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ABSTRACT
FairCORELS is an open-source Python module for building fair rule
lists. It is a multi-objective variant of CORELS, a branch-and-bound
algorithm to learn certifiably optimal rule lists. FairCORELS sup-
ports six statistical fairness metrics, proposes several exploration
parameters and leverages on the fairness constraints to prune the
search space efficiently. It can easily generate sets of accuracy-
fairness trade-offs. The models learnt are interpretable by design
and a sparsity parameter can be used to control their length.

CCS CONCEPTS
• Software and its engineering → Software libraries and repos-
itories; • Computing methodologies → Rule learning; Super-
vised learning; Machine learning algorithms.
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1 INTRODUCTION
As machine learning techniques are being increasingly used in high
stake decision-making systems, fairness and interpretability of such
systems have emerged as important ethical issues to address.
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More precisely, a major concern is to ensure that a model’s
predictions are fair, even if it is trained on possibly biased data. Ex-
isting fairness-enhancing techniques can be categorized into three
main families, mitigating biases at different stages of the machine
learning pipeline: pre-processing, post-processing and algorithmic
modification techniques [6, 13]. Our approach falls into the last cat-
egory, as it consists of directly modifying the learning algorithm to
enforce fairness.

Another major concern is about facilitating the understanding
of a model. While some approaches attempt to explain black-box
models or their predictions [14], it has been shown that such expla-
nations may not be trustworthy (e.g., they could be manipulated by
the model provider) [1, 19, 20]. For this reason, building models that
are interpretable by design (such as rule lists of reasonable size) is
an interesting approach for avoiding the a posteriori explanation of
black-boxmodels [19]. In particular, rule-basedmodels exhibit inter-
esting properties for interpretability [12] and have been shown to
bemore expressive than decision trees of equivalent size [18].While
state-of-the-art tools for fair learning exist, such as fairlearn1,
such alternatives are not specifically designed for learning rule lists.
In addition, providing optimality guarantees is important, as there
can be societal implications for a lack of optimality [4], especially
when addressing fairness.

To address jointly these concerns, we propose FairCORELS [2],
an open-source Python library to build rule lists models that are
both fair and accurate. FairCORELS leverages on recent advances,
provided by CORELS, for learning optimal rule lists [3], by adapting
them to also take into account fairness constraints. Given a statis-
tical notion of fairness and a sensitive attribute that could lead to
discrimination, our algorithm searches for the rule list optimizing
the decrease of both unfairness and misclassification error.

The paper is organized as follows. In the next section, we describe
our method for learning fair rule lists. Afterwards in Section 3, we
illustrate the use of the proposed Python library for mitigating
unfairness in several well-known classification tasks. Finally, we
conclude in Section 4.

1https://fairlearn.org/
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2 ALGORITHM FOR LEARNING FAIR RULE
LISTS

In this section, we briefly review the fairness notions supported by
our library before introducing the optimization problem as well as
the FairCORELS algorithm.

Let D = (𝑋,𝑌,𝐴) denotes a dataset, in which each example
𝑒𝑖 = (𝑥𝑖 , 𝑦𝑖 , 𝑎𝑖 ) ∈ D with𝑥𝑖 ∈ {0, 1}𝑛 a set of𝑛 unprotected features,
𝑦𝑖 ∈ {0, 1} a label and 𝑎𝑖 = (𝑎𝑖,𝑝 , 𝑎𝑖,𝑢 ) ∈ {0, 1}2 with 𝑎𝑖,𝑝 + 𝑎𝑖,𝑢 ≤ 1
indicating protected and unprotected group memberships. The goal
of a supervised learning algorithm is to learn a classifier whose
predictions 𝑌 match as accurately as possible the true labels 𝑌 .

2.1 Quantifying Fairness
Several fairness notions have been proposed in the machine learn-
ing literature, which can be grouped into three types of techniques:
individual, causal and statistical fairness [21]. This work is designed
to mitigate statistical fairness, also called group fairness, which
aims at equalizing some values between distinct protected groups
of instances, defined with respect to the value of some sensitive
attributes. The core idea is that individuals should be treated simi-
larly, whatever protected group they belong to, because such groups
only differ by the value of some features that should not (for ethical,
legal or philosophical reasons) be used for decision making.

Depending on the measure being equalized across protected
groups, several metrics have been proposed. Our work implements
six metrics, namely statistical parity [9], predictive parity [8], pre-
dictive equality [8], equal opportunity [15], equalized odds [15] and
conditional use accuracy equality [7]. These metrics are summa-
rized in Table 1, along with the statistical measure to be equalized
across protected groups.

