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Abstract: A unified set of input-dependent coordinates is proposed for the description of
parallel and series resonant converters. The description naturally leads to a hybrid feedback
control strategy for self-oscillating behavior. We show through a hybrid representation that
the ensuing dynamics admits a unique almost globally attractive hybrid limit cycle. A tuning
parameter, the switching angle, is then numerically shown to lead to monotonic variation of the
peak output current/voltage and of the self-induced switching frequency. Numerical simulations
with high-accuracy software illustrate the desirable behavior of the self-oscillating scheme, and
it robustness to unmodeled phenomena.
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1. INTRODUCTION

Resonant power conversion is of interest in different indus-
trial applications, such as inductive heating and battery
charging Lućıa et al. (2010); Park and Choi (2014), thanks
to its numerous advantages, including soft-switching and
a high power density.

The typical resonant converters control approaches, which
include frequency and amplitude modulation, exhibit non-
linear control-to-output characteristics, which complicate
the control design. As an alternative, state-plane control
approaches, where the switching decision is based on the
current and voltage measurements in the converter, can
streamline the design of a controller. The advantageous
features of state-plane approaches have been well illus-
trated in the initial works Molla-Ahmadian et al. (2012,
2015), and then further developed in Bonache-Samaniego
et al. (2016); Afshang et al. (2016); El Aroudi et al. (2019).
Nonetheless, state-plane approaches also pose problems:
typical assumptions include needing a resonant tank of
sufficiently high quality factor Q, so that the controller
can sustain the currents and voltages oscillation Bonache-
Samaniego et al. (2016); El Aroudi et al. (2019).

In recent years, switching control of power electronics has
been successfully cast as a design problem for so-called hy-
brid dynamical systems, wherein the dynamical state both
involves physical quantities (voltages, currents) taking val-
ues in the reals and logical quantities (position of switches)
taking values in the integers. Hybrid dynamics well capture
the interplay between the continuous-time current/voltage
evolution (wherein the logical states remain constant),
and the discrete-time instantaneous changes of the logi-
cal states (with the physical states remaining unchanged
across jumps). In particular, the powerful Lyapunov tools
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developed in Goebel et al. (2012) recently allowed to ad-
dress several interesting power electronics challenges, such
as the hybrid control of inverters in Chai and Sanfelice
(2014); Torquati et al. (2017) and the hybrid control
of DC-DC converters in Theunisse et al. (2015); Albea-
Sanchez et al. (2019); Sferlazza et al. (2019), in addition
to quadratic boost converters in Sferlazza et al. (2020).

In this paper, a novel unifying input-dependent coordi-
nate transformation is proposed to analyze parallel and
series resonant converters. The advantage is that the trans-
formed dynamics, for both architectures, is described by
the same hybrid equations, thus unifying the analysis.
These hybrid equations naturally suggest a specific state-
plane feedback control law, to ensure a self-oscillating
closed-loop steady state. We prove here, for certain pa-
rameters selections, that the results in Bisoffi et al. (2016)
prove almost global attractivity of a unique nontrivial
limit cycle, associated to the desired resonant output. The
specific oscillation amplitude and frequency can be ad-
justed using a single parameter that describes the switch-
ing surface in the newly proposed input-dependent set of
coordinates. In the paper we also investigate the output
voltage or current and frequency, as a function the control
parameter, numerically showing that it has a monotonic
behavior. Finally, we briefly address possible issues emerg-
ing with analog or digital implementations.

The structure of the paper follows. The proposed set of
coordinates is given in Section 2 and the related hybrid
system is introduced in Section 3. Sections 4 and 5 dis-
cusses the existence of a unique hybrid limit cycle whose
amplitude and frequency can be adjusted using a tuning
parameter. A possible digital implementation is discussed
in Section 6. Final considerations and future directions are
reported in Section 7.

Notation. R and Z denote, respectively, the sets of real
and integer numbers. R>0 (R≥0) and Z>0 (Z≥0) denote,



respectively the positive (non-negative) real and integer
numbers. Rn denotes the Euclidean space of dimension
n ∈ Z>0. Given two vectors u ∈ Rn and w ∈ Rm, u>

denotes the transpose of u, and (u,w) :=
[
u> w>

]>
. Given

a (continuous, discrete, or hybrid) signal x, ẋ denotes its
derivative with respect to continuous time t, while x+

denotes its next value with respect to discrete time j.
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Fig. 1. Equivalent circuits of the parallel (PRC, left) and
series (SRC, right) resonant converters.

