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Abstract: We propose a hybrid controller for reference tracking for the output current of a
solenoid. The solenoid can be modeled as a first-order linear plant with unknown parameters.
The proposed hybrid controller comprises 1) a feedforward action, based on an estimate of the
unknown plant parameters exploiting a hybrid formulation of the recursive least-squares method,
and 2) a feedback action, exploiting a reset control scheme based on a first-order reset element.
We prove stability properties for the closed-loop system and we show through simulations that
the current output converges to the reference for sufficiently exciting reference signals.

1. INTRODUCTION

Solenoid-based actuators are ubiquitous in industrial ap-
plications such as hydraulic and pneumatic systems. For
these actuators, manufacturing tolerances require address-
ing a large variation of unknown parameters. To control
the solenoid current, classical output control strategies
such as PID control, internal model control (IMC) and
sliding mode control (SMC) have been employed Krimp-
mann et al. (2015); Zhao et al. (2016). IMC and PID
controllers result in an equivalent controller structure
and are commonly applied in the industry. These two
strategies, similar to SMC, feature a high robustness to
parameter variations and allow for an easy tuning. How-
ever, this robustness comes at the expense of tracking
performance. This drawback can be addressed by adaptive
control, as the parameter variation due to manufacturing
tolerances and fatigue are explicitly incorporated in the
control scheme. Recently, batchwise identification based
on a least-squares approach was found to have preferable
properties for adaptive control over the classical recursive
formulation, see, e.g., Pan et al. (2019); Karafyllis et al.
(2020). One possible way to cast the dynamics of batchwise
identification, combined with feedback laws is to use a
hybrid dynamics description wherein the identified param-
eters remain constant during flowing solutions and then
jump to the next estimate whenever reasonable, based on
the data collected during flow.

Foloowing this idea, we propose here a hybrid adap-
tive reset-control scheme achieving current tracking for a
solenoid with unknown parameters. As in the works in
Panni et al. (2014), Cordioli et al. (2015) and Cocetti
et al. (2019), our controller is composed of a feedback
stabilizer and a feedforward action. The feedback term
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of our controller is a first-order reset element (FORE),
a control strategy that was first proposed in Clegg (1958)
and that has been thoroughly analyzed during the last
decade, see Nešić et al. (2011); Prieur et al. (2018); Baños
and Barreiro (2011) and references therein. The FORE
applies aggressive and diverging control actions, and resets
the controller state to zero at appropriate instants, thus
generating hybrid trajectories that are overall converging
to zero. This type of controller performs well in terms of
disturbance rejection (see, e.g., Panni et al. (2014)), and
in view of the results in Nešić et al. (2011) it guarantees
stability for any choice of the tuning parameters. Our
feedforward term is a hybrid formulation of the well-known
recursive least squares (RLS) estimation method, with the
addition of a directional forgetting law (see Parkum et al.
(1992) and Cao and Schwartz (2000)) to ensure bounded-
ness of the information matrix. Similar to Cocetti et al.
(2019), the estimate update is performed at jumps of the
hybrid solutions, using the information gathered during
the preceding flowing interval. The information is collected
through non-exponentially-stable filters connected to the
plant, which are reset to zero at the adaptation instants.
The choice of non-exponentially-stable filters, as opposed
to the stable ones in Cocetti et al. (2019) guarantees that
no part of the gathered information is forgotten before
updating the parameter estimates.

The paper is organized as follows. In Section 2, the
physical system introduced and modeled. In Section 3, the
structure of the proposed feedforward-feedback controller
is explained Section 4 contains the closed-loop stability
analysis and our main result. Simulation results are finally
reported in Section 5.

Notation: We denote
(
x1, x2

)
:=
[
xT1 , x

T
2

]T
; |v| denotes

the Euclidean norm of vector v. Following the hybrid
notation of Goebel et al. (2012), a hybrid solution φ(t, j)
is parametrized by continuous-time t and discrete-time j.
φ̇ characterizes its derivative with respect to t and φ+

characterizes its next value with respect to j.



