VM , ET→M , EM→T ), consisting of
labeled task vertices VT , labeled method vertices VM , and
edges ET→M and EM→T is a grounded HTN tree if:

1) vtop = (ltop, top) ∈ VT
2) Let vk = (lk, tk) ∈ VT , with lk ∈ L, tk ∈ TC , then
∀m ∈M s.t. m = (tk, tn) holds:
• vm = (lk,m) ∈ VM
• (vk, vm) ∈ ET→M

3) Let vk = (lk,mk) ∈ VM , with lk ∈ L,mk =
(tk, tnk), tk ∈ TC , and tnk = (Lk,≺k, αk) a task
network. Then ∀lj ∈ Lk holds:
• vt = (lk,j , αk(lj)) ∈ VT
• (vm, vt) ∈ EM→T

4) H is minimal, such that 1 to 3 hold.

For this grounded HTN tree H to be finite (and then be
buildable), we must ensure that the HTN problem is acyclic.2

In order to build the grounded HTN tree H that defines the
tasks to allocate and their hierarchical decomposition, the
auctionneer relies on both the common domain Dcom, and
a planning problem corresponding to the current auction.
Listing 2 shows an excerpt of the HDDL model of such
a planning problem in which one top area a-1 is further
decomposed into a set of sub-areas to cover. The HTN tree
H corresponding to this problem is shown in Fig. 2.

From this grounded HTN structure, we can define the
elements that constitute the item for sale.

Definition 7 (Item for sale). An item for sale δ is a tuple
(Hδ, Cδ, sδ, Lδ), with:

2It is possible to verify that H is finite by first building the problem Task
Decomposition Graph (TDG), which is always finite, and then checking that
the TDG is acyclic [14].

( : o b j e c t s
a−1 a−1−1 a−1−2 a−1−2−d1 a−1−2−d2 − a r e a
a−1−2−d1−1 a−1−2−d1−2 a−1−2−d2−1 a−1−2−d2−2 − a r e a )

( :h tn : t a s k s ( c o v e r a−1 ) )
( : i n i t

( a r e a − d e c o m p o s i t i o n a−1 a−1−1 a−1−2−d1 )
( a r e a − d e c o m p o s i t i o n a−1 a−1−1 a−1−2−d2 )
( a r e a − d e c o m p o s i t i o n a−1−2−d1 a−1−2−d1−1 a−1−2−d1−2 )
( a r e a − d e c o m p o s i t i o n a−1−2−d2 a−1−2−d2−1 a−1−2−d2−2 ) )

Listing 2. Excerpt of the HDDL problem describing an auction.

(l1, cv(a1))

(l1-1, cv(a1-1))(l1-2-d1, cv(a1-2-d1))

(l1, m-cover-d(a1, a1-1, a1-2-d1) (l1, m-cover-d(a1, a1-1, a1-2-d2)

(l1-2-d2, cv(a1-2-d2))

(l1-2-d1-1, cv(a1-2-d1-1))

(l2, m-cover-d(a1-2-d1, a1-2-d1-1, a1-2-d1-2)

(l1-2-d1-2, cv(a1-2-d1-2)) (l1-2-d2-1, cv(a1-2-d2-1))

(l5, m-cover-d(a1-2-d2, a1-2-d2-1, a1-2-d2-2)

(l1-2-d2-2, cv(a1-2-d2-2))

(l1-1, cv(a1-1))

(l8, cover(a1-2-d2-1))(l1-2-d1-2, cv(a1-2-d1-2))

(l1-2-d1-1, cv(a1-2-d1-1)) (l9, cover(a1-2-d2-2))

(l1-2-d2, cv(a1-2-d2))(l1-1', cv(a1-1))(l3, cover(a1-1))(l2, cover(a1-2-d1)) (l4, cover(a1-1)) (l5, cover(a1-2-d2))

(l1, cover(a1))

(l7, cover(a1-2-d1-2))

(l6, cover(a1-2-d1-1))

Fig. 2. Grounded HTN tree for the problem listed in Listing 2. Rounded
rectangles represent labeled tasks (in VT ), hexagons represent labeled
methods (in VM ).

1) Hδ is a finite grounded HTN tree representing the
decomposition constraints between tasks;

2) Cδ contains language constants for this auction;
3) sδ is a set of atomic formulas on these constants;
4) Lδ is the set of task labels in Hδ that are sellable, i.e.

on which robots can produce bids.

B. Bid estimation

To benefit from the HTN model that is embodied both
in the common domain Dcom and the HTN tree Hδ of
the items, bids are estimated using an HTN planner. This
estimation is performed in two steps: first, a bid domain
is built from the common domain completed by Dloc =
(Lloc, TPloc

, TCloc
,Mloc) a local domain defining language,

primitive tasks, compound tasks and methods proper to the
bidder; then, for each sellable task, a bid estimation problem
is defined and solved.

