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Abstract

A sampled-data observer is proposed for linear continuous-time systems whose outputs are sequentially sampled via non-uniform sampling
intervals repeating a prescribed Round-Robin sequence. With constant sampling intervals (jitter-free case) we provide constructive necessary
and sufficient conditions for the design of an asymptotic continuous-discrete observer whose estimation error is input-to-state stable (ISS)
from process disturbances and measurement noise. We use a time-varying gain depending on the elapsed time since the last measurement.
With non-constant sampling intervals (jitter-tolerant case), our design conditions are only sufficient. A suspension system example shows
the effectiveness of the proposed approach.
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1 Introduction
The observation, estimation and control problems for dy-
namical systems using data transmitted over communica-
tion networks attracted several works in the past decade,
dealing with lossy and intermittent data, and with network
reliability, as surveyed in [23]. In the specific case where
the output is only available at isolated time instants, the
classical estimation paradigms, using continuous plant mea-
surements from the plant, need to be revisited. (see, e.g.,
[22,9,25,37,11,10,31] and the references therein).
When the measurements are available periodically, many
algorithms are available, based on discrete-time observers
for the discretized plant; see, e.g. [28], [5] and references
therein. However, often this approach is not realistic be-
cause the elapsed time between two measurements is not
constant (sporadic measurements). In order to address this
problem, [32] and [3], propose a method for nonlinear Lip-
schitz systems with sampled measurements. For the same
class of nonlinear Lipschitz systems, [12] and [13] propose
design techniques for the injection gain based on Linear Ma-
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trix Inequalities (LMIs) certifying asymptotic stability of the
error dynamics. Moreover, in [13] high-gain observers are
considered. In [27] and [4], nonlinear uniformly observable
single output systems are addressed. Finally, some classes
of systems with sampled and delayed outputs are addressed
in [26]. This estimation problem has also been addressed
in a stochastic framework. For example Extended Kalman
Filters (EKFs) with sporadic measurements have been pro-
posed in many works [35], [30], [24], [38], [6], [14] and [15],
where the Kalman filter is adapted to linear and/or nonlinear
continuous-discrete system with multirate sampled outputs.
A natural framework to model the coexistence of continuous-
time and discrete-time dynamics is that of hybrid dynami-
cal systems [18]. In particular, [16] and [34] propose hybrid
observers for linear systems with sampled measurements
where the output error injection gain (constant in [16] and
time-varying in [34]) is computed by means of LMI-based
conditions embedding the matrix exponential. In both these
works, the LMIs proposed are infinite-dimensional and are
solved by suitable sequential algorithms, as in [34], or by
convex approximations of the exponential matrix, as in [16].
Nonlinear Lipschitz systems have also been cast in the hy-
brid dynamical systems framework, see e.g. [17] where the
problem of exponentially estimating the state is considered.
In this paper we consider linear plants with sampled and
sporadic measurements, extending the concepts presented in
[34] by assuming that multiple plant outputs are accessible
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Fig. 1. Round Robin measurement scheme.

following a prescribed and cyclic sequence in a Round-Robin
scenario. Such sequential readings are common in many ap-
plication fields, especially in the presence of sensors net-
works (see e.g. [25], [1] and references therein) that share
the same communication bus, or when the estimation algo-
rithm is implemented in a serial communication hardware
platform that only allows for one measurement at a time (see
e.g. [2] and references therein, for the case of indoor local-
ization). Our approach largely exploits the sequential nature
of the measurement and is somewhat complementary to the
recently proposed results of [25], where multiple sensors are
collected in sparse order, thereby needing stronger decrease
conditions on the arising Lyapunov function. We exploit this
advantage by proving that our analysis and design conditions
are necessary for the jitter-free case. To this end, we prove a
necessary structural collective detectability condition, inde-
pendent of the observer architecture. In addition to proving
exponential estimation, we also prove input-to-state stability
(ISS) of our observer with respect to continuous-time pro-
cess disturbances and impulsive measurement noise.
Notation. N denotes all positive integers. Given a matrix
𝐴, 𝐴> denotes its transpose. Given a full row-rank ma-
trix 𝐶, 𝐶⊥ denotes its orthogonal complement, namely a
matrix such that [𝐶⊥ 𝐶>] is square and nonsingular, and
such that 𝐶𝐶⊥ = 0. Given a symmetric matrix 𝑆, 𝜆𝑚 (𝑆)
and 𝜆𝑀 (𝑆) denote, respectively, its minimum and maximum
(real) eigenvalues, and 𝑆 > 0 (resp. 𝑆 < 0) means that 𝑆 is
positive (resp. negative) definite. The symbol ★ denotes a
symmetric term.
2 Asynchronous Observations
2.1 Problem data and main estimation goal
In this work we address state estimation problems for the
following continuous-time plant,

¤̄𝑥 = 𝐴𝑥 + 𝐵𝑢 + 𝑑, (1)

where 𝑥 ∈ R𝑛 is the unknown state to be estimated, 𝑢 :
[0,∞) → R𝑞 is a known input and 𝑑 : [0,∞) → R𝑛 is an
unknown process disturbance, both belonging to the class
of locally bounded measurable functions, 𝐴 ∈ R𝑛×𝑛, and
𝐵 ∈ R𝑛×𝑞 are known matrices.
We assume that plant (1) is equipped with 𝑁 ∈ N sensors
indexed by integer 𝜎 ∈ S𝑁 := {1, 2, ..., 𝑁}, providing mea-
surement outputs 𝑦𝜎 ∈ R𝑚𝜎 (possibly of different dimen-
sions), that are sequentially and asynchronously accessible at
non-periodic and strictly increasing discrete instants of time
𝑡𝑘 , 𝑘 ∈ N according to a Round-Robin polling mechanism,

as shown in Fig. 1, which well represents the sequential val-
ues taken by the sampling function 𝑡𝑘 ↦→ 𝜎(𝑡𝑘 ) ∈ S𝑁 . More
specifically, the Round-Robin mechanism can be written as

𝜎(𝑡𝑘+1) = Γ(𝜎(𝑡𝑘 )) :=
{
𝜎(𝑡𝑘 ) + 1 if 𝜎(𝑡𝑘 ) < 𝑁,
1 if 𝜎(𝑡𝑘 ) = 𝑁.

(2)

For example in the case of three sensors, we have
(𝜎(𝑡1), 𝜎(𝑡2), 𝜎(𝑡3), 𝜎(𝑡4), 𝜎(𝑡5), · · · ) = (1, 2, 3, 1, 2, · · · ).
The sequentially accessible output are a sequence of vectors
(possibly of non-uniform dimensions 𝑚𝜎) written as

𝑦𝜎 (𝑡𝑘 ) (𝑡𝑘 ) := 𝐶𝜎 (𝑡𝑘 )𝑥(𝑡𝑘 ) + 𝑤(𝑘), (3)

where 𝑤 represents a sequence of bounded measurement
noise and matrices 𝐶𝜎 ∈ R𝑚𝜎×𝑛 satisfy the assumption
below. Since input 𝑢 is accessible, we may easily transform
into (3) any output also depending on 𝑢 via a feed-through
term 𝐷𝜎 (𝑡𝑘 )𝑢(𝑡𝑘 ), therefore the strictly proper expression in
(3) is non-restrictive.
Assumption 1 Function 𝑡 ↦→ 𝑢(𝑡) is known. Moreover, for
each 𝜎 ∈ S𝑁 , matrix 𝐶𝜎 is full row rank.
From (2), measurements (3) can be called asynchronous be-
cause the different outputs 𝑦𝜎 , 𝜎 ∈ S𝑁 are not available
at the same time. The Round-Robin structure (2) allows us
to model such asynchronous behavior with a single timer,
whereas more sophisticated (non-sequential) sampling pat-
terns occurring in network communication often require
multiple timers [29]. The aperiodic and sporadic nature of
the measurement times 𝑡𝑘 , 𝑘 ∈ N is captured by the next
assumption.
Assumption 2 For each 𝜎 ∈ S𝑁 , there exist scalars 𝑇𝑚𝜎

and 𝑇𝑀 𝜎 , with 0 < 𝑇𝑚𝜎 ≤ 𝑇𝑀 𝜎 , such that:

