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A sampled-data observer is proposed for linear continuous-time systems whose outputs are sequentially sampled via non-uniform sampling intervals repeating a prescribed Round-Robin sequence. With constant sampling intervals (jitter-free case) we provide constructive necessary and sufficient conditions for the design of an asymptotic continuous-discrete observer whose estimation error is input-to-state stable (ISS) from process disturbances and measurement noise. We use a time-varying gain depending on the elapsed time since the last measurement. With non-constant sampling intervals (jitter-tolerant case), our design conditions are only sufficient. A suspension system example shows the effectiveness of the proposed approach.

Introduction

The observation, estimation and control problems for dynamical systems using data transmitted over communication networks attracted several works in the past decade, dealing with lossy and intermittent data, and with network reliability, as surveyed in [START_REF] Hetel | Recent developments on the stability of systems with aperiodic sampling: An overview[END_REF]. In the specific case where the output is only available at isolated time instants, the classical estimation paradigms, using continuous plant measurements from the plant, need to be revisited. (see, e.g., [START_REF] Hespanha | A survey of recent results in networked control systems[END_REF][START_REF] Chen | Optimal sampled-data control systems[END_REF][START_REF] Li | Robust distributed estimation for linear systems under intermittent information[END_REF][START_REF] Xu | Estimation under uncontrolled and controlled communications in networked control systems[END_REF][START_REF] Dačić | Observer design for wired linear networked control systems using matrix inequalities[END_REF][START_REF] Cloosterman | Controller synthesis for networked control systems[END_REF][START_REF] Postoyan | A framework for the observer design for networked control systems[END_REF] and the references therein). When the measurements are available periodically, many algorithms are available, based on discrete-time observers for the discretized plant; see, e.g. [START_REF] Nešić | Formulas relating K L stability estimates of discrete-time and sampled-data nonlinear systems[END_REF], [START_REF] Arcak | A framework for nonlinear sampled-data observer design via approximate discrete-time models and emulation[END_REF] and references therein. However, often this approach is not realistic because the elapsed time between two measurements is not constant (sporadic measurements). In order to address this problem, [START_REF] Raff | Observer with sample-and-hold updating for lipschitz nonlinear systems with nonuniformly sampled measurements[END_REF] and [START_REF] Andrieu | Observer design for lipschitz systems with discrete-time measurements[END_REF], propose a method for nonlinear Lipschitz systems with sampled measurements. For the same class of nonlinear Lipschitz systems, [START_REF] Dinh | Continuousdiscrete time observer design for lipschitz systems with sampled measurements[END_REF] and [START_REF] Farza | Continuous-discrete time observers for a class of MIMO nonlinear systems[END_REF] propose design techniques for the injection gain based on Linear Ma-trix Inequalities (LMIs) certifying asymptotic stability of the error dynamics. Moreover, in [START_REF] Farza | Continuous-discrete time observers for a class of MIMO nonlinear systems[END_REF] high-gain observers are considered. In [START_REF] Nadri | Observer design for uniformly observable systems with sampled measurements[END_REF] and [START_REF] Andrieu | Continuous discrete observer with updated sampling period[END_REF], nonlinear uniformly observable single output systems are addressed. Finally, some classes of systems with sampled and delayed outputs are addressed in [START_REF] Nadri | Observer design for continuous-discrete time state affine systems up to output injection[END_REF]. This estimation problem has also been addressed in a stochastic framework. For example Extended Kalman Filters (EKFs) with sporadic measurements have been proposed in many works [START_REF] Sinopoli | Kalman filtering with intermittent observations[END_REF], [START_REF] Plarre | On Kalman filtering for detectable systems with intermittent observations[END_REF], [START_REF] Kluge | Stochastic stability of the extended Kalman filter with intermittent observations[END_REF], [START_REF] Zhou | Integrated navigation system for a low-cost quadrotor aerial vehicle in the presence of rotor influences[END_REF], [START_REF] Barrau | Invariant Kalman filtering[END_REF], [START_REF] Feddaoui | A Kalman filter for linear continuous-discrete systems with asynchronous measurements[END_REF] and [START_REF] Feddaoui | Highgain extended Kalman filter for continuous-discrete systems with asynchronous measurements[END_REF], where the Kalman filter is adapted to linear and/or nonlinear continuous-discrete system with multirate sampled outputs. A natural framework to model the coexistence of continuoustime and discrete-time dynamics is that of hybrid dynamical systems [START_REF] Goebel | Hybrid Dynamical Systems: modeling, stability, and robustness[END_REF]. In particular, [START_REF] Ferrante | State estimation of linear systems in the presence of sporadic measurements[END_REF] and [START_REF] Sferlazza | Time-varying sampled-data observer with asynchronous measurements[END_REF] propose hybrid observers for linear systems with sampled measurements where the output error injection gain (constant in [START_REF] Ferrante | State estimation of linear systems in the presence of sporadic measurements[END_REF] and time-varying in [START_REF] Sferlazza | Time-varying sampled-data observer with asynchronous measurements[END_REF]) is computed by means of LMI-based conditions embedding the matrix exponential. In both these works, the LMIs proposed are infinite-dimensional and are solved by suitable sequential algorithms, as in [START_REF] Sferlazza | Time-varying sampled-data observer with asynchronous measurements[END_REF], or by convex approximations of the exponential matrix, as in [START_REF] Ferrante | State estimation of linear systems in the presence of sporadic measurements[END_REF]. Nonlinear Lipschitz systems have also been cast in the hybrid dynamical systems framework, see e.g. [START_REF] Ferrante | L 2 state estimation with guaranteed convergence speed in the presence 10 of sporadic measurements[END_REF] where the problem of exponentially estimating the state is considered. In this paper we consider linear plants with sampled and sporadic measurements, extending the concepts presented in [START_REF] Sferlazza | Time-varying sampled-data observer with asynchronous measurements[END_REF] by assuming that multiple plant outputs are accessible following a prescribed and cyclic sequence in a Round-Robin scenario. Such sequential readings are common in many application fields, especially in the presence of sensors networks (see e.g. [START_REF] Li | Robust distributed estimation for linear systems under intermittent information[END_REF], [START_REF] Ahmed-Ali | High gain observer design for some networked control systems[END_REF] and references therein) that share the same communication bus, or when the estimation algorithm is implemented in a serial communication hardware platform that only allows for one measurement at a time (see e.g. [START_REF] Alonge | Hybrid observer for indoor localization with random time-of-arrival measurements[END_REF] and references therein, for the case of indoor localization). Our approach largely exploits the sequential nature of the measurement and is somewhat complementary to the recently proposed results of [START_REF] Li | Robust distributed estimation for linear systems under intermittent information[END_REF], where multiple sensors are collected in sparse order, thereby needing stronger decrease conditions on the arising Lyapunov function. We exploit this advantage by proving that our analysis and design conditions are necessary for the jitter-free case. To this end, we prove a necessary structural collective detectability condition, independent of the observer architecture. In addition to proving exponential estimation, we also prove input-to-state stability (ISS) of our observer with respect to continuous-time process disturbances and impulsive measurement noise. Notation. N denotes all positive integers. Given a matrix 𝐴, 𝐴 denotes its transpose. Given a full row-rank matrix 𝐶, 𝐶 ⊥ denotes its orthogonal complement, namely a matrix such that [𝐶 ⊥ 𝐶 ] is square and nonsingular, and such that 𝐶𝐶 ⊥ = 0. Given a symmetric matrix 𝑆, 𝜆 𝑚 (𝑆) and 𝜆 𝑀 (𝑆) denote, respectively, its minimum and maximum (real) eigenvalues, and 𝑆 > 0 (resp. 𝑆 < 0) means that 𝑆 is positive (resp. negative) definite. The symbol ★ denotes a symmetric term.