2. PROBLEM STATEMENT

The current dynamics of a solenoid according to Faraday’s
law, corresponds to

∂Ψ

∂i

di

dt
= u−RLi−

∂Ψ

∂s
ṡ, (1)

where Ψ is the magnetic flux linkage, i is the solenoid
current, u is the voltage across the solenoid terminals, RL
is the terminal resistance, and s is the plunger position.
Assume that the current i is measured, whereas the
plunger position cannot be accessed by measurement.
Then, the resulting change in the magnetic flux linkage
∂Ψ
∂s ṡ may be considered as an unmodeled dynamic effect.
For the design of a controller, a simplified model of the
solenoid (1)

L
di(t)

dt
= u(t)−RLi(t) , (2)

is used in this paper, parametrized by the unknown
solenoid inductance L and the unknown resistance RL.

In standard control notation, the dynamics between the
voltage input u and the output y = i of system (2) can be
written as

ẏ = apy + bpu+ d, (3)

where d is a constant input bias, and ap = −RL

L , bp = 1
L

are unknown parameters.

In this paper, we propose an adaptive reset control scheme
for current reference tracking with unknown parameters
(ap, bp) of plant (3), under the following assumption,
stemming from (2).

Assumption 1. The unknown scalars ap and bp are such
that ap < 0 and bp > 0.

We also require some assumption on the reference current
t 7→ r(t) to be tracked. In particular, we assume that both
the reference r and its derivative ṙ are available to the
controller. Moreover, we assume that these signals satisfy
the following mild boundedness assumption, without nec-
essarily knowing the values of the bounds.

Assumption 2. The reference input t 7→ r(t) is a differen-
tiable signal. Both the reference r(t) and its derivative ṙ(t)
are available for the control scheme at time t. Moreover,
both r and ṙ are uniformly bounded.

In practical situations, the signal ṙ can be obtained by
linearly filtering the reference r, by means of strictly
proper filters, as explained, for example, in (Forni et al.,
2010, Remark 4).

3. CONTROL SCHEME

For tracking the reference input r, following the works
in Cordioli et al. (2015); Nešić et al. (2011); Panni et al.
(2014); Cocetti et al. (2019), we propose in this paper the
control scheme of Figure 1 comprising a feedforward action
and a feedback stabilizer. More specifically, our control
architecture resembles the one of Cordioli et al. (2015), but
the adaptation proposed here follows a radically different
paradigm. We describe below the feedback and feedfoward
blocks represented in Figure 1, the two key components of
our control scheme.

Feed-

FORE Plant
u

uffṙ

xc

d

yr +

+

+

+

+e

−

forward

ξ
Filters

α

Fig. 1. The closed-loop system block diagram.

3.1 Reset feedback

The feedback part of our controller is performed by a first-
order reset element (FORE), whose dynamics is given by{

ẋc = acxc + bce,

τ̇r = 1,
(e, xc, τr) ∈ Fr, (4a){

x+
c = 0,

τ+
r = 0,

(e, xc, τr) ∈ Jr (4b)

with the feedback state xc ∈ R and the additional state τr
having the role of a timer, with “r” standing for “reset”.
The jump and flow sets are defined as

Fr :=
{

(e, xc, τr) : εe2 + 2exc ≥ 0 or τr ≤ ρmin

}
,

Jr :=
{

(e, xc, τr) : εe2 + 2exc ≤ 0 and τr ≥ ρmin

}
,

(4c)

with ε and ρmin being small positive constants, as in Nešić
et al. (2011). Their choice has little effect on the closed-
loop solutions as long as they are selected sufficiently small
(by “hierarchically” first fixing ε small and then choosing
ρmin small enough – see Nešić et al. (2011) for details).
The controller-plant interconnection corresponds to

u := xc + uff , e := r − y. (5)

Using the interconnection equations (5), we can explicitly
write the continuous evolution of the tracking error

ė = ṙ − ẏ
= ṙ − apy − bpu− d
= ṙ − ap(r − e)− bpuff − bpxc − d
= ape− bpxc − (bpuff − ṙ + apr + d)