For example, in the coverage mission with the auction
defined by the HTN of Fig. 2, each robot bids on the cover
tasks. The local domain encapsulates the decomposition of
these tasks, with respect to the basic actions that can be
performed by the robot (e.g., the coverage pattern may differ
depending on the robot sensors). In particular, the local
domain contains as primitive tasks the basic actions that can
be performed by the bidder and that will increment the cost
of the plan.

Each bidder builds its bid domain Dbid by extending the
common domain Dcom with its own local domain Dloc:

Dbid = (Lcom ∪ Lloc, TPloc , TCcom ∪ TCloc ,Mcom ∪Mloc) (1)



with TCcom
∩ (TCloc

∪ TPloc
) 6= ∅, and ∀t ∈ TCcom

,∃m =
(t, tn) ∈ Mloc. These two last conditions ensure that the
local and common domains share elements.

In order to estimate its bid on the sellable tasks, each
bidder then builds a set of HTN planning problems corre-
sponding to these tasks.

Definition 8 (Bid Estimation Problems). Let Dbid be the bid
domain built by the bidder, and (Hδ, Cδ, sδ, Lδ) the received
item for sale. Then, for each label l ∈ Lδ , we define a bid
estimation problem Pl = (Dbid, sl, tnl), with:
• sl the initial state, containing state sδ , the associated

constants Cδ , and a bidder local initial state sloc;
• tnl the task network containing only the task inHδ with

label l.

The bidder then solves each bid estimation problem Pl.
In practice, we generate an HDDL model corresponding to
Dbid and Pl, and call an HTN solver. If the solver returns
a solution plan to Pl, then the solution plan cost c∗l is used
as a bid value for l. Thereby, the bids from each bidder are
defined as b = (Lbid, C

∗
bid), with Lbid ⊆ Lδ set of labels on

which the bidder bids and C∗bid a set of costs associated to
each label l ∈ Lbid.

C. Winner determination

Once the auctioneer has received the bids from the bidders,
it allocates tasks by solving the WDP. To do so, it builds a
HTN problem Pwdp = (Dwdp, swdp, tnwdp), where Dwdp is
the WDP domain that corresponds to the common domain
Dcom extended with:
• one primitive task that corresponds to allocating a task

to a robot. This task is modeled so that a robot can be
allocated only one task at each round, and integrates a
cost predicate corresponding to bids. Each task to sell
in Lδ can then be decomposed in this allocation task
through a method,

• in case a task is not allocated, we need a second
primitive task that corresponds to reselling the task in
the next round. Each task to sell can also be decomposed
into this reselling task,

• new symbols in the associated language Lwdp that
correpond to these new tasks, predicates and variables.

swdp is the auction initial state sδ extended with the bids
received from the bidders, and tnwdp is the task network
encoding the auction HTN Hδ .

Finding a task allocation then corresponds to solving
Pwdp, minimizing the total cost, i.e. the sum of bids on
the allocated tasks. To give a sound problem to the HTN
solver, we need to define a cost to the reselling primitive
tasks (otherwise the solver would interpret a null cost, and
reselling all tasks would then always be the best solution).

The value of the resale cost is actually a way to control
the allocation scheme: we can indeed set the resale cost so
that it allocates as much tasks as possible, or on the contrary,
decide to keep a task for the next round instead of allocating
it. We defined three domain-independent strategies to set the
resale cost:

• MaxB: A pessimistic strategy about the bids that will
be received in future rounds, and that should therefore
allocate as many tasks as possible at once. For this
strategy, the resale cost of each node is set as the
maximum value of the received bids for this node plus
one. If there is no bid on the node, the resale cost is set
as the sum of the children resale costs plus one if this is
an AND node, or the maximum of children resale costs
plus one if this is an OR node (as in [19], we assume
a bid is always made on leaf nodes).

• MinB: An optimistic strategy that may choose to not
allocate a task when a better allocation is expected
during a further round. For this strategy, the resale cost
of each node is set as the minimum value of the received
bids for this node plus one. If there is no bid on the
node, the resale cost is set as the sum of the children
resale costs plus one if this is an AND node, or the
minimum of children resale costs plus one if this is an
OR node.

• MaxBL: A mixed strategy being either optimistic or
pessimistic, depending on the received bids. The resale
cost is defined as with the MaxB strategy, without
considering bids on non-leaf nodes, i.e. systematically
using the costs of children.

D. Auctionning on several rounds

Depending on the allocation and resale decisions of the
auctioneer, auctioning on several rounds can sometimes be
necessary. To begin a new round, the auctioneer creates a
new item for sale δ′ by removing the tasks that have been
allocated. Of course, each bidder considers the tasks it has
been awarded during previous rounds to bid, by integrating
its current allocated tasks in the bid estimation task networks
tnl (Def. 8). The auctioning cycle goes on until all tasks have
been allocated.