Asynchronous Observations

Problem data and main estimation goal

In this work we address state estimation problems for the following continuous-time plant,

x = 𝐴 x + 𝐵𝑢 + 𝑑, (1) 
where x ∈ R 𝑛 is the unknown state to be estimated, 𝑢 : [0, ∞) → R 𝑞 is a known input and 𝑑 : [0, ∞) → R 𝑛 is an unknown process disturbance, both belonging to the class of locally bounded measurable functions, 𝐴 ∈ R 𝑛×𝑛 , and 𝐵 ∈ R 𝑛×𝑞 are known matrices. We assume that plant (1) is equipped with 𝑁 ∈ N sensors indexed by integer 𝜎 ∈ S 𝑁 := {1, 2, ..., 𝑁 }, providing measurement outputs 𝑦 𝜎 ∈ R 𝑚 𝜎 (possibly of different dimensions), that are sequentially and asynchronously accessible at non-periodic and strictly increasing discrete instants of time 𝑡 𝑘 , 𝑘 ∈ N according to a Round-Robin polling mechanism, as shown in Fig. 1, which well represents the sequential values taken by the sampling function 𝑡 𝑘 ↦ → 𝜎(𝑡 𝑘 ) ∈ S 𝑁 . More specifically, the Round-Robin mechanism can be written as

𝜎(𝑡 𝑘+1 ) = Γ(𝜎(𝑡 𝑘 )) := 𝜎(𝑡 𝑘 ) + 1 if 𝜎(𝑡 𝑘 ) < 𝑁, 1 if 𝜎(𝑡 𝑘 ) = 𝑁. (2) 
For example in the case of three sensors, we have (𝜎(𝑡 1 ), 𝜎(𝑡 2 ), 𝜎(𝑡 3 ), 𝜎(𝑡 4 ), 𝜎(𝑡 5 ),

• • • ) = (1, 2, 3, 1, 2, • • • ).
The sequentially accessible output are a sequence of vectors (possibly of non-uniform dimensions 𝑚 𝜎 ) written as

𝑦 𝜎 (𝑡 𝑘 ) (𝑡 𝑘 ) := 𝐶 𝜎 (𝑡 𝑘 ) x(𝑡 𝑘 ) + 𝑤(𝑘), (3) 
where 𝑤 represents a sequence of bounded measurement noise and matrices 𝐶 𝜎 ∈ R 𝑚 𝜎 ×𝑛 satisfy the assumption below. Since input 𝑢 is accessible, we may easily transform into (3) any output also depending on 𝑢 via a feed-through term 𝐷 𝜎 (𝑡 𝑘 ) 𝑢(𝑡 𝑘 ), therefore the strictly proper expression in (3) is non-restrictive. 

| x(𝑡) -x(𝑡)| 2 ≤ 𝑀e -𝜆𝑡 | x(0) -x(0)| 2 +𝛾 𝑑 2 𝑡 ,∞ +𝛾 𝑤 2 𝑗,∞ , (5) 
for any initial condition x(0) and x(0) and any exogenous inputs 𝑑 and 𝑤 such that:

𝑑 𝑡 ,∞ := sup 𝑡 ∈R ≥0 |𝑑 (𝑡)| < ∞, 𝑤 𝑗,∞ := sup 𝑗 ∈N |𝑤( 𝑗)| < ∞. ( 6 
)
Due to the hybrid nature of system (1)-( 3) and the ensuing coexistence of continuous-time 𝑑 and impulsive 𝑤 disturbances in (5), we cannot follow standard Lyapunov-based optimization techniques for minimizing scalar 𝛾 in bound [START_REF] Arcak | A framework for nonlinear sampled-data observer design via approximate discrete-time models and emulation[END_REF]. Instead, we only ensure the existence of a finite gain 𝛾 in this work, saving as future work optimized designs, possibly using results from [START_REF] Cai | Characterizations of input-to-state stability for hybrid systems[END_REF]. With reference to our main goal we provide, in the next sections,

• analysis conditions: establishing whether a specific predefined observer ensures Goal 1;

• design conditions: leading to the constructive design of an observer ensuring Goal 1.

Necessary detectability conditions

As a first step in characterizing necessary conditions for state estimation, consider any selection 𝑇 𝜎 , 𝜎 = {1, . . . , 𝑁 } of intersample intervals satisfying

𝑇 𝑚 𝜎 ≤ 𝑇 𝜎 ≤ 𝑇 𝑀 𝜎 , ∀𝜎 ∈ S 𝑁 (7) 
(such a selection is unique if and only if we address the jitter-free case in Def. 1), and note that considering the zero input case, we may gather each sequence of 𝑁 measurements at the beginning of the corresponding cumulative interval 𝑇 := 𝑁 𝜎=1 𝑇 𝜎 by defining the output matrix

𝐶 := col(𝐶 1 e 𝐴𝑇 1 , 𝐶 2 e 𝐴(𝑇 1 +𝑇 2 ) , . . . , 𝐶 𝑁 e 𝐴𝑇 ). (8) 
A necessary condition for the solvability of Goal 1 can be stated by considering any possible sequence of intersample intervals 𝑇 𝜎 , 𝜎 = {1, . . . , 𝑁 } and requiring that matrix 𝐶 in (8) satisfies a suitable discrete-time detectability property. Proposition 1 Given plant (1) with outputs (3), Goal 1 can be solved only if for any sequence of intersample intervals 𝑇 𝜎 , 𝜎 = {1, . . . , 𝑁 } satisfying [START_REF] Cai | Characterizations of input-to-state stability for hybrid systems[END_REF], pair (𝐶, e 𝐴𝑇 ) is detectable in the discrete-time sense, where 𝑇 := 𝑁 𝜎=1 𝑇 𝜎 is the cumulative intersample time and 𝐶 is the cumulative output matrix in [START_REF] Cai | Smooth Lyapunov functions for hybrid systems Part II: (pre) asymptotically stable compact sets[END_REF]. Proposition 1 provides insight about the fact that increasing 𝑇 𝑀 𝜎 imposes increasingly large sets of detectability conditions. For example, with exponentially unstable selections of 𝐴, one expects the necessary conditions of Proposition 1 not to hold for large enough selections of 𝑇 𝑀 𝜎 .

Proof of Proposition 1. Assume that there exists a sequence of intersample intervals 𝑇 𝜎 , 𝜎 = {1, . . . , 𝑁 } satisfying [START_REF] Cai | Characterizations of input-to-state stability for hybrid systems[END_REF] for which (𝐶, e 𝐴𝑇 ) is not detectable. Then from standard detectability theory, there exists a nonconverging solution of the discrete-time system 𝑧 + = e 𝐴𝑇 𝑧 producing outputs 𝐶𝑧 = 0 at all (discrete) times. Since 𝑧 + = e 𝐴𝑇 𝑧 is the exact discretization of (1) at the cumulative periodic intervals t𝑘 = 𝑘𝑇, 𝑘 ∈ Z ≥0 , then also plant (1) exhibits a nonconverging continuous-time evolution x such that the periodically sampled outputs ȳ(t 𝑘 ) = 𝐶 x(t 𝑘 ) are all zero. Finally, such an evolution also produces zero outputs from measurements (3), when selecting the measurement times 𝑡 𝑘 such that 𝑡 𝑘+1 -𝑡 𝑘 = 𝑇 𝜎 (𝑡 𝑘 ) for all 𝑘 ∈ N. Indeed, the corresponding outputs can be all computed as

        𝑦 𝜎 (𝑡 ℎ 𝑁 +1 )
. . .

𝑦 𝜎 (𝑡 ℎ 𝑁 +𝑁 )         =         𝐶 1 x(𝑡 ℎ 𝑁 +1 ) . . . 𝐶 𝑁 x(𝑡 ℎ 𝑁 +𝑁 )         =         𝐶 1 𝑒 𝐴𝑇 1 x(𝑡 ℎ 𝑁 ) . . . 𝐶 𝑁 𝑒 𝐴𝑇 x(𝑡 ℎ 𝑁 )         = 𝐶 x(𝑡 ℎ 𝑁 ) = 𝐶𝑒 ℎ 𝐴𝑇 x(0) = 0.
The proof is completed by noting that the measurement times 𝑡 𝑘 , 𝑘 ∈ N considered above satisfy (4) because scalars 𝑇 𝜎 satisfy (4). As a consequence, Goal 1 cannot be ensured because there is a nonconverging evolution of (1) whose sampled outputs all are zero, thereby being indistinguishable from the zero solution.

Observer Structure and its properties 3.1 Hybrid model of asynchronous observations

To formalize the set-up described in Section 2.1, we propose a hybrid model using the framework of [START_REF] Goebel | Hybrid Dynamical Systems: modeling, stability, and robustness[END_REF]:

𝑥 = 𝐴𝑥 + 𝐵𝑢 + 𝑑, 𝜏 = 1, 𝜎 = 0, (𝜏, 𝜎) ∈ C, (9a) 
𝑥 + = 𝑥, 𝜏 + = 0, 𝜎 + = Γ(𝜎), (𝜏, 𝜎) ∈ D, (9b) 
𝑦 𝜎 = 𝐶 𝜎 𝑥 + 𝑤, (9c) 
where Γ(𝜎) is defined in (2), and the flow set C and jump set D are selected as:

C := 𝜎 ∈S 𝑁 [0, 𝑇 𝑀 𝜎 ] × {𝜎} , D := 𝜎 ∈S 𝑁 [𝑇 𝑚 𝜎 , 𝑇 𝑀 𝜎 ] × {𝜎} . (9d) 
The extra variable 𝜏 in (9a)-(9b) reproduces a timer keeping track of the elapsed time since the last sample. With model ( 9), proceeding as in [8, Prop. 1.1] we may show that any sequence of Round-Robin measurements (3) from plant (1) satisfying Assumptions 1 and 2 can be reproduced by output 𝑦 𝜎 of (9) evaluated at jump times 𝑡 𝑘 , 𝑘 ∈ N of a (hybrid) solution to (9), and viceversa. As a consequence, one can equivalently represent the continuous evolution of the plant state x as a hybrid evolution of model ( 9), namely

x(𝑡) = 𝑥(𝑡, 𝚥 (𝑡)), ∀𝑡 ≥ 0, [START_REF] Cloosterman | Controller synthesis for networked control systems[END_REF] where similar to [18, §8.2] for any hybrid solution 𝑥 with domain dom 𝑥 we denote 𝚥 (𝑡) = min (𝑡 , 𝑗) ∈dom 𝑥 𝑗.