2. UNIFYING COORDINATE CHANGE

Consider the two circuits of Fig. 1 and denote by vC the
voltage across the capacitor and by iL the current flowing
in the inductor. Assume that one of the two circuits be the
resonant tank driven by a H-bridge capable of applying a
voltage equal to either Vg or −Vg to the supply voltage vs
applied to the left terminal. In particular, we consider a
binary variable σ ∈ {−1, 1} describing the switch position,
so that vs = Vg when σ = 1 and vs = −Vg when σ = −1
(in summary vs = σVg).

The linear equations governing the parallel configuration
at the left of Fig. 1 are the following ones:

L
diL
dt

= σVg − vC ; C
dvC
dt

= iL −
vC
R
. (1)

Similarly, the linear equations governing the series config-
uration at the right of Fig. 1 correspond to

L
diL
dt

= σVg − vC −RiL; C
dvC
dt

= iL. (2)

Let us now introduce the next input-dependent quantities
for the parallel case of (1):

β :=
1

RC
, z1 :=

vC
Vg
− σ; z2 :=

1

Vg

√
L

C

(
iL −

vC
R

)
, (3)

where β > 0 is the inverse of the time constant of the
exponential decay associated with the linear circuit, and
we emphasize that the last term in brackets,

(
iL − vC

R

)
, is

the current flowing in the capacitor, iC . As a consequence,
one can well think about these coordinates as z1 being a
transformed voltage and z2 being a transformed current.

Let us also introduce the next input-dependent alternative
coordinates for the series configuration in (2):

β :=
R

L
, z1 :=

vC
Vg
− σ, z2 :=

1

Vg

√
L

C
iL, (4)

where β > 0 is once again the inverse of the time
constant of the exponential decay associated with the
linear circuit. Also here z1 coincides with the previous case
and represents a voltage, while z2 is a current.

Keeping in mind that any variation of σ ∈ {−1, 1} must
be instantaneous, so that σ̇ = 0, we may compute the
differential equations governing the evolution of variables
z := (z1, z2) in (3) (using dynamics (1)), and also those of
the variables z := (z1, z2) in (4) (using dynamics (2)).

Notably, the two evolutions are exactly the same and
correspond to the following damped oscillator

ż1 = ωz2, ż2 = −ωz1 − βz2 (5)

where ω :=
(√

LC
)−1

is the characteristic frequency of

both linear circuits.

With these definitions, we may also characterize the in-
stantaneous updates of the new coordinates (z1, z2) and of
the input σ whenever the switch of the converter changes
position. Notably, since z1 are exactly the same in (3) and
(4), and z2 never depends on σ, then we find the same
instantaneous update for both circuits:

(z+1 , z
+
2 , σ

+) = (z1 + 2σ, z2,−σ), (6)

where we emphasize that σ represents the switch position
before the update and σ+ represents its position after the
update (and similarly for the other variables).

3. HYBRID MODEL AND SWITCHING LAW

The following unified dynamics represents both the par-
allel and series resonant converters, where we recall that
z = (z1, z2) ∈ R2 is a physical state related to the current
and voltage in the circuit, and σ ∈ {−1, 1} is a logical
state representing the position of the switch:[

ż
σ̇

]
= f(z, σ) :=

[
AF z

0

]
(z, σ) ∈ C(θ) (7a)

[
z+

σ+

]
= g(z, σ) :=

z +

[
2σ
0

]
−σ

 (z, σ) ∈ D(θ), (7b)

where AF :=
[

0 ω
−ω −β

]
, ω > 0 is the natural frequency and

β > 0 is the internal dissipation.

The sets C and D in (7) are called, respectively, “flow
set” and “jump set” and are subsets of R2 × {−1, 1}
whose intuitive meaning is that whenever the (augmented)
state ξ := (z, σ) belongs to D, it is time to change the
switch position in the H-bridge driving the converter,
whereas as long as ξ ∈ C, one may let the converter
evolve continuously without changing the switch position.
We design below C and D, parametrized by a so-called
“switching angle” θ ∈ (0, π], representing a tuning knob of
the proposed hybrid controller.