𝑇𝑚𝜎 (𝑡𝑘 ) ≤ |𝑡𝑘+1 − 𝑡𝑘 | ≤ 𝑇𝑀 𝜎 (𝑡𝑘 ) ∀ 𝑘 ∈ N. (4)

Aperiodicity is captured by the fact that constants 𝑇𝑚𝜎 and
𝑇𝑀 𝜎 depend on the sensor 𝜎 involved in the measurement.
Note also that 𝑇𝑚𝜎 is greater than zero so that two sub-
sequent measurements are never simultaneously available.
This feature prevents Zeno behavior in the hybrid model de-
veloped in this work.
Definition 1 Consider plant (1) with outputs (3) available
at measurement times 𝑡𝑘 , 𝑘 ∈ N satisfying Assumptions 1
and 2, we denote by
• Jitter-free scenario: the case where 𝑇𝑚𝜎 = 𝑇𝑀 𝜎 , namely

the elapsed time between successive measurements 𝑦𝜎
and 𝑦Γ(𝜎) is constant, for each 𝜎 ∈ S𝑁 , ;

• Jitter-tolerant scenario: the case where 𝑇𝑚𝜎 < 𝑇𝑀 𝜎 ,
namely the elapsed time between 𝑦𝜎 and 𝑦Γ(𝜎) is not
constant for at least one 𝜎 ∈ S𝑁 .

Our main contribution is to construct estimators addressing
the two scenarios introduced in Definition 1 and ensuring
the following asymptotic estimation property.
Goal 1 Given plant (1) with outputs (3) available at mea-
surement times 𝑡𝑘 , 𝑘 ∈ N satisfying Assumptions 1 and 2,
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build a continuous-discrete observer providing an asymp-
totic estimate 𝑡 ↦→ ˆ̄𝑥(𝑡) of 𝑥 satisfying the following robust
uniform exponential bound, for some suitable positive con-
stants 𝑀 , 𝜆 and 𝛾

|𝑥(𝑡) − ˆ̄𝑥(𝑡) |2 ≤𝑀e−𝜆𝑡 |𝑥(0) − ˆ̄𝑥(0) |2+𝛾‖𝑑‖2
𝑡 ,∞+𝛾‖𝑤‖2

𝑗 ,∞,

(5)

for any initial condition 𝑥(0) and ˆ̄𝑥(0) and any exogenous
inputs 𝑑 and 𝑤 such that:

‖𝑑‖𝑡 ,∞ := sup
𝑡 ∈R≥0

|𝑑 (𝑡) |<∞, ‖𝑤‖ 𝑗 ,∞ :=sup
𝑗∈N

|𝑤( 𝑗) |<∞. (6)

Due to the hybrid nature of system (1)–(3) and the ensuing
coexistence of continuous-time 𝑑 and impulsive 𝑤 distur-
bances in (5), we cannot follow standard Lyapunov-based
optimization techniques for minimizing scalar 𝛾 in bound
(5). Instead, we only ensure the existence of a finite gain 𝛾
in this work, saving as future work optimized designs, pos-
sibly using results from [7]. With reference to our main goal
we provide, in the next sections,
• analysis conditions: establishing whether a specific pre-
defined observer ensures Goal 1;
• design conditions: leading to the constructive design of an
observer ensuring Goal 1.
2.2 Necessary detectability conditions
As a first step in characterizing necessary conditions for state
estimation, consider any selection 𝑇𝜎 , 𝜎 = {1, . . . , 𝑁} of
intersample intervals satisfying

𝑇𝑚𝜎 ≤ 𝑇𝜎 ≤ 𝑇𝑀 𝜎 , ∀𝜎 ∈ S𝑁 (7)

(such a selection is unique if and only if we address the
jitter-free case in Def. 1), and note that considering the zero
input case, we may gather each sequence of 𝑁 measurements
at the beginning of the corresponding cumulative interval
𝑇 :=

∑𝑁
𝜎=1 𝑇𝜎 by defining the output matrix

𝐶 := col(𝐶1e𝐴𝑇1 , 𝐶2e𝐴(𝑇1+𝑇2) , . . . , 𝐶𝑁 e𝐴𝑇 ). (8)

A necessary condition for the solvability of Goal 1 can be
stated by considering any possible sequence of intersample
intervals 𝑇𝜎 , 𝜎 = {1, . . . , 𝑁} and requiring that matrix 𝐶 in
(8) satisfies a suitable discrete-time detectability property.
Proposition 1 Given plant (1) with outputs (3), Goal 1 can
be solved only if for any sequence of intersample intervals
𝑇𝜎 , 𝜎= {1, . . . , 𝑁} satisfying (7), pair (𝐶, e𝐴𝑇 ) is detectable
in the discrete-time sense, where 𝑇 :=

∑𝑁
𝜎=1 𝑇𝜎 is the cu-

mulative intersample time and 𝐶 is the cumulative output
matrix in (8).
Proposition 1 provides insight about the fact that increasing
𝑇𝑀 𝜎 imposes increasingly large sets of detectability con-
ditions. For example, with exponentially unstable selections
of 𝐴, one expects the necessary conditions of Proposition 1
not to hold for large enough selections of 𝑇𝑀 𝜎 .

Proof of Proposition 1. Assume that there exists a sequence
of intersample intervals 𝑇𝜎 , 𝜎 = {1, . . . , 𝑁} satisfying (7)
for which (𝐶, e𝐴𝑇 ) is not detectable. Then from standard
detectability theory, there exists a nonconverging solution
of the discrete-time system 𝑧+ = e𝐴𝑇 𝑧 producing outputs
𝐶𝑧 = 0 at all (discrete) times. Since 𝑧+ = e𝐴𝑇 𝑧 is the ex-
act discretization of (1) at the cumulative periodic intervals
𝑡𝑘 = 𝑘𝑇 , 𝑘 ∈ Z≥0, then also plant (1) exhibits a noncon-
verging continuous-time evolution 𝑥 such that the periodi-
cally sampled outputs 𝑦̄(𝑡𝑘 ) = 𝐶𝑥(𝑡𝑘 ) are all zero. Finally,
such an evolution also produces zero outputs from measure-
ments (3), when selecting the measurement times 𝑡𝑘 such
that 𝑡𝑘+1 − 𝑡𝑘 = 𝑇𝜎 (𝑡𝑘 ) for all 𝑘 ∈ N. Indeed, the correspond-
ing outputs can be all computed as


𝑦𝜎 (𝑡ℎ𝑁+1)

...

𝑦𝜎 (𝑡ℎ𝑁+𝑁 )

 =

𝐶1𝑥(𝑡ℎ𝑁+1)

...

𝐶𝑁 𝑥(𝑡ℎ𝑁+𝑁 )

 =

𝐶1𝑒

𝐴𝑇1𝑥(𝑡ℎ𝑁 )
...

𝐶𝑁 𝑒
𝐴𝑇 𝑥(𝑡ℎ𝑁 )


= 𝐶𝑥(𝑡ℎ𝑁 ) = 𝐶𝑒ℎ𝐴𝑇 𝑥(0) = 0.

The proof is completed by noting that the measurement times
𝑡𝑘 , 𝑘 ∈ N considered above satisfy (4) because scalars 𝑇𝜎
satisfy (4). As a consequence, Goal 1 cannot be ensured
because there is a nonconverging evolution of (1) whose
sampled outputs all are zero, thereby being indistinguishable
from the zero solution. �

3 Observer Structure and its properties
3.1 Hybrid model of asynchronous observations
To formalize the set-up described in Section 2.1, we propose
a hybrid model using the framework1 of [18]:

¤𝑥 = 𝐴𝑥 + 𝐵𝑢 + 𝑑, ¤𝜏 = 1, ¤𝜎 = 0, (𝜏, 𝜎) ∈ C, (9a)
𝑥+ = 𝑥, 𝜏+ = 0, 𝜎+ = Γ(𝜎), (𝜏, 𝜎) ∈ D, (9b)
𝑦𝜎 = 𝐶𝜎𝑥 + 𝑤, (9c)

where Γ(𝜎) is defined in (2), and the flow set C and jump
set D are selected as:

C :=
⋃

𝜎∈S𝑁

(
[0, 𝑇𝑀 𝜎] × {𝜎}

)
,

D :=
⋃

𝜎∈S𝑁

(
[𝑇𝑚𝜎 , 𝑇𝑀 𝜎] × {𝜎}

)
.