= ape− bpxc − d,

(6)

where d = bpuff − ṙ + apr + d is a disturbance term that
should be canceled by the feeforward action uff. Since
neither the reference nor the plant output perform jumps,
we always have e+ = e. Thus, we can write the complete
hybrid dynamics of the feedback subsystem as{

ẋfb = AFxfb +Bd,

τ̇r = 1,
xTfbMxfb ≥ 0 or τr ≤ ρmin,{

x+
fb = AJxfb,

τ+
r = 0,

xTfbMxfb ≤ 0 and τr ≥ ρmin

(7a)

where xfb = (−e, xc) and[
AF B
AJ M

]
=

 ap bp 1
−bc ac 0

1 0 ε −1
0 0 −1 0

 . (7b)

The following proposition, emerging from Nešić et al.
(2011), characterizes the degrees of freedom available in



the choice of the controller parameters ac, bc, ensuring
global exponential stability of the feedback interconnection
(7). A useful feature stemming from the proposition is
that even though the plant parameters are unknown, a
stabilizing feedback is obtained for any positive selection
of ac and bc in (4), which provides useful degrees of freedom
for the tuning of (ac, bc).

Proposition 1. Under Assumption 1, for any positive se-
lections of the controller gains (ac, bc) ∈ R>0 × R>0,
the point (e, xc) = (0, 0) is globally exponentially stable
(conditionally to hierarchically small ε and ρmin) for the
reset feedback (4), and it is finite gain exponentially input-
to-state stable from the disturbance d to the state xfb.

Proof. The closed-loop system (7) coincides with the one
in (Nešić et al., 2011, Equations (14)-(15)). Since ap < 0,
and the closed-loop gain bpbc is positive, we have, with
ac > 0, that

2
√
bpbc + ac − ap > 0.

Consequently, item 4 of (Nešić et al., 2011, Theorem
3) is satisfied and the system is proven to be globally
exponentially stable. Additionally, applying (Nešić et al.,
2011, Theorem 7), global exponential stability also implies
finite gain exponential input-to-state stability from d to
xfb, as to be proven. �

3.2 Hybrid feedforward adaptation

As shown in Figure 1 and in equation (5), we want
to design a feedforward term uff. The ideal feedforward
selection u∗ff corresponds to perfect cancelation of the
disturbance term d in (6), namely

u∗ff =
1

bp
(ṙ − apr − d) = χT (r, ṙ)θ∗ := [1 r ṙ]

1

bp

[
−d
−ap

1

]
.

(8)

Here, χ is a known function of the reference r and its
derivative ṙ, and θ∗ comprises the unknown parameters

θ∗ := [θ∗1 θ∗2 θ∗3 ]
T

=
1

bp

[
−d −ap 1

]T
. (9)

In view of the linear dependence of u∗ff on θ∗, we introduce
a controller state θ representing an estimate of θ∗, to be
adapted online via a discrete update law. The feedforward
term of the controller is then selected as

uff := χT (r, ṙ)θ (10)

ensuring that uff → u∗ff whenever θ → θ∗.

Following the previous adaptive reset control laws in works
like Cocetti et al. (2019), Cordioli et al. (2015) and Panni
et al. (2014), we freeze the estimate θ during flows and we
update it at jumps. However, since the reference is time-
varying, we need to perform these updates according to
some quantity that depends on the evolution of the system
between two consecutive jumps. To this end, similar to
Cocetti et al. (2019), we augment the scheme with non-
stable filters (two integrators and a memory element),
introducing a new state ξ =

(
ξy, ξu, ξs

)
∈ R3. The hybrid

dynamics of the resulting controller is therefore given by
θ̇ = 0,

ξ̇ =
(
y, u, 0

)
,

τ̇a = 1, Ṙ = 0,

τa ∈ [0, ρmax], (11a)


θ+ = gθ(θ,R, ξ, τa, y)