Following similar ideas to those in Bonache-Samaniego
et al. (2017), select the jump and the flow sets as

C(θ) := C1(θ) ∪ C−1(θ),
D(θ) := D1(θ) ∪ D−1(θ), (8)

In selection (8), each set C1(θ) and C−1(θ) denotes a half
plane and D1 and D−1 are two half lines at the boundary
of C1(θ) and C−1(θ), namely

Cq(θ) := {(z, σ) : σ = q, σ(z1 sin θ + z2 cos θ) ≤ 0}, (9)

Dq(θ) := {(z, σ) : σ = q, σz2 ≥ 0, z1 sin θ + z2 cos θ = 0},
(10)

for q ∈ {1, −1}.
The rationale behind the switching mechanism captured
by (8) is illustrated in Fig. 2, where two possible trajecto-
ries are shown by projecting the three-dimensional state-
space (z1, z2, σ) on the “phase plane” (z1, z2) (voltage,
current). The left figure represents the case θ < π

2 while
the right figure corresponds to θ > π

2 . During flowing (in
C(θ)), the continuous evolution revolves in the clockwise
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Fig. 2. Projection on the phase plane (z1, z2) of two
possible solutions of system (7), (8) with θ < π

2 (left)
and θ > π

2 (right).

direction. Switching always occurs when the continuous
motion hits the tilted solid line. When a switch occurs,
the z1 voltage is shifted horizontally by two units, and the
specific choice of C(θ) and D(θ) ensures that shifts always
provide a clockwise rotation. The choice to split D in two
half lines regularizes the domain avoiding Zeno solutions
with θ = π. With this choice, after a solution jumps, it is
forced to flow because it never lands again into the jump
set. The angle θ controls the tilting of the blue-red line,
namely the subspace where the switch takes place. It is
apparent that with small values of θ (left case in Fig. 2)
solutions are forced to jump “earlier” when starting from
the same initial condition.

Selection (8) provides a feedback control law. Indeed,
checking whether or not the converter input should switch
amounts to checking whether the state ξ = (z, σ) belongs
to D(θ) or not. We show here that this feedback induces
a self-oscillating behavior in the closed loop (7), (8).

4. EXISTENCE OF A LIMIT CYCLE

We study below the asymptotic behavior of solutions of
the closed loop (7), (8). The notion of periodicity for a
hybrid trajectory is a straightforward extension of the
usual notion of periodicity.

Definition 1. (Bisoffi et al. (2016)) Given a hybrid system
H = (C, f,D, g), a hybrid periodic trajectory is a complete
solution ξ (namely a solution that evolves forever) for
which there exist a pair (T, J) with either T ∈ R≥0
and J ∈ Z>0 or T ∈ R>0 and J ∈ Z≥0 such that
(t, j) ∈ dom(ξ) implies (t + T, j + J) ∈ dom(ξ) and,
moreover,

ξ(t, j) = ξ(t+ T, j + J) (11)
The image of ξ is a hybrid periodic orbit.

The following assumption on the parameters of the hybrid
system (7) ensures the existence of a non trivial hybrid
periodic trajectory. It intuitively means that the solutions
of the flow dynamics revolve in the phase plane (z1, z2).

Assumption 1. Parameters ω and β are strictly positive
reals. Moreover, the relation β < 2ω is satisfied, namely
the resonant tank is underdamped. Equivalently, the roots
of s2 + βs+ ω2 = 0 are complex conjugate.

Remark 1. Assumption 1 imposes constraints on the phys-
ical components to ensure that a natural oscillatory motion
occurs. For the two considered circuit configurations these
constraints correspond to:

PRC : 2R >

√
L

C
SRC :

R

2
<

√
L

C
. (12)

This means that the damping induced by R must be
sufficiently small to not destroy the natural oscillatory
behavior of the LC network. Ideally, R→∞ (open circuit)
for the PRC and R→ 0 (short circuit) for the SRC. ◦

The next theorem provides a justification for the proposed
self-oscillating control law for the case θ = π

2 . Numerical
test suggest that the result is true for any θ ∈ (0, π], but
the proof is regarded as future work.