(9d)

The extra variable 𝜏 in (9a)-(9b) reproduces a timer keeping
track of the elapsed time since the last sample.
With model (9), proceeding as in [8, Prop. 1.1] we may show
that any sequence of Round-Robin measurements (3) from
plant (1) satisfying Assumptions 1 and 2 can be reproduced
by output 𝑦𝜎 of (9) evaluated at jump times 𝑡𝑘 , 𝑘 ∈ N of
a (hybrid) solution to (9), and viceversa. As a consequence,

1 To simplify the exposition, using a slight abuse of notation we
specify the flow and jump sets C and D as subsets of the domain
of states (𝜏, 𝜎), without referring to state variable 𝑥. This means
that the 𝑥 variable can assume any value in R𝑛 both in C and D.
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one can equivalently represent the continuous evolution of
the plant state 𝑥 as a hybrid evolution of model (9), namely

𝑥(𝑡) = 𝑥(𝑡, 𝚥 (𝑡)), ∀𝑡 ≥ 0, (10)

where similar to [18, §8.2] for any hybrid solution 𝑥 with
domain dom 𝑥 we denote 𝚥 (𝑡) = min(𝑡 , 𝑗) ∈dom 𝑥 𝑗 .
3.2 Proposed continuous-discrete observer structure
Starting from model (9), we propose a continuous-discrete
observer structure implicitly accounting for the restrictions
in Assumption 2 on the available output because the flow
dynamics (when the output is not available) is in open loop:

¤̂𝑥 = 𝐴𝑥 + 𝐵𝑢, (𝜏, 𝜎) ∈ C, (11a)

while the jump dynamics establishes the state update when
the measurement output is available. In the jitter-tolerant
case of Definition 1, this corresponds to

𝑥+ = 𝑥 + 𝐾𝜎 (𝜏)
(
𝑦𝜎 − 𝐶𝜎𝑥

)
, (𝜏, 𝜎) ∈ D . (11b)

The only design parameter of our observer is matrix func-
tion 𝐾𝜎 : [𝑇𝑚𝜎 , 𝑇𝑀 𝜎] → R𝑛×𝑚𝜎 corresponding to the
time-varying gain of the discrete output injection term. This
injection depends, notably, both on the accessed output and
on the elapsed time 𝜏 since the last measurement.
The jump equation (11b) becomes simpler in the jitter free
case of Definition 1, and corresponds to

𝑥+ = 𝑥 + 𝐾̄𝜎

(
𝑦𝜎 − 𝐶𝜎𝑥

)
, (𝜏, 𝜎) ∈ D, (11c)

only parameterized by the discrete output injection (con-
stant) gains 𝐾̄𝜎 , 𝜎 ∈ S𝑁 . Indeed, the time-varying gains
𝐾𝜎 (·) are only evaluated for 𝜏 = 𝑇𝜎 , where

𝑇𝜎 := 𝑇𝑚𝜎 = 𝑇𝑀 𝜎 , ∀𝜎 ∈ S𝑁 . (12)

and the output injection terms do not depend on 𝜏.
Remark 1 In several relevant applications (e.g., with IMU-
based systems equipped with GPS sensors) the sampled mea-
surements are combined with additional continuous-time
measurements. In particular, plant (1) may be replaced by{

¤𝑥 = 𝐴0𝑥 + 𝐵𝑢 + 𝑑,
𝑦𝑐 = 𝐶𝑐𝑥 + 𝐷𝑐𝑢.

(13)

We may easily extend our theory to those cases by pre-
designing a Luenberger gain 𝐿𝑐 exploiting measurements
𝑦𝑐 in continuous time to ensure some desirable properties
of matrix 𝐴0− 𝐿𝑐𝐶𝑐 (which does not need to be Hurwitz but
may exhibit desirable behaviors in the observable subspaces
from output 𝑦𝑐). Then we may replace the flow map (11a)
of our continuous-discrete observer by{ ¤̂𝑥 = 𝐴𝑜𝑥 + 𝐿𝑐 (𝑦𝑐 − 𝑦̂𝑐) + 𝐵𝑢,

𝑦̂𝑐 = 𝐶𝑐𝑥 + 𝐷𝑐𝑢.
(14)

With this flow dynamics, the structure of the error dynam-
ics reported in the rest of the paper remains unchanged with
matrix 𝐴 replaced by 𝐴0 − 𝐿𝑐𝐶𝑐 providing potentially im-
proved continuous-time behavior as compared to the open-
loop solution. The co-design of 𝐿𝑐 and the gains 𝐾𝜎 (·) is
beyond the scope of this paper.
3.3 Hybrid solutions and continuous-time estimate ˆ̄𝑥
The presence of a lower bound 𝑇𝑚𝜎 between consecutive
measurements ensures that the continuous-discrete observer
(11) provides solutions whose domain is unbounded in the
ordinary time direction 𝑡 from which we may extract a con-
tinuous time estimate 𝑡 ↦→ ˆ̄𝑥(𝑡) of state 𝑥. This fact is formal-
ized in the next proposition, whose proof is a straightforward
application of [18, Prop. 6.10], because interconnection (9),
(11) satisfies the Hybrid Basic Conditions [18, Ass. 6.5].
Proposition 2 Both in the jitter-free and in the jitter-tolerant
cases, all (maximal) solutions to the interconnection between
(9) and (11) are complete and have an unbounded domain
in the ordinary time direction 𝑡 (and the jump direction 𝑗).
Based on Proposition 2, similar to (10), we may construct a
continuous-time estimate of state 𝑥 by projecting the solution
of the hybrid interconnection (9), (11) in the ordinary time
direction 𝑡 as follows

ˆ̄𝑥(𝑡) := 𝑥(𝑡, 𝚥 (𝑡)), ∀𝑡 ≥ 0. (15)

In particular, Proposition 2 ensures 𝑡-completeness of solu-
tions so that Zeno behavior is ruled out and we can evaluate
(15) for any arbitrarily large value of 𝑡.
For proving the exponential bound (5) in Goal 1 it is suffi-
cient to combine (10) with (15) and to prove the following
hybrid 𝑡-exponential bound

|𝑥(𝑡, 𝑗) − 𝑥(𝑡, 𝑗) |2 ≤ 𝑀e−𝜆𝑡 |𝑥(0, 0) − 𝑥(0, 0) |2 (16)
+ 𝛾(‖𝑑‖2

𝑡 ,∞ + ‖𝑤‖2
𝑗 ,∞).

This is proven in the next sections.

4 Jitter-free necessary and sufficient conditions
In this section we focus on the jitter-free case of Defini-
tion 1 and characterize the properties of the interconnec-
tion of plant (9) and observer (11a), (11c) introduced in the
previous section. In particular, we address the analysis and
design contexts highlighted after Goal 1 and provide com-
putationally attractive necessary and sufficient analysis con-
ditions (in terms of LMIs) and design conditions (again in
terms of LMIs) for gains 𝐾̄1, . . . , 𝐾̄𝑁 ensuring Goal 1.
To characterize the interconnection (9), (11a), (11c) consider
the estimation error 𝑥 := 𝑥 − 𝑥, whose hybrid dynamics are
computed as the following autonomous system