V. EVALUATION

A. Experimental setup

In order to evaluate our approach, we consider a coverage
mission of the naval minehunting context. As we laid down
the foundations of our approach in this paper, this evaluation
is done considering an abstract initial allocation problem.
The experiments are performed in simulation using a sym-
bolic representation of the world.

In this coverage mission we consider two kinds of prim-
itive actions: area coverage and motion between two areas.
Each action has a specific cost evaluation function, depend-
ing on the area surface and the distance to travel. The
objective is to minimize the global cost that includes motion
and covering actions for all robots. A series of auction HTNs
are randomly generated for evaluation purposes: they differ
in the number of tasks to allocate in the decomposition,
and in the nature of considered ordering constraints. We
generated 3 kinds of problems:

• Unordered problems, in which tasks are not constrained,



Fig. 3. Results for unordered HTNs showing the quality (top), allocation duration (2nd row), WDP duration (3rd row) and number of necessary rounds
(bottom) for 3, 6 and 9 robots (respectively left, middle, and right columns). The three MinB, MaxB, and MaxBL approaches are compared to the centralized
reference (continuous line) and the OTWD algorithm.

• Totally-ordered problems, in which decomposition of a
task into children tasks enforces a total order on the
children,

• Partially-ordered problems, in which some constraints
are randomly generated.

To optimize the bid estimation and WDP solving, we
use the PANDA solver [14]. We evaluate our approach
considering the three MaxBL, MaxB and MinB strategies
for the resale costs. The results are compared with the
OpTradWinnerDetermine (OTWD) algorithm [19] – only for
unordered problems, as OTWD does not handle ordering. In
order to assess the optimality of the approaches, a reference
solution is provided by solving the complete allocation at
once in a centralized manner using PANDA. We generate
HTNs with a varying number of tasks going from 3 to
40 and with 3, 6 and 9 robots. For each of these values,
the results are averaged over 9 runs of different HTNs.
The decision architecture is implemented using ROS2 and
involves independent nodes working in parallel. The runs
are realized on a PC with an intel® coreTM i7-9750h CPU
@ 2.60GHz and 16 GB.

B. Results

Figure 3 presents the average of four metrics for the
unordered HTNs, as a function of the number of tasks and
robots: solution quality, allocation duration, WDP duration
per auction round, and number of auction rounds.

Regarding the solution quality, our HTN planning ap-
proach with the MinB strategy for resale costs globally out-
performs other approaches, including the OTWD algorithm:
over all the tests, we perform as well as OTWD in 92%
of the samples and outperform it in 55% of the samples.
As expected, MinB always performs better than MaxB and
MaxBL, by refining more the solution at the expense of more
rounds. By being either optimistic or pessimistic on the next
round, MaxBL has a more unpredictable performance.

Regarding the average WDP duration per round (third
row), our approaches are always longer than OTWD (which is
by its greedy nature almost instantaneous). But the required
time increases only linearly with the number of tasks, and the
differences are not significant for the total allocation duration
that includes bids estimations (second row).

The number of rounds decreases with the number of
robots. For 3 robots, the number of rounds is 2.5 on average
for OTWD, and 1.9, 1.8 and 1.7 for the HTN planning with
MinB, MaxB, and MaxBL strategies respectively. Since the
communication bandwidth is directly bound to the number of
rounds and robots, our approach is better suited than OTWD
to communication restricted environments.

Finally, Fig. 4 shows the solution quality on the HTNs with
ordering constraints. As OTWD cannot integrate such con-
straints, we only compared with the global reference. These
results demonstrate the capability of our approach to han-
dle ordering constraints while solving allocation problems



Fig. 4. Solution quality on unordered, partially-ordered and totally-ordered
HTNs for 3 robots, in comparison to the centralized reference.

with good performances, without any noticeable additional
computation time than for unordered problems.

VI. CONCLUSION

We proposed and formalized a decentralized approach
to handle the MRTA problem which relies on an auction-
based allocation scheme combined with HTN planning. The
approach reasons on hierarchically linked tasks to interleave
allocation and decomposition. The approach experimentally
demonstrated its ability to produce allocations with a better
quality than the reference state of the art algorithm. We
proposed and evaluated different resale cost strategies to
control the allocation process: they allow to either optimize
the quality of the allocations or to reduce the necessary
communications.

Up to now, the approach has only been evaluated on initial
complex task allocation problems. Nevertheless, it can intrin-
sically be used for mission execution and supervision, to cope
with execution errors and with the appearance of new tasks,
thus being able to tackle online plan reparation problems.
A significant improvement will consist in explicitely model
and handle partially-ordered problems combined with causal
constraints – preliminary work extending our framework to
that end are proposed in [26].

Finally, in order to have a finer control, future work will
also explore alternate methods to set the resale cost, using
generic HTN heuristics or mission dependent designs.
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planning - one abstract idea, many concrete realizations,” in IJCAI,
2019.
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