Theorem 1. Under Assumption 1, when θ = π
2 , the closed

loop (7), (8) has a unique nontrivial hybrid periodic orbit
Oθ such that

(i) the orbit Oθ is stable and almost globally attractive
with basin of attraction corresponding to all points
such that z 6= 0;

(ii) the unique nontrivial hybrid periodic solution of (7),
(8) (the hybrid limit cycle) exhibits periodic jumps.

Proof. The proof of item (i) exploits the result in (Bisoffi
et al., 2016, Thms 1+2). To this end, consider the coordi-
nate change

x1 := z1, x2 := ωz2 (13)

Using coordinates x := (x1, x2), hybrid system (7) with
θ = π

2 can be rewritten as 1[
ẋ1
ẋ2
σ̇

]
= f(x, σ) :=

[
x2

−βx2 − ω2x1
0

]
(x, σ) ∈ C (14a)x+1x+2

σ+

 = g(x, σ) :=

[
2σ
x2
−σ

]
(x, σ) ∈ D (14b)

C := (C1×{1}) ∪ (C−1×{−1}),
D := (D1×{1}) ∪ (D−1×{−1}), (14c)

with the four sets C1, C−1, D1, D−1 given by

Cq := {x : qx1 ≤ 0}, q = 1, −1, (14d)

Dq := {x : qx2 ≥ 0, x1 = 0}, q = 1, −1. (14e)

The x subsystem of dynamics (14) coincides with (Bisoffi
et al., 2016, eqn. (2)) for suitable values of the parameters
of Bisoffi et al. (2016). For example, we may choose
m = 1, k = ω2 and β = c in (Bisoffi et al., 2016,
eqn. (2)). Moreover, (Bisoffi et al., 2016, As. 1) is implied
by our Assumption 1. As a consequence, we may apply
Theorems 1 and 2 in Bisoffi et al. (2016) to prove the
existence of a unique almost globally attractive hybrid
orbit. Finally, item (ii) trivially follows from the fact that
any periodic solution must exhibit periodic jumps due to
the central symmetric of both the jump and flow dynamics,
with respect to the origin. �
Remark 2. The switching law induced by (8) is inspired
by the one in Bonache-Samaniego et al. (2017) but differs
from it in a few substantial ways. Among other things,
for the parallel converter case, a nontrivial discussion is
present in Bonache-Samaniego et al. (2016) characterizing
what parameter selections lead to the self-oscillating fea-
ture, showing that when the quality factor Q := ωRC
is too small, no oscillating behavior emerges by that
switching law, and the converter reaches an (undesired)
equilibrium. On the contrary, item (i) above proves that

1 Recall that θ is a constant parameter and that θ̇ = 0, not to be

confused with the constant parameter ω =
(√

LC
)−1

.



the new switching law arising from the novel coordinates
z proposed here always provides a self-oscillating behavior
under Assumption 1, which is less restrictive. ◦
Remark 3. The flow and jump sets of hybrid dynamics (7),
(8) are closed, and the flow and jump maps are continuous
functions, therefore, (7), (8) enjoys the so-called hybrid
basic conditions of (Goebel et al., 2012, As. 6.5). This,
among other things, implies robustness of asymptotic
stability of compact attractors, as well characterized in
(Goebel et al., 2012, Ch. 7). A consequence of robustness
is that small perturbations of the system parameters (or
of the jump triggering law, as in a digital implementation)
cause a graceful performance degradation (the so-called
semiglobal practical property). This robustness property
is important for the controller implementation discussed
in Section 6. ◦
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Fig. 4. Inductor current (blue line) and scaled version
of the input voltage vs (red line) from the hybrid
simulations at the values of θ shown in Figure 3.

Example 1. Theorem 1 is illustrated here through numer-
ical simulations of a PRC. The simulations are performed
in MATLAB/Simulink using the Hybrid Equations Toolbox
by Ricardo Sanfelice (2017). The physical parameters for
the PRC are those of Bonache-Samaniego et al. (2016):

R = 400 Ω, L = 8µH, C = 10.5 nF, Vg = 20 V.
(15)

Fig. 3 reports some phase plane trajectories in the co-
ordinates z, showing the different behaviors for various
values of θ. For small values of θ, the hybrid limit cycle
evolves close to the horizontal axis and only flows for a
small amount of time. By increasing θ, the flowing inter-
vals become longer, up to the upper limit θ = π, where
the limit cycle spans all the phases while flowing. From
Fig. 4, note that by increasing θ, the switching frequency
decreases, while the amplitude of the steady-state oscilla-
tion increases, as characterized in the next section. The
amplitude increase can be associated with the fact that
the frequency is approaching the resonant frequency ω. ?