Proposed continuous-discrete observer structure

Starting from model ( 9), we propose a continuous-discrete observer structure implicitly accounting for the restrictions in Assumption 2 on the available output because the flow dynamics (when the output is not available) is in open loop:

x = 𝐴 x + 𝐵𝑢, (𝜏, 𝜎) ∈ C, (11a) 
while the jump dynamics establishes the state update when the measurement output is available. In the jitter-tolerant case of Definition 1, this corresponds to

x+ = x + 𝐾 𝜎 (𝜏) 𝑦 𝜎 -𝐶 𝜎 x , (𝜏, 𝜎) ∈ D. (11b) 
The only design parameter of our observer is matrix function 𝐾 𝜎 : [𝑇 𝑚 𝜎 , 𝑇 𝑀 𝜎 ] → R 𝑛×𝑚 𝜎 corresponding to the time-varying gain of the discrete output injection term. This injection depends, notably, both on the accessed output and on the elapsed time 𝜏 since the last measurement. The jump equation (11b) becomes simpler in the jitter free case of Definition 1, and corresponds to

x+ = x + K𝜎 𝑦 𝜎 -𝐶 𝜎 x , (𝜏, 𝜎) ∈ D, (11c) 
only parameterized by the discrete output injection (constant) gains K𝜎 , 𝜎 ∈ S 𝑁 . Indeed, the time-varying gains 𝐾 𝜎 (•) are only evaluated for 𝜏 = 𝑇 𝜎 , where

𝑇 𝜎 := 𝑇 𝑚 𝜎 = 𝑇 𝑀 𝜎 , ∀𝜎 ∈ S 𝑁 . ( 12 
)
and the output injection terms do not depend on 𝜏. Remark 1 In several relevant applications (e.g., with IMUbased systems equipped with GPS sensors) the sampled measurements are combined with additional continuous-time measurements. In particular, plant (1) may be replaced by

𝑥 = 𝐴 0 𝑥 + 𝐵𝑢 + 𝑑, 𝑦 𝑐 = 𝐶 𝑐 𝑥 + 𝐷 𝑐 𝑢. ( 13 
)
We may easily extend our theory to those cases by predesigning a Luenberger gain 𝐿 𝑐 exploiting measurements 𝑦 𝑐 in continuous time to ensure some desirable properties of matrix 𝐴 0 -𝐿 𝑐 𝐶 𝑐 (which does not need to be Hurwitz but may exhibit desirable behaviors in the observable subspaces from output 𝑦 𝑐 ). Then we may replace the flow map (11a) of our continuous-discrete observer by

x = 𝐴 𝑜 x + 𝐿 𝑐 (𝑦 𝑐 -ŷ𝑐 ) + 𝐵𝑢, ŷ𝑐 = 𝐶 𝑐 x + 𝐷 𝑐 𝑢. ( 14 
)
With this flow dynamics, the structure of the error dynamics reported in the rest of the paper remains unchanged with matrix 𝐴 replaced by 𝐴 0 -𝐿 𝑐 𝐶 𝑐 providing potentially improved continuous-time behavior as compared to the openloop solution. The co-design of 𝐿 𝑐 and the gains 𝐾 𝜎 (•) is beyond the scope of this paper.

Hybrid solutions and continuous-time estimate

x The presence of a lower bound 𝑇 𝑚 𝜎 between consecutive measurements ensures that the continuous-discrete observer [START_REF] Dačić | Observer design for wired linear networked control systems using matrix inequalities[END_REF] provides solutions whose domain is unbounded in the ordinary time direction 𝑡 from which we may extract a continuous time estimate 𝑡 ↦ → x(𝑡) of state 𝑥. This fact is formalized in the next proposition, whose proof is a straightforward application of [START_REF] Goebel | Hybrid Dynamical Systems: modeling, stability, and robustness[END_REF]Prop. 6.10], because interconnection ( 9), [START_REF] Dačić | Observer design for wired linear networked control systems using matrix inequalities[END_REF] satisfies the Hybrid Basic Conditions [18, Ass. 6.5]. Proposition 2 Both in the jitter-free and in the jitter-tolerant cases, all (maximal) solutions to the interconnection between [START_REF] Chen | Optimal sampled-data control systems[END_REF] and [START_REF] Dačić | Observer design for wired linear networked control systems using matrix inequalities[END_REF] are complete and have an unbounded domain in the ordinary time direction 𝑡 (and the jump direction 𝑗). Based on Proposition 2, similar to [START_REF] Cloosterman | Controller synthesis for networked control systems[END_REF], we may construct a continuous-time estimate of state 𝑥 by projecting the solution of the hybrid interconnection ( 9), [START_REF] Dačić | Observer design for wired linear networked control systems using matrix inequalities[END_REF] in the ordinary time direction 𝑡 as follows x(𝑡) := x(𝑡, 𝚥 (𝑡)), ∀𝑡 ≥ 0.

In particular, Proposition 2 ensures 𝑡-completeness of solutions so that Zeno behavior is ruled out and we can evaluate [START_REF] Feddaoui | Highgain extended Kalman filter for continuous-discrete systems with asynchronous measurements[END_REF] for any arbitrarily large value of 𝑡.

For proving the exponential bound ( 5) in Goal 1 it is sufficient to combine [START_REF] Cloosterman | Controller synthesis for networked control systems[END_REF] with [START_REF] Feddaoui | Highgain extended Kalman filter for continuous-discrete systems with asynchronous measurements[END_REF] and to prove the following hybrid 𝑡-exponential bound

|𝑥(𝑡, 𝑗) -x(𝑡, 𝑗)| 2 ≤ 𝑀e -𝜆𝑡 |𝑥(0, 0) -x(0, 0)| 2 (16) + 𝛾( 𝑑 2 𝑡 ,∞ + 𝑤 2 𝑗,∞ ).
This is proven in the next sections.

Jitter-free necessary and sufficient conditions

In this section we focus on the jitter-free case of Definition 1 and characterize the properties of the interconnection of plant [START_REF] Chen | Optimal sampled-data control systems[END_REF] and observer (11a), (11c) introduced in the previous section. In particular, we address the analysis and design contexts highlighted after Goal 1 and provide computationally attractive necessary and sufficient analysis conditions (in terms of LMIs) and design conditions (again in terms of LMIs) for gains K1 , . . . , K𝑁 ensuring Goal 1.

To characterize the interconnection ( 9), (11a), (11c) consider the estimation error x := 𝑥x, whose hybrid dynamics are computed as the following autonomous system

x = 𝐴 x + 𝑑, 𝜏 = 1, 𝜎 = 0, (𝜏, 𝜎) ∈ C, x+ = 𝐼 -K𝜎 𝐶 𝜎 x -K𝜎 𝑤, 𝜏 + = 0, 𝜎 + = Γ(𝜎), (𝜏, 𝜎) ∈ D, (17) 
with Γ as in [START_REF] Alonge | Hybrid observer for indoor localization with random time-of-arrival measurements[END_REF]. Based on [START_REF] Ferrante | L 2 state estimation with guaranteed convergence speed in the presence 10 of sporadic measurements[END_REF] we address in two subsections the above stated analysis and design problems.

Jitter-free analysis conditions

The following theorem provides a convex (LMI-based) condition for checking whether observer (11a), (11c) with continuous-time output [START_REF] Feddaoui | Highgain extended Kalman filter for continuous-discrete systems with asynchronous measurements[END_REF] accomplishes Goal 1. The result is based on the use of (non-necessarily common) Lyapunovlike matrices 𝑃 1 , . . . , 𝑃 𝑁 . Its proof is postponed to the end of Section 5.1, to avoid breaking the flow of the exposition. Theorem 1 Assume that there exist 𝑁 matrices

𝑃 𝜎 = 𝑃 𝜎 > 0, ∀𝜎 ∈ S 𝑁 such that e (-𝐴 𝑇 𝜎 ) 𝑃 𝜎 e (-𝐴𝑇 𝜎 ) ★ 𝑃 Γ( 𝜎) (𝐼 -K𝜎 𝐶 𝜎 ) 𝑃 Γ( 𝜎) > 0, ∀𝜎 ∈ S 𝑁 . ( 18 
)
Then observer (11a), (11c) with continuous-time output [START_REF] Feddaoui | Highgain extended Kalman filter for continuous-discrete systems with asynchronous measurements[END_REF] accomplishes Goal 1.