2.2 Problem Formulation
FairCORELS solves a bi-objective optimization problem minimizing
both prediction error and unfairness and it is based on a 𝜖-constraint
approach. Formally, FairCORELS [2] explores the space of rule lists
R to find the rule list minimizing the objective function 𝑓𝑜𝑏 𝑗 while
having fairness at least 𝜖 (ie exhibiting at most unfairness 1 − 𝜖).

Function misc(.) denotes themisclassification error, and unf(.)
measures unfairness according to the selected metric. In the pro-
vided implementation of FairCORELS, unf(.) can be eitherUNFSP,
UNFPP, UNFPE, UNFEO, UNFEOdds, UNFCUAE, as defined in Ta-
ble 1. In this setting, the rule list 𝑟∗ outputted by FairCORELS is
the solution of the following problem, in which 𝐾𝑟 is the length
of rule list 𝑟 and 𝜆 is a regularization parameter controlling the
accuracy/sparsity trade-off:

argmin
𝑟 ∈R

𝑓𝑜𝑏 𝑗 = misc(𝑟, 𝑋,𝑌 ) + 𝜆.𝐾𝑟

s.t. unf(𝑟, 𝑋,𝑌 ,𝐴) ≤ 1 − 𝜖

2.3 Algorithm Overview
Prior to the use of FairCORELS is the pre-computation of rules,
which are given as inputs to FairCORELS. Rules can be any combi-
nation of attributes (or even attributes themselves) that evaluate to
either 0 or 1 for all instances.

Based on the CORELS algorithm [3], FairCORELS represents the
space of rule lists R using a prefix tree, in which each node is a rule
and each path from the root is a potential solution. Starting from a
root node, the exploration frontier is contained in a priority queue
Q, which can be ordered following several strategies: depth-first
search, breadth-first search or different best-first searches. We also
implement several custom breadth-first search heuristics, among
which the BFS obj.-aware orders rule lists of equal lengths de-
pending on their objective function values. At each iteration, the
prefix 𝑟 at the top of Q is selected. For each possible extension 𝑟 ′
of it, 𝑓𝑜𝑏 𝑗 is computed. Whenever its value is improved and the
solution meets the fairness constraint, the current best solution is
updated. All extensions 𝑟 ′ that do not violate any of the bounds are
pushed into Q.

FairCORELS exploits several bounds to efficiently prune R, lever-
aging both the objective function and the fairness constraint. It
returns theoretically certifiable optimal rule lists (i.e., given a set of
training instances and rules, it provably returns the rule list with
smaller 𝑓𝑜𝑏 𝑗 among those meeting the fairness constraints). How-
ever, as the prefix tree size grows exponentially with the number of
rules, a parameter 𝑛𝑖𝑡𝑒𝑟 can be used to stop the exploration when-
ever the number of nodes evaluated in the prefix tree reaches 𝑛𝑖𝑡𝑒𝑟 .
This parameter is typically used to limit the memory footprint of
the program or to quickly obtain some solution.

3 FAIRCORELS PYTHON LIBRARY: EXAMPLE
USE

The source code and documentation of FairCORELS is available
online2, and FairCORELS can also be easily installed using Pypi3,
with pip install faircorels. A complete description of the
algorithm’s parameters is provided, along with example code and
binarized data for two well-known biased datasets. FairCORELS is
based on the Python binding of CORELS4. The core of the algorithm
is implemented in C++ and called from the Python wrapper using
Cython. Along with the classifier object, FairCORELS also contains
some tools for auditing a model’s fairness. A wrapper object for
fair ensemble learning using the Bootstrap Aggregating (Bagging)
method [23] is also provided.

In this paper we propose an illustration of the use of FairCORELS,
for the Statistical Parity metric, on four well-known biased classifi-
cation tasks:

• The Adult dataset [11] in which the objective is to predict
whether someone earns more than 50, 000$ per year. We
consider gender as the sensitive attribute.

• The COMPAS dataset [5] in which the objective is to predict
whether criminal offenders will recidivate within the next
two years. We consider race as the sensitive attribute.

• The Bank Marketing dataset [16] in which the objective is to
predict whether a customer will subscribe to a term deposit.
We use age as the sensitive attribute.

• TheDefault of Credit Card dataset [22], inwhich the objective
is to predict whether a person will default in payment. We
consider gender as the sensitive attribute.

2https://github.com/ferryjul/fairCORELS
3https://pypi.org/project/faircorels/
4https://github.com/corels/pycorels



Table 1: Summary of statistical fairness metrics supported by FairCORELS, along with the related statistical measure to be
equalized, and the associated mathematical expression.