¤̃𝑥 = 𝐴𝑥 + 𝑑, ¤𝜏 = 1, ¤𝜎 = 0, (𝜏, 𝜎) ∈ C,{
𝑥+ =

(
𝐼 − 𝐾̄𝜎𝐶𝜎

)
𝑥 − 𝐾̄𝜎𝑤,

𝜏+ = 0, 𝜎+ = Γ(𝜎),
(𝜏, 𝜎) ∈ D, (17)
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with Γ as in (2). Based on (17) we address in two subsections
the above stated analysis and design problems.
4.1 Jitter-free analysis conditions
The following theorem provides a convex (LMI-based)
condition for checking whether observer (11a), (11c) with
continuous-time output (15) accomplishes Goal 1. The result
is based on the use of (non-necessarily common) Lyapunov-
like matrices 𝑃1, . . . , 𝑃𝑁 . Its proof is postponed to the end
of Section 5.1, to avoid breaking the flow of the exposition.
Theorem 1 Assume that there exist 𝑁 matrices 𝑃𝜎 = 𝑃>

𝜎 >

0, ∀𝜎 ∈ S𝑁 such that[
e(−𝐴>𝑇𝜎)𝑃𝜎 e(−𝐴𝑇𝜎 ) ★

𝑃Γ(𝜎) (𝐼 − 𝐾̄𝜎𝐶𝜎) 𝑃Γ(𝜎)

]
> 0, ∀𝜎 ∈ S𝑁 . (18)

Then observer (11a), (11c) with continuous-time output (15)
accomplishes Goal 1.
The jitter-free case can be addressed in a purely discrete-
time framework, e.g., using a Poincaré-type map sampling
the solutions after each jump induced by the last sensor
𝑁 , and then bounding the continuous-discrete intersample
behavior. Due to the Round-Robin mechanism encoded in
hybrid dynamics (17), this Poincaré-type map is governed
by the following discrete-time state transition matrix

𝐽1 := (𝐼 − 𝐾̄𝑁𝐶𝑁 )e𝐴𝑇𝑁 · · · (𝐼 − 𝐾̄1𝐶1)e𝐴𝑇1 , (19)

which stems from the alternating flowing and jumping gov-
erned by C and D. Since 𝐽1 rules the sampled value of the
error 𝑥, it is necessary for convergence to zero of 𝑥 = 𝑥 − 𝑥
(and therefore also for its exponential convergence in (5) and
in Goal 1) that 𝐽1 be Schur. Then, from standard discrete-
time systems theory [21, Thm 8.4] it is necessary for Goal 1
that ∃𝑃 = 𝑃> > 0 satisfying

𝑃 − 𝐽>1 𝑃𝐽1 > 0. (20)

This observation is the baseline for proving that the necessity
of (18) (in addition to the sufficiency stated in Theorem 1).
In particular, conditions (18) are not restrictive, which is
somewhat surprising because we require all the matrices
𝑃1, . . . , 𝑃𝑁 to be positive definite. This necessity statement
is formalized next.
Proposition 3 In the jitter-free case of (12), condition
(18) is feasible if and only if observer (11a), (11c) with
continuous-time output (15) accomplishes Goal 1.
Proof The sufficiency has been already proved in Theorem 1.
For the necessity, it has been noted above that Goal 1 implies
the existence of 𝑃 = 𝑃> > 0 satisfying (20). To complete the
proof, we show below that the existence of such a 𝑃 implies
that there exist matrices 𝑃1, . . . , 𝑃𝑁 satisfying

𝑃𝜎 −e𝐴
>𝑇𝜎

(
𝐼 − 𝐾̄𝜎𝐶𝜎

)>
𝑃Γ(𝜎)

(
𝐼 − 𝐾̄𝜎𝐶𝜎

)
e𝐴𝑇𝜎 > 0, (21)

which are equivalent to (18) after a Schur complement.

To this end, generalizing the definition of 𝐽1 in (19), for each
𝜎 ∈ S𝑁 , define matrices

𝐽𝜎 := (𝐼 − 𝐾̄𝑁𝐶𝑁 )e𝐴𝑇𝑁 · · · (𝐼 − 𝐾̄𝜎𝐶𝜎)e𝐴𝑇𝜎 ,

and note that (20) can be written as

𝑃1 − e𝐴
>𝑇1

(
𝐼 − 𝐾̄1𝐶1

)>
𝐽>2 𝑃1𝐽2

(
𝐼 − 𝐾̄1𝐶1

)
e𝐴𝑇1 > 0 (22)

with the selection 𝑃1 = 𝑃 > 0. It is then natural to select
𝑃2 := 𝐽>2 𝑃1𝐽2 + 𝜖2𝐼 > 0, with 𝜖2 > 0, where positive def-
initeness follows from 𝑃1 > 0. This selection implies (for
any 𝜖2 > 0) 𝑃2 − 𝐽>2 𝑃1𝐽2 ≥ 𝜖2𝐼 > 0, which parallels (20).
Moreover, replacing 𝐽>2 𝑃1𝐽2 = 𝑃2 − 𝜖2𝐼 in (22), we exploit
the strict inequality to prove (21) with 𝜎 = 1, for a small
enough 𝜖2. Iterating, we follow similar steps for the con-
struction of 𝑃𝜎 := 𝐽>𝜎𝑃𝜎−1𝐽𝜎 +𝜖𝜎 𝐼 > 0, 𝜎 = 3, . . . , 𝑁 , and
the proof is completed. �
4.2 Jitter-free design
We propose below a convex LMI-based construction for
gains 𝐾̄𝜎 ensuring Goal 1. The ensuing conditions cannot
be derived from the alternative sampled conditions (20) due
to the nonlinearity w.r.t. the gains 𝐾̄𝜎 appearing in 𝐽1. A
sampled convex condition could be formulated by exploit-
ing the large output matrix in (8), but such an approach is
computationally less desirable, due to the large size of the
ensuing LMIs, and due to the unsuitability of that approach
for the jitter-tolerant case. The proof of the next theorem is
given at the end of Section 5.2.
Theorem 2 Denote by𝐶⊥

𝜎 a basis of the orthogonal comple-
ment of 𝐶>

𝜎 for each 𝜎 ∈ S𝑁 . If there exists 𝑃𝜎 = 𝑃𝜎
> > 0,

𝜎 = {1, . . . , 𝑁}, satisfying

Ξ𝑃𝜎
:=

[ (
𝐶⊥

𝜎

)> e(−𝐴>𝑇𝜎)𝑃𝜎 e(−𝐴𝑇𝜎 )𝐶⊥
𝜎 ★

𝑃Γ(𝜎)𝐶
⊥
𝜎 𝑃Γ(𝜎)

]
> 0,

∀𝜎 ∈ S𝑁 , (23)

select

𝐾̄𝜎 :=
(
𝐶>

𝜎 − 𝐶⊥
𝜎

(
(𝐶⊥

𝜎)>e(−𝐴>𝑇𝜎)𝑃𝜎 e(−𝐴𝑇𝜎 )𝐶⊥
𝜎

)−1(
𝐶𝜎 e(−𝐴>𝑇𝜎)𝑃𝜎 e(−𝐴𝑇𝜎 )𝐶⊥

𝜎

)> )
(𝐶𝜎𝐶

>
𝜎)−1, (24)

Then observer (11a), (11c) with continuous-time output (15)
accomplishes Goal 1.
Remark 2 Note that the expression of LMIs (23) depends
on the specific selection of the orthogonal complement 𝐶⊥

𝜎

of 𝐶𝜎 , which is not unique. It has been already proven in
[34] (for the one sensor case) that feasibility of the LMI is
independent of that selection. That proof extends straight-
forwardly to the multi-sensor case addressed here.
We prove below the necessity of the conditions of Theo-
rem 2. To this end, we exploit Propositions 1 and 3. A con-
sequence of necessity is that, as emphasized after Propo-
sition 1, when some 𝑇𝑀 𝜎 , 𝜎 ∈ S𝑁 , grow too large, one
expects inequalities (23) to become infeasible.
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Proposition 4 In the jitter-free case of (12), LMI (23) is
feasible if and only if there exists an asymptotic observer
achieving Goal 1.
Proof The sufficiency has been already established in The-
orem 2. For the necessity, from Proposition 1 if there exists
an asymptotic observer achieving Goal 1, then pair (𝐶, e𝐴𝑇 )
is discrete-time detectable. Such a detectability property im-
plies that there exist 𝐿 and 𝑄 > 0 satisfying

𝑄 − (e𝐴𝑇 − 𝐿𝐶)>𝑄(e𝐴𝑇 − 𝐿𝐶) > 0. (25)