The jitter-free case can be addressed in a purely discretetime framework, e.g., using a Poincaré-type map sampling the solutions after each jump induced by the last sensor 𝑁, and then bounding the continuous-discrete intersample behavior. Due to the Round-Robin mechanism encoded in hybrid dynamics [START_REF] Ferrante | L 2 state estimation with guaranteed convergence speed in the presence 10 of sporadic measurements[END_REF], this Poincaré-type map is governed by the following discrete-time state transition matrix

𝐽 1 := (𝐼 -K𝑁 𝐶 𝑁 )e 𝐴𝑇 𝑁 • • • (𝐼 -K1 𝐶 1 )e 𝐴𝑇 1 , (19) 
which stems from the alternating flowing and jumping governed by C and D. Since 𝐽 1 rules the sampled value of the error x, it is necessary for convergence to zero of x = 𝑥x (and therefore also for its exponential convergence in [START_REF] Arcak | A framework for nonlinear sampled-data observer design via approximate discrete-time models and emulation[END_REF] and in Goal 1) that 𝐽 1 be Schur. Then, from standard discretetime systems theory [START_REF] Hespanha | Linear systems theory[END_REF]Thm 8.4] it is necessary for Goal 1 that ∃𝑃 = 𝑃 > 0 satisfying

𝑃 -𝐽 1 𝑃𝐽 1 > 0. ( 20 
)
This observation is the baseline for proving that the necessity of (18) (in addition to the sufficiency stated in Theorem 1).

In particular, conditions [START_REF] Goebel | Hybrid Dynamical Systems: modeling, stability, and robustness[END_REF] are not restrictive, which is somewhat surprising because we require all the matrices 𝑃 1 , . . . , 𝑃 𝑁 to be positive definite. This necessity statement is formalized next. Proposition 3 In the jitter-free case of (12), condition [START_REF] Goebel | Hybrid Dynamical Systems: modeling, stability, and robustness[END_REF] is feasible if and only if observer (11a), (11c) with continuous-time output [START_REF] Feddaoui | Highgain extended Kalman filter for continuous-discrete systems with asynchronous measurements[END_REF] accomplishes Goal 1.

Proof The sufficiency has been already proved in Theorem 1.

For the necessity, it has been noted above that Goal 1 implies the existence of 𝑃 = 𝑃 > 0 satisfying [START_REF] Heemels | Observer-based control of discrete-time LPV systems with uncertain parameters[END_REF]. To complete the proof, we show below that the existence of such a 𝑃 implies that there exist matrices 𝑃 1 , . . . , 𝑃 𝑁 satisfying 𝑃 𝜎e 𝐴 𝑇 𝜎 𝐼 -K𝜎 𝐶 𝜎 𝑃 Γ( 𝜎) 𝐼 -K𝜎 𝐶 𝜎 e 𝐴𝑇 𝜎 > 0, [START_REF] Hespanha | Linear systems theory[END_REF] which are equivalent to [START_REF] Goebel | Hybrid Dynamical Systems: modeling, stability, and robustness[END_REF] after a Schur complement.

To this end, generalizing the definition of 𝐽 1 in [START_REF] Halimi | Polytopic observers for LPV discrete-time systems[END_REF], for each 𝜎 ∈ S 𝑁 , define matrices

𝐽 𝜎 := (𝐼 -K𝑁 𝐶 𝑁 )e 𝐴𝑇 𝑁 • • • (𝐼 -K𝜎 𝐶 𝜎 )e 𝐴𝑇 𝜎 ,
and note that (20) can be written as

𝑃 1 -e 𝐴 𝑇 1 𝐼 -K1 𝐶 1 𝐽 2 𝑃 1 𝐽 2 𝐼 -K1 𝐶 1 e 𝐴𝑇 1 > 0 (22)
with the selection 𝑃 1 = 𝑃 > 0. It is then natural to select 𝑃 2 := 𝐽 2 𝑃 1 𝐽 2 + 𝜖 2 𝐼 > 0, with 𝜖 2 > 0, where positive definiteness follows from 𝑃 1 > 0. This selection implies (for any 𝜖 2 > 0) 𝑃 2 -𝐽 2 𝑃 1 𝐽 2 ≥ 𝜖 2 𝐼 > 0, which parallels [START_REF] Heemels | Observer-based control of discrete-time LPV systems with uncertain parameters[END_REF]. Moreover, replacing 𝐽 2 𝑃 1 𝐽 2 = 𝑃 2 -𝜖 2 𝐼 in ( 22), we exploit the strict inequality to prove [START_REF] Hespanha | Linear systems theory[END_REF] with 𝜎 = 1, for a small enough 𝜖 2 . Iterating, we follow similar steps for the construction of 𝑃 𝜎 := 𝐽 𝜎 𝑃 𝜎-1 𝐽 𝜎 + 𝜖 𝜎 𝐼 > 0, 𝜎 = 3, . . . , 𝑁, and the proof is completed.

Jitter-free design

We propose below a convex LMI-based construction for gains K𝜎 ensuring Goal 1. The ensuing conditions cannot be derived from the alternative sampled conditions (20) due to the nonlinearity w.r.t. the gains K𝜎 appearing in 𝐽 1 . A sampled convex condition could be formulated by exploiting the large output matrix in ( 8), but such an approach is computationally less desirable, due to the large size of the ensuing LMIs, and due to the unsuitability of that approach for the jitter-tolerant case. The proof of the next theorem is given at the end of Section 5.2. Theorem 2 Denote by 𝐶 ⊥ 𝜎 a basis of the orthogonal complement of 𝐶 𝜎 for each 𝜎 ∈ S 𝑁 . If there exists 𝑃 𝜎 = 𝑃 𝜎 > 0, 𝜎 = {1, . . . , 𝑁 }, satisfying

Ξ 𝑃 𝜎 := 𝐶 ⊥ 𝜎 e (-𝐴 𝑇 𝜎 ) 𝑃 𝜎 e (-𝐴𝑇 𝜎 ) 𝐶 ⊥ 𝜎 ★ 𝑃 Γ( 𝜎) 𝐶 ⊥ 𝜎 𝑃 Γ( 𝜎) > 0, ∀𝜎 ∈ S 𝑁 , (23) select K𝜎 := 𝐶 𝜎 -𝐶 ⊥ 𝜎 (𝐶 ⊥ 𝜎 ) e (-𝐴 𝑇 𝜎 ) 𝑃 𝜎 e (-𝐴𝑇 𝜎 ) 𝐶 ⊥ 𝜎 -1 𝐶 𝜎 e (-𝐴 𝑇 𝜎 ) 𝑃 𝜎 e (-𝐴𝑇 𝜎 ) 𝐶 ⊥ 𝜎 (𝐶 𝜎 𝐶 𝜎 ) -1 , (24) 
Then observer (11a), (11c) with continuous-time output [START_REF] Feddaoui | Highgain extended Kalman filter for continuous-discrete systems with asynchronous measurements[END_REF] accomplishes Goal 1.

Remark 2 Note that the expression of LMIs (23) depends on the specific selection of the orthogonal complement 𝐶 ⊥

𝜎

of 𝐶 𝜎 , which is not unique. It has been already proven in [START_REF] Sferlazza | Time-varying sampled-data observer with asynchronous measurements[END_REF] (for the one sensor case) that feasibility of the LMI is independent of that selection. That proof extends straightforwardly to the multi-sensor case addressed here.

We prove below the necessity of the conditions of Theorem 2. To this end, we exploit Propositions 1 and 3. A consequence of necessity is that, as emphasized after Proposition 1, when some 𝑇 𝑀 𝜎 , 𝜎 ∈ S 𝑁 , grow too large, one expects inequalities [START_REF] Hetel | Recent developments on the stability of systems with aperiodic sampling: An overview[END_REF] to become infeasible. 25) into [START_REF] Heemels | Observer-based control of discrete-time LPV systems with uncertain parameters[END_REF]. Then, via Proposition 3, (20) implies that there exist matrices 𝑃 𝜎 satisfying [START_REF] Goebel | Hybrid Dynamical Systems: modeling, stability, and robustness[END_REF]. This proves necessity because [START_REF] Hetel | Recent developments on the stability of systems with aperiodic sampling: An overview[END_REF] immediately follows from [START_REF] Goebel | Hybrid Dynamical Systems: modeling, stability, and robustness[END_REF]. More specifically, by initializing 𝐻 𝑁 := 𝐼, we select which, suitably iterated, transforms [START_REF] Li | Robust distributed estimation for linear systems under intermittent information[END_REF] in [START_REF] Heemels | Observer-based control of discrete-time LPV systems with uncertain parameters[END_REF], and, as discussed above, the proof is completed by using Proposition 3, ( 18) and ( 23).