Fairness Metric Statistical Measure Expression

Statistical parity (SP) Probability of being assigned
to the positive class UNFSP = |𝑃 (𝑌 = 1|𝐴 = 0) − 𝑃 (𝑌 = 1|𝐴 = 1) |

Predictive parity (PP) Positive predictive value (PPV) UNFPP = Δ𝑃𝑃𝑉 = |𝑃 (𝑌 = 1|𝑌 = 1, 𝐴 = 0) − 𝑃 (𝑌 = 1|𝑌 = 1, 𝐴 = 1) |
Predictive equality (PE) False positive rate (FPR) UNFPE = Δ𝐹𝑃𝑅 = |𝑃 (𝑌 = 1|𝑌 = 0, 𝐴 = 0) − 𝑃 (𝑌 = 1|𝑌 = 0, 𝐴 = 1) |

Equal opportunity (EOpp) False negative rate (FNR) UNFEOpp = Δ𝐹𝑁𝑅 = |𝑃 (𝑌 = 0|𝑌 = 1, 𝐴 = 0) − 𝑃 (𝑌 = 0|𝑌 = 1, 𝐴 = 1) |
Equalized odds (EOdds) FNR and FPR UNFEOdds = max(Δ𝐹𝑁𝑅,Δ𝐹𝑃𝑅)

Conditional Use Accuracy
Equality (CUAE)

Positive predictive value
and Negative predictive value

UNFCUAE = max(Δ𝑃𝑃𝑉 ,Δ𝑁𝑃𝑉 )
with Δ𝑁𝑃𝑉 = |𝑃 (𝑌 = 0|𝑌 = 0, 𝐴 = 0) − 𝑃 (𝑌 = 0|𝑌 = 0, 𝐴 = 1) |

The procedure is identical for the four datasets. The first step to-
wards the use of FairCORELS is the binarization of the dataset.
Then, given the set of binarized features, a rule mining procedure
searches for rules formed by single- and two-clause antecedents,
only retaining rules that capture at least 0.05% of the training in-
stances. In our experiments, the sensitive attribute is not used to
prevent disparate treatment. We illustrate the use of FairCORELS
to enforce the Statistical Parity metric, but similar results can be
obtained for any of the six supported group fairness metrics. For
all experiments, the maximum size of the prefix tree is fixed to
25.105, the BFS obj.-aware heuristic is used to order the queue,
and the regularization parameter 𝜆 = 10−3. The corresponding
model creation is shown in Code snipet 1.
# Create the classifier object

clf = FairCorelsClassifier(

n_iter=2.5*1e6, # Max. size of the prefix tree

c=10e-3, # Regularization parameter Lambda

max_card=2, # Rule mining: max. rules cardinality

min_support = 0.05, # Rule mining: min.support

policy="bfs", # Exploration heuristic

bfs_mode=2, # BFS obj. -aware

fairness=1, # 1 for Statistical Parity

epsilon=epsilon, # The fairness constraint

maj_vect=A_train_u, # Binary vector (unprotected group membership)

min_vect=A_train_p, # Binary vector (protected group membership)

useUnfairnessLB=True) # Use the advanced filtering

# Train it

clf.fit(

X_train,

y_train,

features=featuresNames,

prediction_name="high_income")

Code snipet 1: Example to train a rule list with statistical
parity constraint.

Note that rule mining can either be performed as pre-processing
or using the built-in options. We use the built-in options in Code
snipet 1, mining rules that are conjunctions of 2 attributes (or their
negations) capturing at least 5% of the training instances. For our
experiments, we performed rule mining as pre-processing to control
the number of generated rules before training a model. Note that
𝑚𝑖𝑛𝑣𝑒𝑐𝑡 and𝑚𝑎𝑗𝑣𝑒𝑐𝑡 are used to define the protected (respectively
unprotected) groups and measure unfairness while training the
model. They can correspond to a particular feature, but can also be
any binary vectors, as long as they do not intersect. Our Python
package was designed to meet scikit-learn5 naming conventions

5https://scikit-learn.org/

and can easily be integrated in any piece of code originally written
for scikit-learn models.

Our experiments were conducted on an Intel Xeon Processor E3-
1271 v3 (3.60 GHz) with 32GB of RAM. Presented values (accuracy,
fairness) are averaged using 5-folds cross-validation. The reported
model’s statistics are measured on their respective train/test split.
Recall that 𝑢𝑛𝑓 𝑎𝑖𝑟𝑛𝑒𝑠𝑠 = 1 − 𝑓 𝑎𝑖𝑟𝑛𝑒𝑠𝑠 .