ξ+ =
(
0, 0, y

)
,

τ+
a = 0,

R+ = gR(R, ξ, τa, y),

τa ∈ [ρmin, ρmax], (11b)

where τa is an additional timer, with “a” standing for
“adaptation”, and R ∈ R3×3 is a uniformly upper and
lower bounded symmetric matrix, typically called infor-
mation matrix, which is kept constant during flows and is
updated at jumps, just like the parameter vector estimate
θ. While scheme (11) shares similarities with the solution
proposed in Cocetti et al. (2019), an interesting new fea-
ture emerges from the fact that the filters used in Cocetti
et al. (2019) are exponentially stable, and cannot be reset
to zero at jumps without invalidating that stability proof.
The approach that we follow here is more desirable because
no forgetting effect is introduced until the update of θ is
performed, and once used in the update, the information
in the filters is completely reset to zero.

The update of θ and R depends on the information about
the system evolution between the jumps, which is collected
in the vector

ϕ := [τa ξy y − ξs]T . (12)

Taking inspiration from the recursive least-squares (RLS)
adaptation method with directional forgetting (DF), well
summarized in Cao and Schwartz (2000), we use ϕ to
define the update functions gθ and gR in (11b) as follows

gθ(θ,R, ξ, τa, y) := θ − P+ ϕ

ϕTϕ

(
ϕT θ − ξu

)
, (13a)

gR(R, ξ, τa, y) := R− η∆R+ Φ (13b)

:= R− ηRϕϕ
TR

ϕTRϕ
+
ϕϕT

ϕTϕ
.

Here we denote by P := R−1 the inverse of matrix
R, usually known as the covariance matrix. Due to the
properties of R, also P is positive definite and uniformly

lower and upper bounded. We also denote by Φ := ϕϕT

ϕTϕ

the projection matrix induced by the available direction
ϕ and we introduce a forgetting factor η ∈ (0, 1), with

∆R := RϕϕTR
ϕTRϕ

being the part of the information matrix

to be (partially, as per the tunable scalar η) forgotten.

Remark 1. According to Cao and Schwartz (2000), the
matrix ∆R in (13b) is the only one satisfying

rank(∆R) = 1, ∆Rϕ = Rϕ. (14)

In view of this fact, the rationale behind the update law
(13b) is to introduce some forgetting of the old data only
in the direction where the new data provides information.
This both prevents the covariance matrix P = R−1 from
losing rank and avoids the so called estimator windup,
which happens in the simpler exponential forgetting al-
gorithm when the signal ϕ is not sufficiently exciting in
some directions. See Parkum et al. (1992) for a detailed
explanation on the topic, noting that in that work the
notation “forgetting factor” refers to the quantity 1 − η,
therein denoted µ. ◦
Remark 2. Note that the adaptation laws in (13) are well
defined; indeed ϕ is never 0, since its first element is
the timer state τa, which satisfies τa ≥ ρmin due to the
constraint in (11b). Also note that, as proven in Parkum
et al. (1992), R (and therefore P ) is positive definite, while
∆R is positive semi-definite. ◦



Following a typical approach in adaptive control theory,
we assume the information matrix R to be both lower-
and upper-bounded. In particular, given a lower bound
αm ∈ (0, 1) for matrix R(0, 0), extensive simulations (see
e.g. Figure 5) suggest that the following conjecture is true.
Note that in equation (15), below, solution R has a domain
domR comprising two times (continuous and discrete), as
customary with hybrid solutions.

Conjecture 1. Given αm ∈ (0, 1), consider the compact set

XR :=

{
R ∈ R3×3 : αmI ≤ R ≤

I

η

}
.

In view of the update law (13b), the information matrix
R satisfies

R(0, 0) ∈ XR =⇒ R(t, j) ∈ XR (15)

for all (t, j) ∈ domR.

Conjecture 1, whose proof is subject of future work, is in
line with the rank loss and estimator windup observations
discussed in Remark 1.

4. STABILITY ANALYSIS

Our main result discussed below establishes stability of the
error dynamics, exploiting a few technical lemmas.