K𝜎 = 𝐻 𝜎 𝐿 𝜎 ∀𝜎 ∈ S 𝑁 , 𝐻 𝜎-1 := e -𝐴𝑇 𝜎 𝐼 -K𝜎 𝐶 𝜎 -1 𝐻 𝜎 ∀𝜎 = 2, • • • , 𝑁. (26 

Jitter-tolerant sufficient conditions

We address in this section the jitter-tolerant context of Definition 1 for which we consider the interconnection between plant ( 9) and the jitte-tolerant observer (11a), (11b) providing the continuous-time estimate [START_REF] Feddaoui | Highgain extended Kalman filter for continuous-discrete systems with asynchronous measurements[END_REF]. For this case, the error dynamics ( 17) governing x := 𝑥x generalize to

x = 𝐴 x + 𝑑, 𝜏 = 1, 𝜎 = 0, (𝜏, 𝜎) ∈ C, x+ = 𝐼 -𝐾 𝜎 (𝜏)𝐶 𝜎 x + 𝐾 𝜎 (𝜏)𝑤, 𝜏 + = 0, 𝜎 + = Γ(𝜎), (𝜏, 𝜎) ∈ D, ( 28 
)
with Γ as in [START_REF] Alonge | Hybrid observer for indoor localization with random time-of-arrival measurements[END_REF]. As compared to the jitter-free case, the set of solutions to ( 28) is richer in behavior, therefore we only provide sufficient conditions ensuring Goal 1. These sufficient conditions reduce to the ones of Section 4 when the jitter reduces to zero (namely 𝑇 𝑚 𝜎 approaches 𝑇 𝑀 𝜎 ). Therefore we expect low conservativeness of our conditions when the jitter is small. According to the discussion given after the statement of Goal 1, we first propose analysis conditions (with fixed gains 𝐾 𝜎 (•)) in Section 5.1 and then provide design conditions in Section 5.2. The conditions that we propose are still convex in the decision variables associated to the gains 𝜏 ↦ → 𝐾 𝜎 (𝜏), but the fact that these gains are infinite dimensional leads to infinite dimensional conditions. Section 5.3 gives an algorithm that is guaranteed to end in a finite number of steps, under a feasibility assumption, for solving those infinite dimensional conditions.

Stability analysis

We state below the jitter-tolerant generalization of the conditions of Theorem 1. In light of Proposition 3, we expect these sufficient conditions not to be too conservative (especially when the jitter 𝑇 𝑀 𝜎 -𝑇 𝑚 𝜎 is small). Theorem 3 Assume that there exist 𝑁 matrices 𝑃 𝜎 = 𝑃 𝜎 > 0, ∀𝜎 ∈ S 𝑁 such that, for each 𝜎 ∈ S 𝑁 , e (-𝐴 𝜏) 𝑃 𝜎 e (-𝐴𝜏)

★ 𝑃 Γ( 𝜎) (𝐼 -𝐾 𝜎 (𝜏)𝐶 𝜎 ) 𝑃 Γ( 𝜎) > 0, ∀𝜏 ∈ [𝑇 𝑚 𝜎 , 𝑇 𝑀 𝜎 ]. (29 
) Then observer (11a), (11b) with continuous-time output [START_REF] Feddaoui | Highgain extended Kalman filter for continuous-discrete systems with asynchronous measurements[END_REF] accomplishes Goal 1. Proof: Consider the Lyapunov function: 𝑉 ( x, 𝜏, 𝜎) = e -𝜌𝜏 x e (-𝐴 𝜏) 𝑃 𝜎 e (-𝐴𝜏) x, [START_REF] Plarre | On Kalman filtering for detectable systems with intermittent observations[END_REF] where 𝜌 > 0 is a constant to be selected below, and let us emphasize that the flow and jump sets in (9d) satisfy D ⊂ C, so we can concentrate on values (𝜏, 𝜎) ∈ C in the following analysis. Also note that C is compact so that the following are positive quantities:

𝑐 1 := min ( 𝜏, 𝜎) ∈ C e -𝜌𝜏 𝜆 𝑚 e (-𝐴 𝜏) 𝑃 𝜎 e (-𝐴𝜏) > 0, (31) 
𝑐 2 := max

( 𝜏, 𝜎) ∈ C
𝜆 𝑀 e (-𝐴 𝜏) 𝑃 𝜎 e (-𝐴𝜏) > 0.

The above-defined scalars clearly satisfy

𝑐 1 | x| 2 ≤ 𝑉 ( x, 𝜏, 𝜎) ≤ 𝑐 2 | x| 2 , ∀ x ∈ R 𝑛 , (𝜏, 𝜎) ∈ C. (33) 
Since 𝜎 = 0, and consequently 𝑃 𝜎 is constant during flow, the variation of 𝑉 along the flow map of (28) becomes:

𝑉 := e -𝜌𝜏 x e (-𝐴 𝜏) 𝑃 𝜎 e (-𝐴𝜏) 2𝐴 x + 2𝑑 -2𝐴 x , -𝜌𝑉 ( x, 𝜏, 𝜎) (34) 
≤ 2| x||e (-𝐴 𝜏) 𝑃 𝜎 e (-𝐴𝜏) ||𝑑| -𝜌𝑉 ( x, 𝜏, 𝜎) ≤ 2𝑐 𝐹 | x||𝑑| -𝜌𝑉 ( x, 𝜏, 𝜎), ∀( x, 𝜏, 𝜎) ∈ R 𝑛 × C,
where we defined 𝑐 𝐹 := max [START_REF] Sferlazza | Time-varying sampled-data observer with asynchronous measurements[END_REF], also using [START_REF] Rajamani | Vehicle dynamics and control[END_REF], gives

( 𝜏, 𝜎) ∈ C |e (-𝐴 𝜏) 𝑃 𝜎 e (-𝐴𝜏) | > 0. Using Young's inequality, we have 2𝑐 𝐹 | x||𝑑| ≤ 2𝑐 2 𝐹 𝜌𝑐 1 |𝑑| 2 + 𝜌𝑐 1 2 | x| 2 that, substituted in
𝑉 ≤ - 𝜌 2 𝑉 ( x, 𝜏, 𝜎) + 𝛾 𝐹 |𝑑| 2 , ∀( x, 𝜏, 𝜎) ∈ R 𝑛 × C, (35) 
with

𝛾 𝐹 := 2𝑐 2 𝐹 𝜌𝑐 1 .
The change of 𝑉 across the jump map of ( 28) is given by

Δ𝑉 := 𝑉 ( x+ , 𝜏 + , 𝜎 + ) -𝑉 ( x, 𝜏, 𝜎) (36) = 𝑤 𝐾 𝜎 (𝜏) 𝑃 Γ( 𝜎) -2(𝐼 -𝐾 𝜎 (𝜏)𝐶 𝜎 ) x + 𝐾 𝜎 (𝜏)𝑤 -x e -𝐴 𝜏 𝑃 𝜎 e -𝐴𝜏 -𝐼 -𝐾 𝜎 (𝜏)𝐶 𝜎 𝑃 Γ( 𝜎) 𝐼 -𝐾 𝜎 (𝜏)𝐶 𝜎 𝑀 ( 𝜏, 𝜎):= x + (1 -e -𝜌𝜏 ) x e -𝐴 𝜏 𝑃 𝜎 e -𝐴𝜏 x ≤ -x 𝑀 (𝜏, 𝜎) x + 𝑐 𝐽 |𝑤|(2| x|+|𝑤|) + (e 𝜌𝑇 𝑀 -1)𝑉 ( x, 𝜏, 𝜎),
for all ( x, 𝜏, 𝜎) ∈ R 𝑛 × C, where we defined 𝑇 𝑀 := max 𝜎 ∈S 𝑁 𝑇 𝑀 𝜎 > 0 and 𝑐 𝐽 := max

( 𝜏, 𝜎) ∈ C {|𝐾 𝜎 (𝜏) 𝑃 Γ( 𝜎) (𝐼 - 𝐾 𝜎 (𝜏)𝐶 𝜎 )|, |𝐾 𝜎 (𝜏) 𝑃 Γ( 𝜎) 𝐾 𝜎 (𝜏)|} > 0.
Consider now [START_REF] Phillips | Robust exponential stability of an intermittent transmission state estimation protocol[END_REF], and use a Schur complement to get

e -𝐴 𝜏 𝑃 𝜎 e -𝐴𝜏 -𝐼 -𝐾 𝜎 (𝜏)𝐶 𝜎 𝑃 Γ( 𝜎) 𝐼 -𝐾 𝜎 (𝜏)𝐶 𝜎 > 0, (37) 
namely 𝑀 (𝜏, 𝜎) > 0, ∀(𝜏, 𝜎) ∈ C. Since C is compact, we may define the scalar (independent of 𝜌):

𝑐 3 := 1 𝑐 2 min ( 𝜏, 𝜎) ∈ C 𝜆 𝑚 𝑀 (𝜏, 𝜎) > 0. (38) 
Moreover, using Young's inequality, we may obtain the bound 2 , and by selecting 𝜌 := 𝑇 -1 𝑀 log(1 + 𝑐 3 2 ) (recall that 𝑐 3 is independent of 𝜌) we may ensure that (e 𝜌𝑇 𝑀 -1) ≤ 𝑐 3 2 . Both these inequalities can be substituted in [START_REF] Tóth | Modeling and identification of linear parameter-varying systems[END_REF] to obtain, also using [START_REF] Rajamani | Vehicle dynamics and control[END_REF],

2𝑐 𝐽 |𝑤|| x| ≤ 2𝑐 2 𝐽 𝑐 1 𝑐 3 |𝑤| 2 + 𝑐 1 𝑐 3 2 | x|
𝑉 ( x+ , 𝜏 + , 𝜎 + ) ≤ (1 - 𝑐 3 2 )𝑉 ( x, 𝜏, 𝜎) +𝛾 𝐽 |𝑤| 2 + (e 𝜌𝑇 𝑀 -1)𝑉 ≤ 𝑉 ( x, 𝜏, 𝜎) + 𝛾 𝐽 |𝑤| 2 , ∀( x, 𝜏, 𝜎) ∈ R 𝑛 × D, (39) 
with