Denote 𝐿 = [𝐿1 · · · 𝐿𝑁 ] and assume without loss of gen-
erality that matrices (𝐼−𝐿𝜎𝐶𝜎), 𝜎 ∈ S𝑁 , are all invertible.
If invertibility does not hold, since singular matrices are a
set of measure zero, and by continuity of eigenvalues, it suf-
fices to slightly perturb 𝐿 without destabilizing the Schur
eigenvalues of (e𝐴𝑇 − 𝐿𝐶).
We construct next a selection of matrices 𝑃 and 𝐾̄1, . . . , 𝐾̄𝑁

transforming (25) into (20). Then, via Proposition 3, (20) im-
plies that there exist matrices 𝑃𝜎 satisfying (18). This proves
necessity because (23) immediately follows from (18). More
specifically, by initializing 𝐻𝑁 := 𝐼, we select{

𝐾̄𝜎 = 𝐻𝜎𝐿𝜎 ∀𝜎 ∈ S𝑁 ,

𝐻𝜎−1 := e−𝐴𝑇𝜎
(
𝐼 − 𝐾̄𝜎𝐶𝜎

)−1
𝐻𝜎 ∀𝜎 = 2, · · · , 𝑁.

(26)
Finally, introducing 𝑇𝑘 := 𝑇1 + 𝑇2 + · · · + 𝑇𝑘 = 𝑇𝑘 + 𝑇𝑘−1, we
have:

e𝐴𝑇̄𝜎 − 𝐾̄𝜎𝐶𝜎e𝐴𝑇̄𝜎 − 𝐻𝜎

𝜎−1∑︁
𝑘=1

𝐿𝑘𝐶𝑘e𝐴𝑇̄𝑘 =(
𝐼 − 𝐾̄𝜎𝐶𝜎

)
e𝐴𝑇𝜎

( (
𝐼 − 𝐾̄𝜎−1𝐶𝜎−1

)
e𝐴𝑇̄𝜎−1

− 𝐻𝜎−1

𝜎−2∑︁
𝑘=1

𝐿𝑘𝐶𝑘e𝐴𝑇̄𝑘
)

(27)

which, suitably iterated, transforms (25) in (20), and, as dis-
cussed above, the proof is completed by using Proposition 3,
(18) and (23). �

5 Jitter-tolerant sufficient conditions
We address in this section the jitter-tolerant context of Def-
inition 1 for which we consider the interconnection between
plant (9) and the jitte-tolerant observer (11a), (11b) provid-
ing the continuous-time estimate (15).
For this case, the error dynamics (17) governing 𝑥 := 𝑥 − 𝑥
generalize to

¤̃𝑥 = 𝐴𝑥 + 𝑑, ¤𝜏 = 1, ¤𝜎 = 0, (𝜏, 𝜎) ∈ C,{
𝑥+ =

(
𝐼 − 𝐾𝜎 (𝜏)𝐶𝜎

)
𝑥 + 𝐾𝜎 (𝜏)𝑤,

𝜏+ = 0, 𝜎+ = Γ(𝜎),
(𝜏, 𝜎) ∈ D, (28)

with Γ as in (2). As compared to the jitter-free case, the
set of solutions to (28) is richer in behavior, therefore we

only provide sufficient conditions ensuring Goal 1. These
sufficient conditions reduce to the ones of Section 4 when
the jitter reduces to zero (namely 𝑇𝑚𝜎 approaches 𝑇𝑀 𝜎).
Therefore we expect low conservativeness of our conditions
when the jitter is small.
According to the discussion given after the statement of
Goal 1, we first propose analysis conditions (with fixed gains
𝐾𝜎 (·)) in Section 5.1 and then provide design conditions in
Section 5.2. The conditions that we propose are still convex
in the decision variables associated to the gains 𝜏 ↦→ 𝐾𝜎 (𝜏),
but the fact that these gains are infinite dimensional leads to
infinite dimensional conditions. Section 5.3 gives an algo-
rithm that is guaranteed to end in a finite number of steps,
under a feasibility assumption, for solving those infinite di-
mensional conditions.
5.1 Stability analysis
We state below the jitter-tolerant generalization of the con-
ditions of Theorem 1. In light of Proposition 3, we expect
these sufficient conditions not to be too conservative (espe-
cially when the jitter 𝑇𝑀 𝜎 − 𝑇𝑚𝜎 is small).
Theorem 3 Assume that there exist 𝑁 matrices 𝑃𝜎 = 𝑃>

𝜎 >

0, ∀𝜎 ∈ S𝑁 such that, for each 𝜎 ∈ S𝑁 ,[
e(−𝐴>𝜏)𝑃𝜎 e(−𝐴𝜏) ★

𝑃Γ(𝜎) (𝐼 − 𝐾𝜎 (𝜏)𝐶𝜎) 𝑃Γ(𝜎)

]
> 0, ∀𝜏 ∈ [𝑇𝑚𝜎 , 𝑇𝑀 𝜎] .

(29)
Then observer (11a), (11b) with continuous-time output (15)
accomplishes Goal 1.
Proof: Consider the Lyapunov function:

𝑉 (𝑥, 𝜏, 𝜎) = e−𝜌𝜏𝑥>e(−𝐴>𝜏)𝑃𝜎 e(−𝐴𝜏)𝑥, (30)

where 𝜌 > 0 is a constant to be selected below, and let us
emphasize that the flow and jump sets in (9d) satisfy D ⊂ C,
so we can concentrate on values (𝜏, 𝜎) ∈ C in the following
analysis. Also note that C is compact so that the following
are positive quantities:

𝑐1 := min
(𝜏,𝜎) ∈C

e−𝜌𝜏𝜆𝑚
(
e(−𝐴>𝜏)𝑃𝜎 e(−𝐴𝜏)

)
> 0, (31)

𝑐2 := max
(𝜏,𝜎) ∈C

𝜆𝑀

(
e(−𝐴>𝜏)𝑃𝜎 e(−𝐴𝜏)

)
> 0. (32)

The above-defined scalars clearly satisfy

𝑐1 |𝑥 |2 ≤ 𝑉 (𝑥, 𝜏, 𝜎) ≤ 𝑐2 |𝑥 |2, ∀𝑥 ∈ R𝑛, (𝜏, 𝜎) ∈ C. (33)

Since ¤𝜎 = 0, and consequently 𝑃𝜎 is constant during flow,
the variation of 𝑉 along the flow map of (28) becomes:

¤𝑉 := e−𝜌𝜏𝑥>e(−𝐴>𝜏)𝑃𝜎 e(−𝐴𝜏)
(
2𝐴𝑥 + 2𝑑 − 2𝐴𝑥

)
,

− 𝜌𝑉 (𝑥, 𝜏, 𝜎) (34)

≤ 2|𝑥 | |e(−𝐴>𝜏)𝑃𝜎 e(−𝐴𝜏) | |𝑑 | − 𝜌𝑉 (𝑥, 𝜏, 𝜎)
≤ 2𝑐𝐹 |𝑥 | |𝑑 | − 𝜌𝑉 (𝑥, 𝜏, 𝜎), ∀(𝑥, 𝜏, 𝜎) ∈ R𝑛 × C,
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where we defined 𝑐𝐹 := max
(𝜏,𝜎) ∈C

|e(−𝐴>𝜏)𝑃𝜎 e(−𝐴𝜏) | > 0.

Using Young’s inequality, we have 2𝑐𝐹 |𝑥 | |𝑑 | ≤
2𝑐2

𝐹

𝜌𝑐1
|𝑑 |2 +

𝜌𝑐1
2 |𝑥 |2 that, substituted in (34), also using (33), gives

¤𝑉 ≤ − 𝜌
2
𝑉 (𝑥, 𝜏, 𝜎) + 𝛾𝐹 |𝑑 |2, ∀(𝑥, 𝜏, 𝜎) ∈ R𝑛 × C, (35)

with 𝛾𝐹 := 2𝑐2
𝐹

𝜌𝑐1
.