4.1 A few preliminary lemmas

Based on the nominal value of the parameter vector θ∗ in
(9), define the parameter estimation error

θ̃ := θ − θ∗. (16)

In order to derive the dynamics of θ̃, consider the following
scalar error variable

ξ̃a(t, j) :=
1

bp

[(
y(tj , j)− ξs(tj , j)

)
− ap

(
ξy −

∫ t

tj

y(s, j)ds

)
− bp

(
ξu −

∫ t

tj

u(s, j)ds

)
− d
(
τa − (t− tj)

)]
, (17)

whose rationale follows from the fact that its continuous

dynamics satisfies
˙̃
ξa = 0, and its discrete dynamics is

ξ̃+
a = ξ̃a when the feedback controller is reset and ξ̃+

a = 0
at the adaptation instants. The following holds.

Lemma 1. Given ϕ as in (12), θ̃ in (16) and ξ̃a in (17),
along any flowing solution of (11)-(13) it holds that

ϕT θ − ξu = ϕT θ̃ + ξ̃a. (18)

Proof. Integrating the plant dynamics (3) starting from
the jump (adaptation) time (tj , j), we obtain∫ t

tj

ẏ(s, j) ds = y(t, j)− y(tj , j)

= ap

∫ t

tj

y(s, j) ds+ bp

∫ t

tj

u(s, j) ds+

∫ t

tj

d ds.

(19)

Substituting (19) in (17), and rearranging, we get for all
t ∈ [tj ; tj+1] (the dependence on (t, j) is dropped)

bpξu = (y − ξs)− apξy − dτa − bpξ̃a.
Recalling (9), (12) and (16), this can be rewritten as

ξu =
1

bp

[
−d −ap 1

] [ τa
ξy
y−ξs

]
− ξ̃a

=
(
θ∗
)T
ϕ− ξ̃a = ϕT θ∗ − ξ̃a,

and therefore we obtain

ϕT θ̃ + ξ̃a = ϕT θ − ϕT θ∗ + ξ̃a = ϕT θ − ξu,
as to be proven. �

From Lemma 1 we may obtain a convenient dynamics for
the parameter estimation error θ̃. Conversely to what we
did for the tracking error e, in (6) and (7), we consider only

the jump dynamics of θ̃, since the estimate θ is constant

along flows, namely
˙̃
θ = 0. Using (11b) and (13a), we get

θ̃+ = θ+ − θ∗ = θ − θ∗ − P+ ϕ

ϕTϕ

(
ϕT θ̃ + ξ̃a

)
:=

(
I − P+ϕϕ

T

ϕTϕ

)
θ̃ − P+ ϕ

ϕTϕ
ξ̃a.

(20)

Notice that the filter states do not appear explicitly in
(20), but only as arguments of ϕ. Thus, we can directly
consider ϕ as a state when writing the closed-loop error
dynamics. In particular, introducing the transformed input

χi(t, j) :=
∫ t
tj
χ(s, j)ds, which is uniformly bounded due to

the boundedness assumed in Assumption 2, we introduce
the following “incremental” version of ϕ:

ϕ̃ := ϕ− χi := ϕ−
∫ t

tj

χ(s, j)ds, (21)

which does not change across resets of the FORE and is
reset to 0 across adaptations of the feedforward controller.
The flow dynamics of ϕ̃ is characterized next.

Lemma 2. Function ϕ̃ in (21) satisfies

˙̃ϕ = Cxfb + Fbpχ
T θ̃ (22)

:=

[
0 0
1 0
ap bp

]
xfb +

[
0
0
1

]
bpχ

T θ̃.