𝛾 𝐽 := 𝑐 𝐽 + 2𝑐 2
𝐽 𝑐 1 𝑐 3 > 0. Consider now any solution (𝑡, 𝑗) ↦ → 𝜑(𝑡, 𝑗) = ( x(𝑡, 𝑗), 𝜏(𝑡, 𝑗), 𝜎(𝑡, 𝑗)) of ( 28) and note that by assumption all solutions perform infinitely many jumps (they jump at least every 𝑇 𝑀 = max 𝜎 ∈S 𝑁 𝑇 𝑀 𝜎 ordinary time) and infinitely long flow (they flow for at least 𝑇 𝑚 = min 𝜎 ∈S 𝑁 𝑇 𝑚 𝜎 ordinary time 𝑡 after each jump). As a consequence we may use [START_REF] Sinopoli | Kalman filtering with intermittent observations[END_REF] 

+ (𝛾 𝐹 𝑇 𝑀 𝑑 2 𝑡 ,∞ + 𝛾 𝐽 𝑤 2 𝑗,∞ ) ∞ ∑︁ 𝑘=0 e -𝜌 2 𝑇 𝑚 𝑘 ≤ e -𝜌 2 𝑡 𝑉 (𝜑(0, 0)) + 𝑐 1 𝛾 𝑑 2 𝑡 ,∞ + 𝑐 1 𝛾 𝑤 2 𝑗,∞ ,
where we used 𝑅 := ∞ 𝑘=0 e -𝜌 2 𝑇 𝑚 𝑘 = (1e -𝜌 2 𝑇 𝑚 ) -1 and we introduced 𝛾 := 𝑅 𝑐 1 max{𝛾 𝐹 𝑇 𝑀 , 𝛾 𝐽 }. Applying [START_REF] Rajamani | Vehicle dynamics and control[END_REF] twice to (43) one obtains representation [START_REF] Ferrante | State estimation of linear systems in the presence of sporadic measurements[END_REF] of bound [START_REF] Arcak | A framework for nonlinear sampled-data observer design via approximate discrete-time models and emulation[END_REF] in Goal 1 with 𝑀 = 𝑐 2 𝑐 1 and 𝜆 = 𝜌 2 . Proof of Theorem 1: The statement of Theorem 3 reduces to the one of Theorem 1 in the jitter-free case [START_REF] Dinh | Continuousdiscrete time observer design for lipschitz systems with sampled measurements[END_REF] because [START_REF] Phillips | Robust exponential stability of an intermittent transmission state estimation protocol[END_REF] reduces to [START_REF] Goebel | Hybrid Dynamical Systems: modeling, stability, and robustness[END_REF] with K𝜎 = 𝐾 𝜎 (𝑇 𝜎 ) for all 𝜎 ∈ S 𝑁 . Then, Theorem 1 is a corollary of Theorem 3.

Observer design

We propose below a construction for gains 𝐾 𝜎 (•) in observer (11a), (11b). The design is based on finding the Lyapunov certificates 𝑃 𝜎 = 𝑃 𝜎 > 0 of the analysis conditions of Theorem 3, therefore from Proposition 4 we expect these design conditions not to be too conservative when the jitter 𝑇 𝑀 𝜎 -𝑇 𝑚 𝜎 is small. 𝐶 𝜎 e (-𝐴 

:= 𝐶 𝜎 Ψ 𝜎 (𝜏)𝐶 𝜎 ★ 𝑃 Γ(𝜎) 𝐶 𝜎 +𝑃 Γ(𝜎) 𝐾 𝜎 (𝜏)𝐶 𝜎 𝐶 𝜎 𝑃 Γ(𝜎) - 𝐶 𝜎 Ψ 𝜎 (𝜏)𝐶 ⊥ 𝜎 𝑃 Γ( 𝜎) 𝐶 ⊥ 𝜎 Σ 𝜎 := (𝐶 ⊥ 𝜎 ) Ψ 𝜎 (𝜏)𝐶 ⊥ 𝜎 -1 Σ 𝜎 > 0, ( 46 
)
where Ψ 𝜎 (𝜏) = e (-𝐴 𝜏) 𝑃 Γ( 𝜎) e (-𝐴𝜏) . Since 𝑀 𝜎 11 (•) and 𝑀 𝜎 22 (•) are independent of 𝐾 𝜎 (•), the existence result of Part 1 implies that they are both uniformly positive definite and then (46) holds with selection (45), because (45) ensures that 𝑀 𝜎 21 (•) ≡ 0 in (46). The proof is completed by applying Theorem 3.

Proof of Theorem 2:

The statement of Theorem 4 reduces to the one of Theorem 2 in the jitter-free case (12) because (44) reduces to [START_REF] Hetel | Recent developments on the stability of systems with aperiodic sampling: An overview[END_REF]. Then, Theorem 2 is a corollary of Theorem 4. Remark 3 As discussed in [23, §4.3.6-4.3.7], discrete-time and linear parameter varying (LPV) approaches to deal with time-varying sampling intervals can provide an alternative approach to the one considered in this paper. Hence, inspired by [START_REF] Halimi | Polytopic observers for LPV discrete-time systems[END_REF], [START_REF] Heemels | Observer-based control of discrete-time LPV systems with uncertain parameters[END_REF] and [START_REF] Tóth | Modeling and identification of linear parameter-varying systems[END_REF], a discrete-time LPV framework could be used to design an observer, robust to the non-constant intersample time induced by the bounds 𝑇 𝑚𝜎 (𝑡 𝑘 ) and 𝑇 𝑀 𝜎 (𝑡 𝑘 ) . The alternative hybrid techniques used here allow deriving necessary and sufficient conditions in the jitter-free case, which become only sufficient in the jitter-tolerant case. These conditions are independent of the observer gains, thanks to the use of the elimination lemma.

Design algorithm

In this section the main ingredients of the algorithm presented in [START_REF] Sferlazza | Time-varying sampled-data observer with asynchronous measurements[END_REF] are generalized for solving the infinitedimensional problem (44) in a finite number of steps. As in [START_REF] Sferlazza | Time-varying sampled-data observer with asynchronous measurements[END_REF], the algorithm consists in three steps (the initialization, the synthesis, and the analysis phase) as described below. 

is added to the corresponding set T 𝜎 , and the algorithm restarts from the synthesis phase (i.e.

Step 2).

Regarding the convergence of this algorithm, the following theorem can be stated. Theorem 5 If there exist solutions 𝑃 𝜎 , ∀𝜎 ∈ S 𝑁 , to problem (44), then the proposed algorithm terminates successfully providing outputs (𝑃 * 1 , . . . , 𝑃 * 𝑁 , 𝑝 * ), after a finite number of iterations. Proof The proof follows the same technique as that of [START_REF] Sferlazza | Time-varying sampled-data observer with asynchronous measurements[END_REF]Thm 3] with the caveat of considering the worst case among all 𝜎 ∈ S 𝑁 of the quantities defined therein. Similar to [START_REF] Sferlazza | Time-varying sampled-data observer with asynchronous measurements[END_REF]Thm 3], the number of iterations depends on the condition numbers of 𝑃 𝜎 , ∀𝜎 ∈ S 𝑁 .

Numerical example

Consider the quarter-car active automotive suspension system shown in Fig. 2. The state-space model of this system can be written as [START_REF] Rajamani | Vehicle dynamics and control[END_REF]:

𝑥 = 𝐴𝑥 + 𝐵 𝑢 𝐹 𝑎 + 𝐵 𝑑 𝑧 𝑟 + 𝑑, (51) 
where 𝐹 𝑎 is the active force of an actuator, 𝑑 is the process disturbance, 𝑧 𝑟 is an input that models how the road profile enters into the system, the state vector 𝑥 = [𝑥 1 𝑥 2 𝑥 3 𝑥 4 ] , 

Fig. 1 .