The change of 𝑉 across the jump map of (28) is given by

Δ𝑉 := 𝑉 (𝑥+, 𝜏+, 𝜎+) −𝑉 (𝑥, 𝜏, 𝜎) (36)
= 𝑤>𝐾𝜎 (𝜏)>𝑃Γ(𝜎)

(
− 2(𝐼 − 𝐾𝜎 (𝜏)𝐶𝜎)𝑥 + 𝐾𝜎 (𝜏)𝑤

)
−𝑥>

(
e−𝐴

>𝜏𝑃𝜎e−𝐴𝜏−
(
𝐼−𝐾𝜎 (𝜏)𝐶𝜎

)>
𝑃Γ(𝜎)

(
𝐼−𝐾𝜎 (𝜏)𝐶𝜎

) )︸                                                                    ︷︷                                                                    ︸
𝑀 (𝜏,𝜎):=

𝑥

+ (1 − e−𝜌𝜏)𝑥>
(
e−𝐴

>𝜏𝑃𝜎 e−𝐴𝜏
)
𝑥

≤−𝑥>𝑀 (𝜏, 𝜎)𝑥 + 𝑐𝐽 |𝑤 | (2|𝑥 |+ |𝑤 |)+(e𝜌𝑇𝑀 −1)𝑉 (𝑥, 𝜏, 𝜎),

for all (𝑥, 𝜏, 𝜎) ∈ R𝑛 × C, where we defined 𝑇𝑀 :=
max
𝜎∈S𝑁

𝑇𝑀 𝜎 > 0 and 𝑐𝐽 := max
(𝜏,𝜎) ∈C

{|𝐾𝜎 (𝜏)>𝑃Γ(𝜎) (𝐼 −

𝐾𝜎 (𝜏)𝐶𝜎) |, |𝐾𝜎 (𝜏)>𝑃Γ(𝜎)𝐾𝜎 (𝜏) |} > 0.
Consider now (29), and use a Schur complement to get

e−𝐴
>𝜏𝑃𝜎 e−𝐴𝜏 −

(
𝐼 − 𝐾𝜎 (𝜏)𝐶𝜎

)>
𝑃Γ(𝜎)

(
𝐼 − 𝐾𝜎 (𝜏)𝐶𝜎

)
>0,
(37)

namely 𝑀 (𝜏, 𝜎) > 0, ∀(𝜏, 𝜎) ∈ C. Since C is compact, we
may define the scalar (independent of 𝜌):

𝑐3 :=
1
𝑐2

min
(𝜏,𝜎) ∈C

𝜆𝑚

(
𝑀 (𝜏, 𝜎)

)
> 0. (38)

Moreover, using Young’s inequality, we may obtain the
bound 2𝑐𝐽 |𝑤 | |𝑥 | ≤ 2𝑐2

𝐽

𝑐1𝑐3
|𝑤 |2 + 𝑐1𝑐3

2 |𝑥 |2, and by selecting
𝜌 := 𝑇−1

𝑀
log(1 + 𝑐3

2 ) (recall that 𝑐3 is independent of 𝜌) we
may ensure that (e𝜌𝑇𝑀 − 1) ≤ 𝑐3

2 . Both these inequalities
can be substituted in (36) to obtain, also using (33),

𝑉 (𝑥+, 𝜏+, 𝜎+) ≤ (1 − 𝑐3
2
)𝑉 (𝑥, 𝜏, 𝜎)+𝛾𝐽 |𝑤 |2+(e𝜌𝑇𝑀 −1)𝑉

≤ 𝑉 (𝑥, 𝜏, 𝜎) + 𝛾𝐽 |𝑤 |2, ∀(𝑥, 𝜏, 𝜎) ∈ R𝑛 × D,
(39)

with 𝛾𝐽 :=
(
𝑐𝐽 + 2𝑐2

𝐽

𝑐1𝑐3

)
> 0.

Consider now any solution (𝑡, 𝑗) ↦→ 𝜑(𝑡, 𝑗) = (𝑥(𝑡, 𝑗),
𝜏(𝑡, 𝑗), 𝜎(𝑡, 𝑗)) of (28) and note that by assumption all so-
lutions perform infinitely many jumps (they jump at least
every 𝑇𝑀 = max𝜎∈S𝑁

𝑇𝑀 𝜎 ordinary time) and infinitely
long flow (they flow for at least 𝑇𝑚 = min𝜎∈S𝑁

𝑇𝑚𝜎 ordi-
nary time 𝑡 after each jump). As a consequence we may use
(35) together with standard comparison theory to conclude,

for all (𝑡, 𝑗) ∈ dom 𝜑,

𝑉 (𝜑(𝑡, 𝑗)) ≤ e−
𝜌

2 (𝑡−𝑡 𝑗 )𝑉 (𝜑(𝑡 𝑗 , 𝑗)) + 𝛾𝐹𝑇𝑀 ‖𝑑‖2
𝑡 ,∞, (40)

𝑉 (𝜑(𝑡 𝑗+1, 𝑗)) ≤ e−
𝜌

2𝑇𝑚𝑉 (𝜑(𝑡 𝑗 , 𝑗)) + 𝛾𝐹𝑇𝑀 ‖𝑑‖2
𝑡 ,∞, (41)

where we used the continuous-time signal norm ‖𝑑‖𝑡 ,∞ in
(6). Furthermore, we may use (39) and the discrete-time
signal norm ‖𝑤‖ 𝑗 ,∞ in (6) to get

𝑉 (𝜑(𝑡 𝑗 , 𝑗)) ≤ 𝑉 (𝜑(𝑡 𝑗 , 𝑗 − 1)) + 𝛾𝐽 ‖𝑤‖2
𝑗 ,∞, ∀ 𝑗 ≥ 1. (42)

We may finally nest the bounds in (40)–(42) to get

𝑉 (𝜑(𝑡, 𝑗)) ≤ e−
𝜌

2 𝑡𝑉 (𝜑(0, 0)) +
𝑗∑︁

𝑘=0
e−

𝜌

2𝑇𝑚𝑘𝛾𝐹𝑇𝑀 ‖𝑑‖2
𝑡 ,∞

+
𝑗∑︁

𝑘=1
e−

𝜌

2𝑇𝑚𝑘𝛾𝐽 ‖𝑤‖2
𝑗 ,∞

≤ e−
𝜌

2 𝑡𝑉 (𝜑(0, 0)) (43)

+ (𝛾𝐹𝑇𝑀 ‖𝑑‖2
𝑡 ,∞ + 𝛾𝐽 ‖𝑤‖2

𝑗 ,∞)
∞∑︁
𝑘=0

e−
𝜌

2𝑇𝑚𝑘

≤ e−
𝜌

2 𝑡𝑉 (𝜑(0, 0)) + 𝑐1𝛾‖𝑑‖2
𝑡 ,∞ + 𝑐1𝛾‖𝑤‖2

𝑗 ,∞,

where we used 𝑅 :=
∞∑
𝑘=0

e−
𝜌

2𝑇𝑚𝑘 = (1 − e−
𝜌

2𝑇𝑚 )−1 and we

introduced 𝛾 := 𝑅
𝑐1

max{𝛾𝐹𝑇𝑀 , 𝛾𝐽 }.
Applying (33) twice to (43) one obtains representation (16)
of bound (5) in Goal 1 with 𝑀 =

𝑐2
𝑐1

and 𝜆 =
𝜌

2 . �

Proof of Theorem 1: The statement of Theorem 3 reduces
to the one of Theorem 1 in the jitter-free case (12) because
(29) reduces to (18) with 𝐾̄𝜎 = 𝐾𝜎 (𝑇𝜎) for all 𝜎 ∈ S𝑁 .
Then, Theorem 1 is a corollary of Theorem 3. �

5.2 Observer design
We propose below a construction for gains 𝐾𝜎 (·) in observer
(11a), (11b). The design is based on finding the Lyapunov
certificates 𝑃𝜎 = 𝑃>

𝜎 > 0 of the analysis conditions of
Theorem 3, therefore from Proposition 4 we expect these
design conditions not to be too conservative when the jitter
𝑇𝑀 𝜎 − 𝑇𝑚𝜎 is small.
Theorem 4 Assume𝐶𝜎 is full row rank and denote by𝐶⊥