Proof. Using the definitions of ϕ and χ in (12) and (8),
and recalling equation (5), we obtain

ϕ̃ =

 τa∫ t
tj
r(s, j)− e(s, j)ds

r − e− r(tj , j) + es

−


∫ t
tj

1ds∫ t
tj
r(s, j)ds∫ t

tj
ṙ(s, j)ds


=

 τa − (t− tj)
−
∫ t
tj
e(s, j)ds

−[e(t, j)− e(tj , j)]

 .
Differentiating the expression obtained above and using
the feedback error dynamics in (7) we obtain (22). �

4.2 Error dynamics and main stability result

Using the results of the previous section and (7), we
may now describe the dynamics of the error coordinates
associated with the complete system. The state is given by

x :=
(
xfb, θ̃, ϕ̃, ξ̃a, R, τr, τa

)
,

which evolves in the state space

X := R9 ×XR × [0, ρmax]2. (23)

The ensuing error dynamics is obtained by combining the
relations in (7), (11)-(13), (18), (22) and corresponds to




ẋfb = AFxfb +Bbpχ

T θ̃
˙̃
θ = 0
˙̃ϕ = Cxfb + Fbpχ

T θ̃
˙̃
ξa = 0, Ṙ = 0, τ̇r = 1, τ̇a = 1

x ∈ C, (24a)



x+
fb = xfb

θ̃+ =
(
I − P+Φ(ϕ̃+ χi)

)
θ̃ − P+ (ϕ̃+ χi)

(ϕ̃+ χi)T (ϕ̃+ χi)
ξ̃a

ϕ̃+ = 0, ξ̃+
a = 0

R+ = R− η∆R(ϕ̃+ χi) + Φ(ϕ̃+ χi)

τ+
r = τr, τ+

a = 0

x ∈ Da, (24b)



x+
fb = AJxfb

θ̃+ = θ̃

ϕ̃+ = ϕ̃, ξ̃+
a = ξ̃a

R+ = R

τ+
r = 0, τ+

a = τa

x ∈ Dr, (24c)

where combining the original definitions of Φ and ∆R with
the definition in (21), we denoted

Φ(ϕ̃+ χi) =
(ϕ̃+ χi)(ϕ̃+ χi)

T

(ϕ̃+ χi)T (ϕ̃+ χi)
=
ϕϕT

ϕTϕ
,

and similarly for ∆R. Moreover, we introduced the jump
and flow sets as

C := {x ∈ X : xTfbMxfb ≥ 0 or τr ≤ ρmin}, (25a)

Da := {x ∈ X : τa ≥ ρmin}, (25b)

Dr := {x ∈ X : xTfbMxfb ≤ 0 and τr ≥ ρmin}. (25c)

The complete hybrid error dynamics (24) is written in a
convenient form because it corresponds to an autonomous
dynamics evolving under the action of the external inputs
χ and χi, which are uniformly bounded by assumption.
Our main result is given below. Its proof, omitted due to
space constraints, exploits the techniques in Cocetti et al.
(2019); Cao and Schwartz (2000); Parkum et al. (1992).

Theorem 1. The attractor

A :=
{
x ∈ X :

(
xfb, θ̃, ϕ̃, ξ̃a

)
= 0
}

(26)

is uniformly globally stable (UGS) for the error dynamics

(24)-(25). Moreover, if θ̃ → 0 then xfb → 0.

θ̃, R, τa xfb, τr

χi χ χ, χi

ξ̃a ϕ̃
θ̃ xfb

Fig. 2. The pseudo-cascaded interconnection of the error
dynamics (24).

The error dynamics (24) enjoys an interesting pseudo-
cascade structure, represented in Fig. 2. In particular, the
dynamics comprises a first (upper) subsystem with the

states θ̃, R and τa, associated with the adaptation. Even
though this subsystem is perturbed by the variable ϕ̃ (see
Fig. 2), we can show that this perturbation provides zero
gain in the stability bound. The second subsystem involves
the feedback states xfb, τr and is perturbed by θ̃. Finally,

the third subsystem, with state ϕ̃, is perturbed by the two
previous ones. The subsystems are also perturbed by the
external inputs χ, χi, which are bounded by assumption.