Generating Single Rule Lists. Rule list 2 has been learned maxi-
mizing accuracy only (hence setting the fairness constraint 𝜖 = 0).
It has high accuracy but exhibits considerable unfairness. As we
prevent the use of the sensitive attribute in the model’s decisions,
the unfair nature of this interpretable model may not be obvious.
Indeed, some of the non-sensitive attributes (or combinations of
them) may be correlated with the sensitive one. In this case, statisti-
cal fairness measures allow for measuring disparate impact, which
happens when a model’s outcomes differ significantly depending
on individuals’ membership to some protected group, even without
explicit knowledge of such membership.
if [capitalGain>=5095.5] then [high]

else if [1881.5<=capitalLoss<=1978.5] then [high]

else if [education:hs_grad AND capitalLoss<=1534.0] then [low]

else if [occupation:whiteCollar AND hoursPerWeek>=40.5] then [high]

else [low]

Rule list 2: Example of a rule list found on the Adult
Income dataset, for the Statistical Paritymetric,maximizing
accuracy only (𝜖 = 0). Test accuracy on the associated
train/test split is 0.817, and unfairness is 0.073. For these
running parameters, test accuracy (averaged across the 5
folds) is 0.817, and unfairness is 0.066.

Rule list 3 corresponds to 𝜖 = 1.0. We want to point out that
in this case the only rule list able to achieve perfect fairness is a
constant (trivial) classifier. As the used dataset is class-unbalanced,
constantly predicting the majority class leads to an acceptable accu-
racy (better than random guess), without exhibiting unfairness at all.
if 1 then [low]

Rule list 3: Example of a rule list found on the Adult Income
dataset, for the Statistical Parity metric, with fairness
constraint 𝜖 = 1.00. Test accuracy (averaged across the 5
folds) is 0.752, and unfairness is 0.00.

Between these two extremes, we can generate many trade-offs
by applying different constraints 𝜖 . By doing so, we are able to
significantly reduce unfairness without reaching trivial accuracy.

https://scikit-learn.org/
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Figure 1: Pareto front on test set (unfairness/classification error tradeoffs) for statistical parity on four different datasets.
Bottom-left (low unfairness, low error) is preferable.

For example, Rule list 4 has very low unfairness while maintaining
good accuracy. A (possible) measure of the trade-off’s quality has
been proposed in [17]: 𝑑𝑒𝑙𝑡𝑎 = 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 −𝑢𝑛𝑓 𝑎𝑖𝑟𝑛𝑒𝑠𝑠 . Among our
generated solutions, Rule List 4 maximizes this criterion.
if [education:hs_grad AND hoursPerWeek>=40.5] then [low]

else if [35.5<=age<=61.5 AND occupation:professional] then [high]

else if [capitalGain>=7073.5] then [high]

else [low]

Rule list 4: Example of a rule list found on the Adult Income
dataset, for the Statistical Parity metric, with fairness
constraint 𝜖 = 0.984. Test accuracy on the associated
train/test split is 0.792, and unfairness is 0.0036. For these
running parameters, test accuracy (averaged across the 5
folds) is 0.793 and unfairness is 0.014.

Generating a Set of Accuracy/Fairness Trade-offs. FairCORELS
can also be applied to generate a set of accuracy/fairness tradeoffs
instead of a single solution. This can be done easily by perform-
ing successive (possibly parallel) calls to FairCORELS, varying the
fairness constraint parameter 𝜖 . Indeed, this allows domain experts
to select the most appropriate solution, depending on the accura-
cy/fairness trade-off, but also possibly on the associated models
themselves. The interpretable nature of the built models makes their
analysis easier. Figure 1 shows a set of non-dominated solutions
(in terms of error and unfairness, on their test sets) for the four

datasets, in which Rule Lists 2 (“max. accuracy"), 3 (“max. fairness")
and 4 (“best delta") are represented on the Adult Income dataset
plot. We see that the set of possible trade-offs is large enough for
the decision maker to select the appropriate one.

4 DISCUSSION
With FairCORELS, we propose an in-processing method for learn-
ing interpretable and fair models. One of the strengths of our ap-
proach is that it includes most of the standard statistical fairness
metrics. In addition, our core method is metric-agnostic and thus
integrating new fairness metrics should be straightforward.

Our formulation of the fair learning problem is particularly con-
venient for real-life fair learning problems, where particular un-
fairness values may correspond to legal requirements (e.g., the 80%
rule for Statistical Parity [10]).

As shown in [2], FairCORELS is able to achieve interesting trade-
offs between accuracy and fairness, that are competitive with state-
of-the-art interpretable and non-interpretable methods.

Additionally, FairCORELS is an exact method, that can be used
to certify the optimality of the generated models. As demonstrated
throughout this paper (and the related demonstration), FairCORELS
scales fairly well and can be used to learn accurate and fair models
using datasets of various sizes.
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