𝜎 a
basis of the orthogonal complement of𝐶>

𝜎 . If, for all 𝜎 ∈ S𝑁

there exists 𝑃𝜎 = 𝑃𝜎
> > 0 satisfying

Ξ𝑃𝜎
(𝜏) :=

[ (
𝐶⊥

𝜎

)> e(−𝐴>𝜏)𝑃𝜎 e(−𝐴𝜏)𝐶⊥
𝜎 ★

𝑃Γ(𝜎)𝐶
⊥
𝜎 𝑃Γ(𝜎)

]
> 0,

∀𝜎 ∈ S𝑁 and ∀𝜏 ∈ [𝑇𝑚𝜎 , 𝑇𝑀 𝜎], (44)
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select

𝐾𝜎 (𝜏) :=
(
𝐶>

𝜎 − 𝐶⊥
𝜎

(
(𝐶⊥

𝜎)>e(−𝐴>𝜏)𝑃𝜎 e(−𝐴𝜏)𝐶⊥
𝜎

)−1(
𝐶𝜎 e(−𝐴>𝜏)𝑃𝜎 e(−𝐴𝜏)𝐶⊥

𝜎

)> )
(𝐶𝜎𝐶

>
𝜎)−1. (45)

Then observer (11a), (11b) with continuous-time output (15)
accomplishes Goal 1.
Proof First we may proceed as in Part 1 of [34, Thm 2] using
𝐶𝜎 instead of 𝐶, Ψ𝜎 (𝜏) := e(−𝐴>𝜏)𝑃Γ(𝜎) e(−𝐴𝜏) instead of
Ψ(𝜏) and 𝑌𝜎 (𝜏) := −𝑃Γ(𝜎)𝐾𝜎 (𝜏) instead of 𝑌 (𝜏) to show
that condition (44) ensures the existence of a gain 𝐾𝜎 (·)
satisfying (29).
Secondly, given matrices 𝑃𝜎 satisfying condition (44), we
may follow the steps of Part 2 of the proof of [34, Thm 1]
to obtain that (29) holds if, paralleling [34, Eq. (25)],[

𝑀𝜎
11 (𝜏) ★

𝑀𝜎
21 (𝜏) 𝑀

𝜎
22 (𝜏)

]
:=

[
𝐶𝜎Ψ𝜎 (𝜏)𝐶>

𝜎 ★

𝑃Γ(𝜎)𝐶
>
𝜎+𝑃Γ(𝜎)𝐾𝜎 (𝜏)𝐶𝜎𝐶

>
𝜎 𝑃Γ(𝜎)

]
−
[
𝐶𝜎Ψ𝜎 (𝜏)𝐶⊥

𝜎

𝑃Γ(𝜎)𝐶
⊥
𝜎

]
︸              ︷︷              ︸

Σ>
𝜎 :=

[
(𝐶⊥

𝜎)>Ψ𝜎 (𝜏)𝐶⊥
𝜎

]−1
Σ𝜎 > 0, (46)

where Ψ𝜎 (𝜏) = e(−𝐴>𝜏)𝑃Γ(𝜎) e(−𝐴𝜏) . Since 𝑀𝜎
11 (·) and

𝑀𝜎
22 (·) are independent of 𝐾𝜎 (·), the existence result of Part

1 implies that they are both uniformly positive definite and
then (46) holds with selection (45), because (45) ensures
that 𝑀𝜎

21 (·) ≡ 0 in (46). The proof is completed by applying
Theorem 3. �

Proof of Theorem 2: The statement of Theorem 4 reduces
to the one of Theorem 2 in the jitter-free case (12) because
(44) reduces to (23). Then, Theorem 2 is a corollary of
Theorem 4. �

Remark 3 As discussed in [23, §4.3.6–4.3.7], discrete-time
and linear parameter varying (LPV) approaches to deal with
time-varying sampling intervals can provide an alternative
approach to the one considered in this paper. Hence, inspired
by [19], [20] and [36], a discrete-time LPV framework could
be used to design an observer, robust to the non-constant in-
tersample time induced by the bounds 𝑇𝑚𝜎 (𝑡𝑘 ) and 𝑇𝑀𝜎 (𝑡𝑘 ) .
The alternative hybrid techniques used here allow deriving
necessary and sufficient conditions in the jitter-free case,
which become only sufficient in the jitter-tolerant case. These
conditions are independent of the observer gains, thanks to
the use of the elimination lemma.
5.3 Design algorithm
In this section the main ingredients of the algorithm pre-
sented in [34] are generalized for solving the infinite-
dimensional problem (44) in a finite number of steps. As in
[34], the algorithm consists in three steps (the initialization,
the synthesis, and the analysis phase) as described below.
• Step 1. Initialization. Constants 𝛽 and 𝛾 satisfying (𝐴 +

𝛽𝐼)>Π + Π(𝐴 + 𝛽𝐼) > 0 and 𝛾 :=
√︁
𝜆𝑀 (Π)/𝜆𝑚 (Π), for

some Π = Π> > 0 are selected. This step is based on [34,
Lemma 3].

• Step 2. Synthesis. We solve the finite dimensional opti-
mization:

(𝑃∗
1, . . . , 𝑃

∗
𝑁 , 𝑝

∗) = arg min
𝑃𝜎=𝑃𝜎

> , 𝑝𝑀

𝑝𝑀 , s.t. (47)

Ξ𝑃𝜎
(𝜏)>2𝜇𝐼, ∀𝜏 ∈T𝜎 and ∀𝜎 ∈S𝑁 ,

𝐼 ≤ 𝑃𝜎 ≤ 𝑝𝑀 𝐼, ∀𝜎 ∈S𝑁

where 𝜏 ranges over a finite number of points collected in
the discrete sets T𝜎 (in the first step T𝜎={𝑇𝑚𝜎 , 𝑇𝑀 𝜎}).

• Step 3. Analysis. Given (𝑃∗
1, . . . , 𝑃

∗
𝑁
, 𝑝∗) from (47), we

check the following eigenvalue conditions, relaxing the
constraints in (47) to half of their values:

Ξ𝑃∗
𝜎
(𝜏) > 𝜇𝐼, ∀𝜏 ∈ T𝑑 𝜎 and ∀𝜎 ∈S𝑁 (48)

where T𝑑 𝜎⊂[𝑇𝑚𝜎 , 𝑇𝑀 𝜎], ∀𝜎 ∈S𝑁 , contains an ordered
set of scalars 𝑇𝑚𝜎 =𝜏𝜎1 < · · ·<𝜏𝜎

𝜈∗ =𝑇𝑀 𝜎 satisfying:

𝜏𝜎𝑘+1−𝜏
𝜎
𝑘 ≤ 2𝛿∗ :=

2𝜇
𝑝∗‖𝐴‖𝛾e𝛽𝑇𝑀

, ∀𝑘 and ∀𝜎 ∈S𝑁, (49)

where 𝑇𝑀 =max𝜎∈S𝑁
𝑇𝑀 𝜎 .

Finally, if all of the 𝑁 conditions (48) are satisfied, then the
algorithm stops and gives (𝑃∗

1, . . . , 𝑃
∗
𝑁
) as solutions to (44).