5. EFFECT OF PARAMETER θ

The previous section illustrates the existence of an almost
globally attractive hybrid limit cycle for any θ ∈ (0, π] (and
Theorem 1 proves this for θ = π

2 ). Following Example 1,
we may characterize the amplitude of this oscillation as
a function of the control knob θ, as established in the
next conjecture. Its proof is regarded as future work and
may include explicit characterizations of the amplitude
and frequency as a function of the control knob θ. While
here, we provide a validation through numerical simula-
tions. The aim is to analyze the influence of the control
parameter θ. This characterization is useful for closing an
outer feedback loop to regulate the output peak-to-peak
voltage or current.

Conjecture 1. Under Assumption 1 for each selection of
θ ∈ (0, π], there exists an almost globally asymptotically
stable hybrid limit cycle. Moreover,

(i) the periodic evolution of z1 (voltage) along the limit
cycle has amplitude 1 when θ = 0 and is strictly
increasing with θ;

(ii) the periodic evolution of z2 (current) along the limit
cycle has zero amplitude when θ = 0 and is strictly
increasing with θ;

(iii) the frequency of the limit cycle becomes arbitrarily
large as θ approaches zero (namely it approaches a
purely discrete solution), and is strictly decreasing as
θ increases.

In the parallel resonant converter case, by the definition of
z1, item (i) in Conjecture 1 implies that the output voltage
vC measured across the resistor R has zero amplitude with
θ = 0+ and strictly increasing amplitude as θ increases.
Instead, in the series resonant converter case, by the
definition of z1, item (ii) in Conjecture 1 implies that the
output current iL (which is proportional to z2 from (4))
has zero amplitude when θ = 0+ and strictly increasing
amplitude as θ increases.

Example 2. Using the same setup as in Example 1, the
influence of θ on the frequency and the amplitude of
the hybrid limit cycle is explored in the range (0, π]. In
accordance with the sampled evolutions of Fig. 4, Fig. 5
confirms the statements of Conjecture 1. In particular,
at the bottom of Fig. 5 the monotonic behavior of the
states z1 and z2 is confirmed. At the top left of Fig. 5,
the frequency approaches the resonant one (dashed line),
corresponding to 1

2πω, as θ tends to π. Moreover, as θ tends
to zero, the frequency blows up to infinity.

The top right of Fig. 5 shows the phase shift between
the input current and the input voltage, which tends
to zero as the frequency tends to the resonant one, as



expected (pure resistive behavior and maximum power
transmitted). These phase shifts match well the angle of
the input impedance Zin, computed as:

Zin(ω) = R
1− ω2LC + ωL/R

1 + ωRC
. (16)

and transformed into the corresponding dependence on θ
by numerically inverting the relation between θ and the
frequency ω, reported on the top left chart of Fig. 5.

These results confirm that the amplitude and frequency
are nonlinear functions of θ. This has implications on
the design of an outer control loop to stabilize a desired
operating point. With a nonlinear relation, a solution can
be to invert it in order to linearize the feedback and
then use a simple PI control loop. The inverse relations,
obtained by polynomially fitting the inverse results, are
reported in Fig. 5 as solid red lines. ?

Fig. 5. Top left: frequency of the periodic trajectory, the
dashed line represents the resonance frequency of the
system. Top right: phase shift between the inductor
current and the input voltage. Bottom: amplitude of
the normalized PRC output voltage z1 (left) and of
the normalized SRC output current z2 (right).