Remark 3. Theorem 1 ensures that the estimation error
and the tracking error do not diverge, for any choice of the
controller gains and of the external signals χ and χi. The
convergence of the errors to the origin could be ensured by
adding some persistence of excitation requirement to the
reference input, similar to the one introduced in Parkum
et al. (1992). This requirement could also suggest a way
to optimally choose the adaptation instants. ◦

5. SIMULATIONS

We consider a solenoid in the form (3) with parameters
ap = 3 and bp = 1 in closed loop with the proposed
adaptive reset control strategy of Fig. 1, corresponding
to equations (4), (8), (11)-(13). To represent a reasonable
experimental scenario, the solenoid input voltage u is
augmented with band limited white noise with a standard
deviation of 1 V.

From Proposition 1, any positive selection of the feedback
control parameters ac and bc induces closed-loop stability.
The unstable pole ac of the controller can be associated
with a controller time constant, whereas bc determines the
error-dependent control action, comparable to an integral
controller gain. In contrast to tuning stable control sys-
tems, the time constant of the unstable controller can be
tuned faster, to fully leverage the benefits of the resetting
action in the hybrid control scheme. After the tuning
procedure, the reset feedback controller was used with the
parameters ac = 6.3 and bc = 28. For the tuning of the
feedforward adaptation, the forgetting factor η ∈ (0, 1) is
selected as η = 0.5 to induce a suitable trade-off between
parameter convergence and robustness to noise. Moreover,
we select αm = 10−3 so that we may pick a small initial
value of R(0, 0), to induce a fast initial transient on the
adaptation. The reference r is a gear shifting cycle of an
automatic transmission solenoid valve (see, e.g., Cordioli
et al. (2015)). This trajectory includes an impulsive rise
of the reference current and a second plateau. In contrast
to these rapid changes of the reference current, the signal
features periods of constant current (low excitation).

The simulated plant output current is depicted in Fig. 3
(blue curve). It is clearly visible that the system output
converges quickly to the reference trajectory (red curve).
However, at t = 2 s an external disturbance signal of
d̄ = 2 V is applied to the input. The control input is
quickly adjusted and the parameters are rapidly updated.
The time evolution of the identified parameters is reported
in Fig. 4, which shows their piecewise constant nature.
From Fig. 4 it is clear that the adaptation every 0.25 s
achieves rapid convergence to zero of the estimation error
θ̃ and excellent robustness to the white noise affecting
input u. To perform a worst-case test on the adaptation
we select initial values of the estimate θ very far from
the actual parameters θ∗. At the same time, we initialize
R(0, 0) = αmI = 10−3I, thus leading to a large adaptation
gain in the initial transient. As a result, Fig. 4 shows that
after the second adaptation step, the parameter estimation
errors are negligible.
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Fig. 3. Top: plant output (blue) and current reference
(red). Bottom: plant input (blue), and feedforward
input (red).
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Fig. 5. Minimum and maximum eigenvalues of R.

After the external disturbance occurs at t = 2 s, the pa-
rameters are quickly adjusted without too much overshoot.
This desirable behavior can be associated to the stability
property proven in Theorem 1. The fact that θ1 jumps to
a nonzero value is also clearly visible in the eigenvalues of
R, see Fig. 5 where the smallest eigenvalue starts growing
after t = 2 s. Due to the initial strong excitation in one
of the directions of the parameter space, one of the eigen-
values of R increases within the first second. As visible in
the logarithmic scale, the other eigenvalue remains above
the lower limit αm, thus confirming Conjecture 1. This
effect, leading to a slower adaptation of the corresponding
parameter direction, mitigates possible drift caused by the
noisy signals.

6. CONCLUSIONS

A hybrid reset-based control scheme has been proposed for
current tracking in a solenoid with unknown parameters.
After introducing the feedback/feedforward controller ar-
chitecture, we derived an autonomous dynamics for the

error system, perturbed by uniformly bounded external
inputs. We proved closed-loop stability for any choice of
the feedback controller gains and for any reference signal
satisfying some mild boundedness assumptions. We also
proved convergence when the parameter estimates con-
verge to their nominal values. Simulations confirm that
this happens when the reference signal is sufficiently rich
to guarantee persistence of excitation. Future work will
address conditions on the reference signal to guarantee
convergence to zero of the tracking error, together with
optimal choices of the adaptation instants.
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