 1 Fig. 1. Round Robin measurement scheme.
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 1 ) Finally, introducing T𝑘 := 𝑇 1 + 𝑇 2 + • • • + 𝑇 𝑘 = 𝑇 𝑘 + T𝑘-1 , we have: e 𝐴 T𝜎 -K𝜎 𝐶 𝜎 e 𝐴 T𝜎 -𝐻 𝜎 𝜎-1 ∑︁ 𝑘=1 𝐿 𝑘 𝐶 𝑘 e 𝐴 T𝑘 = 𝐼 -K𝜎 𝐶 𝜎 e 𝐴𝑇 𝜎 𝐼 -K𝜎-1 𝐶 𝜎-1 e 𝐴 T𝜎-𝐻 𝜎-1 𝜎-2 ∑︁ 𝑘=1 𝐿 𝑘 𝐶 𝑘 e 𝐴 T𝑘 (27)

Theorem 4

 4 Assume 𝐶 𝜎 is full row rank and denote by 𝐶 ⊥ 𝜎 a basis of the orthogonal complement of 𝐶 𝜎 . If, for all 𝜎 ∈ S 𝑁 there exists 𝑃 𝜎 = 𝑃 𝜎 > 0 satisfying Ξ 𝑃 𝜎 (𝜏) := 𝐶 ⊥ 𝜎 e (-𝐴 𝜏) 𝑃 𝜎 e (-𝐴𝜏) 𝐶 ⊥ 𝜎 ★ 𝑃 Γ( 𝜎) 𝐶 ⊥ 𝜎 𝑃 Γ( 𝜎) > 0, ∀𝜎 ∈ S 𝑁 and ∀𝜏 ∈ [𝑇 𝑚 𝜎 , 𝑇 𝑀 𝜎 ], (44) select 𝐾 𝜎 (𝜏) := 𝐶 𝜎 -𝐶 ⊥ 𝜎 (𝐶 ⊥ 𝜎 ) e (-𝐴 𝜏) 𝑃 𝜎 e (-𝐴𝜏) 𝐶 ⊥ 𝜎 -1

Fig. 2 .Fig. 3 .

 23 Fig. 2. Quarter-car active automotive suspension system. comprises the suspension deflection 𝑥 1 = 𝑧 𝑠 -𝑧 𝑢 , the absolute velocity 𝑥 2 = 𝑧 𝑠 of the sprung mass 𝑚 𝑠 , the tire deflection 𝑥 3 = 𝑧 𝑢 -𝑧 𝑟 , and the absolute velocity 𝑥 4 = 𝑧 𝑢 of the unsprung mass 𝑚 𝑢 . 𝐴, 𝐵 𝑢 and 𝐵 𝑑 are given by:

Fig. 4 .

 4 Fig.[START_REF] Andrieu | Continuous discrete observer with updated sampling period[END_REF]. Top two traces: evolution of the output errors. Bottom trace: evolution of log(𝑉), with 𝑉 defined in[START_REF] Plarre | On Kalman filtering for detectable systems with intermittent observations[END_REF].

Fig. 5 .

 5 Fig. 5. Evolution of the timer and related upper and lower bounds. The upper plot, showing (𝜎 -1)𝜏 is informative when 𝜎 = 2 and zero when 𝜎 = 1. Viceversa, the lower plot, showing (2 -𝜎)𝜏, is informative when 𝜎 = 1 and zero when 𝜎 = 2.

  𝑇 𝑚 𝜎 (𝑡 𝑘 ) ≤ |𝑡 𝑘+1 -𝑡 𝑘 | ≤ 𝑇 𝑀 𝜎 (𝑡 𝑘 ) ∀ 𝑘 ∈ N. Jitter-free scenario: the case where 𝑇 𝑚 𝜎 = 𝑇 𝑀 𝜎 , namely the elapsed time between successive measurements 𝑦 𝜎 and 𝑦 Γ( 𝜎) is constant, for each 𝜎 ∈ S 𝑁 , ;• Jitter-tolerant scenario: the case where 𝑇 𝑚 𝜎 < 𝑇 𝑀 𝜎 , namely the elapsed time between 𝑦 𝜎 and 𝑦 Γ( 𝜎) is not constant for at least one 𝜎 ∈ S 𝑁 .

	build a continuous-discrete observer providing an asymp-
	totic estimate 𝑡 ↦ → x(𝑡) of x satisfying the following robust
	uniform exponential bound, for some suitable positive con-
	stants 𝑀, 𝜆 and 𝛾
	(4)
	Aperiodicity is captured by the fact that constants 𝑇 𝑚 𝜎 and
	𝑇 𝑀 𝜎 depend on the sensor 𝜎 involved in the measurement.
	Note also that 𝑇 𝑚 𝜎 is greater than zero so that two sub-
	sequent measurements are never simultaneously available.
	This feature prevents Zeno behavior in the hybrid model de-
	veloped in this work.
	Definition 1 Consider plant (1) with outputs (3) available
	at measurement times 𝑡 𝑘 , 𝑘 ∈ N satisfying Assumptions 1
	and 2, we denote by
	• Our main contribution is to construct estimators addressing
	the two scenarios introduced in Definition 1 and ensuring
	the following asymptotic estimation property.
	Goal 1 Given plant (1) with outputs (3) available at mea-
	surement times 𝑡 𝑘 , 𝑘 ∈ N satisfying Assumptions 1 and 2,

Assumption 1 Function 𝑡 ↦ → 𝑢(𝑡) is known. Moreover, for each 𝜎 ∈ S 𝑁 , matrix 𝐶 𝜎 is full row rank. From (2), measurements (3) can be called asynchronous because the different outputs 𝑦 𝜎 , 𝜎 ∈ S 𝑁 are not available at the same time. The Round-Robin structure (2) allows us to model such asynchronous behavior with a single timer, whereas more sophisticated (non-sequential) sampling patterns occurring in network communication often require multiple timers

[START_REF] Phillips | Robust exponential stability of an intermittent transmission state estimation protocol[END_REF]

. The aperiodic and sporadic nature of the measurement times 𝑡 𝑘 , 𝑘 ∈ N is captured by the next assumption. Assumption 2 For each 𝜎 ∈ S 𝑁 , there exist scalars 𝑇 𝑚 𝜎 and 𝑇 𝑀 𝜎 , with 0 < 𝑇 𝑚 𝜎 ≤ 𝑇 𝑀 𝜎 , such that:

Proposition 4

 4 In the jitter-free case of[START_REF] Dinh | Continuousdiscrete time observer design for lipschitz systems with sampled measurements[END_REF], LMI[START_REF] Hetel | Recent developments on the stability of systems with aperiodic sampling: An overview[END_REF] is feasible if and only if there exists an asymptotic observer achieving Goal 1. Proof The sufficiency has been already established in Theorem 2. For the necessity, from Proposition 1 if there exists an asymptotic observer achieving Goal 1, then pair (𝐶, e 𝐴𝑇 ) is discrete-time detectable. Such a detectability property implies that there exist 𝐿 and 𝑄 > 0 satisfying 𝑄 -(e 𝐴𝑇 -𝐿𝐶) 𝑄(e 𝐴𝑇 -𝐿𝐶) > 0.(25)Denote 𝐿 = [𝐿 1 • • • 𝐿 𝑁 ] and assume without loss of generality that matrices (𝐼 -𝐿 𝜎 𝐶 𝜎 ), 𝜎 ∈ S 𝑁 , are all invertible. If invertibility does not hold, since singular matrices are a set of measure zero, and by continuity of eigenvalues, it suffices to slightly perturb 𝐿 without destabilizing the Schur eigenvalues of (e 𝐴𝑇 -𝐿𝐶).We construct next a selection of matrices 𝑃 and K1 , . . . , K𝑁 transforming (

  together with standard comparison theory to conclude, for all (𝑡, 𝑗) ∈ dom 𝜑, 𝑉 (𝜑(𝑡, 𝑗)) ≤ e -𝜌 2 (𝑡-𝑡 𝑗 ) 𝑉 (𝜑(𝑡 𝑗 , 𝑗)) + 𝛾 𝐹 𝑇 𝑀 𝑑 2 𝑡 ,∞ , (40) 𝑉 (𝜑(𝑡 𝑗+1 , 𝑗)) ≤ e -𝜌 2 𝑇 𝑚 𝑉 (𝜑(𝑡 𝑗 , 𝑗)) + 𝛾 𝐹 𝑇 𝑀 𝑑 2 𝑡 ,∞ , (41) where we used the continuous-time signal norm 𝑑 𝑡 ,∞ in (6). Furthermore, we may use (39) and the discrete-time signal norm 𝑤 𝑗,∞ in (6) to get 𝑉 (𝜑(𝑡 𝑗 , 𝑗)) ≤ 𝑉 (𝜑(𝑡 𝑗 , 𝑗 -1)) + 𝛾 𝐽 𝑤 2 𝑗,∞ , ∀ 𝑗 ≥ 1. (42) 𝑇 𝑚 𝑘 𝛾 𝐹 𝑇 𝑀 𝑑 2

	We may finally nest the bounds in (40)-(42) to get
		𝑗	
	𝑉 (𝜑(𝑡, 𝑗)) ≤ e -𝜌 2 𝑡 𝑉 (𝜑(0, 0)) +	∑︁	e -𝜌 2 𝑡 ,∞
		𝑘=0
				𝑗
		+	∑︁	e -𝜌 2 𝑇 𝑚 𝑘 𝛾 𝐽 𝑤 2 𝑗,∞
			𝑘=1
	≤ e -𝜌 2 𝑡 𝑉 (𝜑(0, 0))			(43)