6. HIGH FIDELITY SIMULATION

For the practical implementation, through suitable mea-
surements, it is necessary to gather enough information
to understand whether the current state z = (z1, z2) is
in C or D. If it is in D, then a switch of σ must be
performed. We show here that a direct measurement of
z = (z1, z2) is not strictly necessary and that, as long as

the characteristic parameter
√
L/C is known (in addition

to the internal state σ), there is no need to measure any
quantity in the load. In particular, as shown in the schemes
of Fig. 6 and 7, it is enough to measure any scaled version
(by an unknown factor µ > 0) of the following electrical
quantities accessible in the resonant tank, regardless of the
PRC (3) or SRC (4) architecture of the converter:

y1 = µvC , y2 = µiC , y3 = µVg. (17)

Note that the above measurements are the scaled voltage
and current on the capacitor, in addition to the constant
scaled supply µVg. Due to the sinusoidal waveforms char-
acterizing the resonant tank, all of these measurements can
be regarded as slowly varying, hence not much distortion
is expected in the measurements due to possible filtering
actions from the acquisition stage. Note also that iC cor-
responds to the output current in the SRC and vC to the
output voltage in the PRC. Therefore, the measurements
above provide enough information in order to close an
outer loop for voltage/current regulation.

Resonant
Tank

R
H

Bridge
+

−Vg

+

−

vS vO
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H
σ

θ
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Fig. 6. Block diagram at sensing level with the electronic
blocks and the controller H.
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Fig. 7. Internal connections of block H in Fig. 6.

With the measurements in (17), we may define the follow-
ing quantities:

ẑ1 = y1 − σy3 = µ(vC − Vgσ),

ẑ2 =

√
L

C
y2 = µ

√
L

C
iC ,

and the expressions of Cq and Dq in (9) and (10) can be
equivalently written as

Cq(θ) := {(z, σ) : σ = q, σ(ẑ1 sin θ + ẑ2 cos θ) ≤ 0},
Dq(θ) := {(z, σ) : σ = q, σẑ2 ≥ 0, ẑ1 sin θ + ẑ2 cos θ = 0}.

The above-described implementation has been tested by
simulation in the power electronics design and circuit &
system level simulation software PSIM, which accounts
for accurate descriptions of the electrical components. The
simulated circuit corresponds to an analog implementation
of the proposed hybrid control scheme. When using the
parameters in (15) (see Example 1), the resulting responses
are indistinguishable from the plots reported in Figures 3
and 4, therefore they are not reported here.

A further simulation-based investigation has been per-
formed to test, via PSIM, the real-time control architec-
ture implementing a digital implementation of the control
scheme. Digital implementations are more desirable in the
early prototyping phases, because analog control requires
cumbersome tuning/calibration for the circuit parameters,
while digital control is more flexible.

On the other side, digital control does not provide a contin-
uous monitoring of the switching conditions but only real-
time sampled versions causing undesirable delays (mostly
related to the sampling), thereby introducing nonuniform
output evolutions. Although the robustness result in Re-
mark 3 indicates that some level of delay is tolerable with
an expected graceful degradation of the closed-loop prop-
erties, the sampling frequency should be kept sufficiently
high (i.e. the delay low) within the limits of the required
computational time for the processor to evaluate the con-
trol algorithm. For the simulated digital implementation,
we report in Fig. 8 sampled-data results with θ = 3π/4 for
a relatively low frequency converter operating at a natural



Fig. 8. Using θ = 3π/4, analog implementation (top-left)
and sampled-data implementation (remaining traces)
with different sampling frequencies fs.

frequency 1
2πω of 50 kHz, which allows having a reasonable

amount of samples in a period with sampling frequency
in the MHz range. More specifically, with the parameters
R = 100 Ω, L = 101µH, C = 100 nF, Vg = 24 V, we
first perform an analog simulation (the ideal behavior)
reported at the top left of Fig. 8 (a half period of the cycle
lasts about 10 µs). Then, real-time implementations with
delays τ = 1 µs, τ = 500 ns and τ = 200 ns are reported
in the remaining subfigures. We can observe in Fig. 8 the
significant influence of the delay on the solutions.

7. CONCLUSIONS AND FUTURE DIRECTIONS

We proposed a unifying coordinate representation for PRC
and SRC resonant converters, which led to a natural feed-
back control law, inducing an almost globally attractive
hybrid limit cycle in a self-oscillating resonant behavior.
With the proposed controller, the limit cycle emerges in
underdamped conditions for any switching angle θ ∈ (0, π],
providing a large range of output amplitudes and frequen-
cies, whose trends, as a function of θ, have been character-
ized. Additionally, the influence of the control knob θ on
the output evolution has been numerically characterized.
This characterization provides an initial step towards clos-
ing a feedback loop for the regulation of the output voltage
or current.
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