  𝜏) 𝑃 𝜎 e (-𝐴𝜏) 𝐶 ⊥ 𝜎 (𝐶 𝜎 𝐶 𝜎 ) -1 . (45) Proof First we may proceed as in Part 1 of [34, Thm 2] using 𝐶 𝜎 instead of 𝐶, Ψ 𝜎 (𝜏) := e (-𝐴 𝜏) 𝑃 Γ( 𝜎) e (-𝐴𝜏) instead of Ψ(𝜏) and 𝑌 𝜎 (𝜏) := -𝑃 Γ( 𝜎) 𝐾 𝜎 (𝜏) instead of 𝑌 (𝜏) to show that condition (44) ensures the existence of a gain 𝐾 𝜎 (•) satisfying[START_REF] Phillips | Robust exponential stability of an intermittent transmission state estimation protocol[END_REF]. Secondly, given matrices 𝑃 𝜎 satisfying condition (44), we may follow the steps of Part 2 of the proof of[START_REF] Sferlazza | Time-varying sampled-data observer with asynchronous measurements[END_REF] Thm 1] to obtain that (29) holds if, paralleling [34, Eq. (25)],

	Then observer (11a), (11b) with continuous-time output (15)
	accomplishes Goal 1.
	𝑀 𝜎 11 (𝜏) ★
	𝑀 𝜎 21 (𝜏) 𝑀 𝜎 22 (𝜏)

•

  Step 1. Initialization. Constants 𝛽 and 𝛾 satisfying ( 𝐴 + 𝛽𝐼) Π + Π( 𝐴 + 𝛽𝐼) > 0 and 𝛾 := √︁ 𝜆 𝑀 (Π)/𝜆 𝑚 (Π), for some Π = Π > 0 are selected. This step is based on[34, Lemma 3]. • Step 2. Synthesis. We solve the finite dimensional optimization: Ξ 𝑃 𝜎 (𝜏) > 2𝜇𝐼, ∀𝜏 ∈ T 𝜎 and ∀𝜎 ∈ S 𝑁 , 𝐼 ≤ 𝑃 𝜎 ≤ 𝑝 𝑀 𝐼, ∀𝜎 ∈ S 𝑁 where 𝜏 ranges over a finite number of points collected in the discrete sets T 𝜎 (in the first step T 𝜎 ={𝑇 𝑚 𝜎 , 𝑇 𝑀 𝜎 }). • Step 3. Analysis. Given (𝑃 * 1 , . . . , 𝑃 * 𝑁 , 𝑝 * ) from (47), we check the following eigenvalue conditions, relaxing the constraints in (47) to half of their values: 𝑑 𝜎 ⊂[𝑇 𝑚 𝜎 , 𝑇 𝑀 𝜎 ], ∀𝜎 ∈ S 𝑁 , contains an ordered set of scalars 𝑇 𝑚 𝜎 = 𝜏 𝜎 1 < • • • < 𝜏 𝜎 𝜈 * =𝑇 𝑀 𝜎 satisfying: 𝐴 𝛾e 𝛽𝑇 𝑀 , ∀𝑘 and ∀𝜎 ∈ S 𝑁 , (49) where 𝑇 𝑀 = max 𝜎∈S 𝑁 𝑇 𝑀 𝜎 . Finally, if all of the 𝑁 conditions (48) are satisfied, then the algorithm stops and gives (𝑃 * 1 , . . . , 𝑃 * 𝑁 ) as solutions to (44). Otherwise, for each violation of (48), a value: τ𝜎 ∈ arg min 𝜏 ∈T 𝑑 𝜎 𝜆 𝑚 Ξ 𝑃 * 𝜎 (𝜏)

	(𝑃 * 1 , . . . , 𝑃 * 𝑁 , 𝑝 * ) = arg	𝑃 𝜎 =𝑃 𝜎 , 𝑝 𝑀 min	𝑝 𝑀 , s.t.	(47)
	Ξ 𝑃 * 𝜎 (𝜏) > 𝜇𝐼,	∀𝜏 ∈ T 𝑑 𝜎 and ∀𝜎 ∈ S 𝑁	(48)
	where T 𝜏 𝜎 𝑘+1 -𝜏 𝜎 𝑘 ≤ 2𝛿			

* := 2𝜇 𝑝 *

To simplify the exposition, using a slight abuse of notation we specify the flow and jump sets C and D as subsets of the domain of states (𝜏, 𝜎), without referring to state variable 𝑥. This means that the 𝑥 variable can assume any value in R 𝑛 both in C and D.
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.

The following parameters are considered in the model: 𝑘 𝑠 = 1.6 •10 4 , 𝑏 𝑠 = 10 3 , 𝑚 𝑠 = 250, 𝑚 𝑢 = 45, 𝑘 𝑡 = 400, 𝑏 𝑡 = 0. The process disturbance 𝑑 is selected as 𝑑 := [𝑑 1 , 𝑑 2 , 𝑑 3 , 𝑑 4 ] , where 𝑑 1 , • • • , 𝑑 4 are zero mean uniformly distributed random noises such that: 𝑑 1 𝑡 ,∞ = 0.004, 𝑑 2 𝑡 ,∞ = 0.1, 𝑑 3 𝑡 ,∞ = 0.04, 𝑑 4 𝑡 ,∞ = 0.1. In order to apply the proposed algorithm to estimate the state vector of system (51) we assume to measure sequentially the components 𝑥 1 and 𝑥 3 . This means that 𝑁 = 2 and S 𝑁 = S 2 = {1, 2}, and the output matrices are 𝐶 1 = [1 0 0 0] and 𝐶 2 = [0 0 1 0]. Moreover, we assume that both measurements are corrupted by a zero mean uniformly distributed random noise 𝑤, in particular the measurement of 𝑥 1 is corrupted by a random noise 𝑤 1 with 𝑤 1 𝑡 ,∞ = 0.002, while the measurement of 𝑥 3 is corrupted by a random noise 𝑤 2 with 𝑤 2 𝑡 ,∞ = 0.02. We also select the interval [𝑇 𝑚 𝜎 , 𝑇 𝑀 𝜎 ] equal to [0.02, 0.07] for 𝜎 = 1 and equal to [0.04, 0.09] for 𝜎 = 2. Finally, the orthogonal complements of 𝐶 1 and 𝐶 2 are selected as

. In order to find matrices 𝑃 𝜎 , 𝜎 ∈ {1, 2}, satisfying (44) for all (𝜏, 𝜎) ∈ 𝜎 ∈S 2 [𝑇 𝑚 𝜎 , 𝑇 𝑀 𝜎 ]×{𝜎} , we apply the algorithm described in Section 5.3. In this case the algorithm finds a solution after three steps. Indeed, as shown in Fig. 3 (left), the validation phase initially fails because not all of the sampled minimum eigenvalues of matrix Ξ 𝑃 1 (𝜏) are positive. For this reason the value τ = 0.0534, associated to the minimum over 𝜏 of 𝜆 𝑚 Ξ 𝑃 1 (𝜏) is included in the set T . Then the algorithm restarts from the synthesis phase with one extra constraint. After this second iteration the algorithm finds a second solution, which again fails to satisfy the validation phase, and the value τ = 0.0434 is included in the set T (see Fig. , 𝑃 2 = 12.5 -0.8 -0.9 -1.0 -0.8 0.8 0.9 0.9 -0.9 0.9 0.9 0.1 -1.0 0.9 0.1 1.1

.

The dynamics (51) has been implemented together with the continuous-discrete observer [START_REF] Dačić | Observer design for wired linear networked control systems using matrix inequalities[END_REF] in the MATLAB ® -Simulink environment. The gains 𝐾 𝜎 (𝜏) are computed online according to (45) by using matrices 𝑃 𝜎 , 𝜎 ∈ {1, 2}, in (52). Moreover, to simulate random measurements instants, we implemented the following modified stochastic hybrid dynamical version of the error dynamics, corresponding to [START_REF] Nešić | Formulas relating K L stability estimates of discrete-time and sampled-data nonlinear systems[END_REF] with a random selection of the inter-measurement intervals:

where 𝜈 + is a random variable uniformly distributed in the set [0, 1]. The results of the numerical simulation are shown in Figs. 4 and5. In particular, from the bottom trace in Fig. 4 we note that the Lyapunov function 𝑉 in (30) decreases, due to the persistent jumps, as expected from the theoretical results of Theorem 3. Also the output estimation error converges close to zero as shown in the top traces of Fig. 4. Due to the persistence of the process disturbance 𝑑 and measurement noise 𝑤, the error does not converge to zero, but remains bounded, according to the ISS bound [START_REF] Arcak | A framework for nonlinear sampled-data observer design via approximate discrete-time models and emulation[END_REF] given in Goal 1. Finally, from the evolution of 𝜏 in Fig. 5, we see that the jumps occur randomly within the prescribed intervals, according to dynamics (53).

Conclusions

A time-varying sampled-data observer has been proposed for linear systems whose outputs are sequentially sampled via non-uniform sampling intervals repeating a prescribed Round-Robin sequence. When the sampling intervals are constant (jitter-free case) necessary and sufficient conditions have been provided for the design of an asymptotic continuous-discrete observer whose estimation error is ISS from process disturbances and measurement noise. With jitter-tolerant sampling intervals, sufficient conditions for ISS asymptotic estimation have been given, and a constructive design technique has been proposed. A numerical example based on a practical application has been discussed, showing the effectiveness of the proposed approach.