Otherwise, for each violation of (48), a value:

𝜏𝜎 ∈ arg min
𝜏∈T𝑑𝜎

(
𝜆𝑚

(
Ξ𝑃∗

𝜎
(𝜏)

) )
(50)

is added to the corresponding set T𝜎 , and the algorithm
restarts from the synthesis phase (i.e. Step 2).
Regarding the convergence of this algorithm, the following
theorem can be stated.
Theorem 5 If there exist solutions 𝑃𝜎 , ∀𝜎 ∈ S𝑁 , to prob-
lem (44), then the proposed algorithm terminates success-
fully providing outputs (𝑃∗

1, . . . , 𝑃
∗
𝑁
, 𝑝∗), after a finite num-

ber of iterations.
Proof The proof follows the same technique as that of [34,
Thm 3] with the caveat of considering the worst case among
all 𝜎 ∈ S𝑁 of the quantities defined therein. Similar to [34,
Thm 3], the number of iterations depends on the condition
numbers of 𝑃𝜎 , ∀𝜎 ∈S𝑁 . �

6 Numerical example
Consider the quarter-car active automotive suspension sys-
tem shown in Fig. 2. The state-space model of this system
can be written as [33]:

¤𝑥 = 𝐴𝑥 + 𝐵𝑢𝐹𝑎 + 𝐵𝑑 ¤𝑧𝑟 + 𝑑, (51)

where 𝐹𝑎 is the active force of an actuator, 𝑑 is the process
disturbance, ¤𝑧𝑟 is an input that models how the road profile
enters into the system, the state vector 𝑥 = [𝑥1 𝑥2 𝑥3 𝑥4]>,
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Fig. 2. Quarter-car active automotive suspension system.

comprises the suspension deflection 𝑥1 = 𝑧𝑠−𝑧𝑢 , the absolute
velocity 𝑥2 = ¤𝑧𝑠 of the sprung mass 𝑚𝑠 , the tire deflection
𝑥3 = 𝑧𝑢 − 𝑧𝑟 , and the absolute velocity 𝑥4 = ¤𝑧𝑢 of the
unsprung mass 𝑚𝑢 . 𝐴, 𝐵𝑢 and 𝐵𝑑 are given by:

𝐴 =


0 1 0 −1

− 𝑘𝑠
𝑚𝑠

− 𝑏𝑠
𝑚𝑠

0 𝑏𝑠
𝑚𝑠

0 0 0 1
𝑘𝑠
𝑚𝑢

𝑏𝑠
𝑚𝑢

− 𝑘𝑡
𝑚𝑢

− 𝑏𝑠+𝑏𝑡
𝑚𝑢

 , 𝐵𝑢 =


0
1

𝑚𝑠

0
−1
𝑚𝑢

 , 𝐵𝑑 =

[ 0
0
−1
𝑏𝑡
𝑚𝑢

]
.

The following parameters are considered in the model: 𝑘𝑠 =
1.6·104, 𝑏𝑠 = 103,𝑚𝑠 = 250,𝑚𝑢 = 45, 𝑘𝑡 = 400, 𝑏𝑡 = 0. The
process disturbance 𝑑 is selected as 𝑑 := [𝑑1, 𝑑2, 𝑑3, 𝑑4]>,
where 𝑑1, · · · , 𝑑4 are zero mean uniformly distributed ran-
dom noises such that: ‖𝑑1‖𝑡 ,∞ = 0.004, ‖𝑑2‖𝑡 ,∞ = 0.1,
‖𝑑3‖𝑡 ,∞ = 0.04, ‖𝑑4‖𝑡 ,∞ = 0.1.
In order to apply the proposed algorithm to estimate the
state vector of system (51) we assume to measure sequen-
tially the components 𝑥1 and 𝑥3. This means that 𝑁 = 2
and S𝑁 = S2 = {1, 2}, and the output matrices are 𝐶1 =

[1 0 0 0] and 𝐶2 = [0 0 1 0]. Moreover, we assume
that both measurements are corrupted by a zero mean uni-
formly distributed random noise 𝑤, in particular the mea-
surement of 𝑥1 is corrupted by a random noise 𝑤1 with
‖𝑤1‖𝑡 ,∞ = 0.002, while the measurement of 𝑥3 is corrupted
by a random noise 𝑤2 with ‖𝑤2‖𝑡 ,∞ = 0.02. We also select
the interval [𝑇𝑚𝜎 , 𝑇𝑀 𝜎] equal to [0.02, 0.07] for 𝜎 = 1
and equal to [0.04, 0.09] for 𝜎 = 2. Finally, the orthogonal

complements of 𝐶1 and 𝐶2 are selected as 𝐶⊥
1 =

[ 0 0 0
1 0 0
0 1 0
0 0 1

]
,

𝐶⊥
2 =

[ 0 −1 0
1 0 0
0 0 0
0 0 1

]
. In order to find matrices 𝑃𝜎 , 𝜎 ∈ {1, 2},

satisfying (44) for all (𝜏, 𝜎) ∈ ⋃
𝜎∈S2

(
[𝑇𝑚𝜎 , 𝑇𝑀 𝜎]×{𝜎}

)
,

we apply the algorithm described in Section 5.3. In this case
the algorithm finds a solution after three steps. Indeed, as
shown in Fig. 3 (left), the validation phase initially fails be-
cause not all of the sampled minimum eigenvalues of matrix
Ξ𝑃1 (𝜏) are positive. For this reason the value 𝜏 = 0.0534, as-
sociated to the minimum over 𝜏 of 𝜆𝑚

(
Ξ𝑃1 (𝜏)

)
is included

in the set T . Then the algorithm restarts from the synthesis
phase with one extra constraint. After this second iteration
the algorithm finds a second solution, which again fails to
satisfy the validation phase, and the value 𝜏 = 0.0434 is
included in the set T (see Fig. 3 (middle)). Finally, at the

third iteration, the algorithm finds a solution satisfying the
validation phase, as shown in Fig. 3 (right). The matrices
𝑃𝜎 , 𝜎 ∈ {1, 2} solving (44), can be normalized for better
numerical conditioning (indeed (44) is homogeneous), thus
obtaining:

𝑃1 =

[ 11.5 −2.3 −1.6 −1.1
−2.3 5.5 −2.1 4.5
−1.6 −2.1 11.5 −1.3
−1.1 4.5 −1.3 4.2

]
, 𝑃2 =

[ 12.5 −0.8 −0.9 −1.0
−0.8 0.8 0.9 0.9
−0.9 0.9 0.9 0.1
−1.0 0.9 0.1 1.1

]
. (52)

The dynamics (51) has been implemented together with
the continuous-discrete observer (11) in the MATLAB®-
Simulink environment. The gains 𝐾𝜎 (𝜏) are computed on-
line according to (45) by using matrices 𝑃𝜎 , 𝜎 ∈ {1, 2}, in
(52). Moreover, to simulate random measurements instants,
we implemented the following modified stochastic hybrid
dynamical version of the error dynamics, corresponding to
(28) with a random selection of the inter-measurement in-
tervals:

¤̃𝑥 = 𝐴𝑥 + 𝑑, ¤𝜏 = 1, ¤𝜎 = 0, ¤𝜏𝑟 = −1, 𝜏𝑟 > 0,
𝑥+ =

(
𝐼 − 𝐾𝜎 (𝜏)𝐶𝜎

)
𝑥 + 𝐾𝜎 (𝜏)𝑤,

𝜏+ = 0, 𝜎+ = Γ(𝜎),
𝜏+𝑟 = 𝑇𝑚𝜎 + (𝑇𝑀 𝜎 − 𝑇𝑚𝜎)𝜈+,

𝜏𝑟 = 0, (53)

where 𝜈+is a random variable uniformly distributed in the
set [0, 1]. The results of the numerical simulation are shown
in Figs. 4 and 5. In particular, from the bottom trace in
Fig. 4 we note that the Lyapunov function 𝑉 in (30) de-
creases, due to the persistent jumps, as expected from the
theoretical results of Theorem 3. Also the output estimation
error converges close to zero as shown in the top traces of
Fig. 4. Due to the persistence of the process disturbance 𝑑
and measurement noise 𝑤, the error does not converge to
zero, but remains bounded, according to the ISS bound (5)
given in Goal 1. Finally, from the evolution of 𝜏 in Fig. 5,
we see that the jumps occur randomly within the prescribed
intervals, according to dynamics (53).

7 Conclusions
A time-varying sampled-data observer has been proposed
for linear systems whose outputs are sequentially sampled
via non-uniform sampling intervals repeating a prescribed
Round-Robin sequence. When the sampling intervals are
constant (jitter-free case) necessary and sufficient condi-
tions have been provided for the design of an asymptotic
continuous-discrete observer whose estimation error is ISS
from process disturbances and measurement noise. With
jitter-tolerant sampling intervals, sufficient conditions for
ISS asymptotic estimation have been given, and a construc-
tive design technique has been proposed. A numerical ex-
ample based on a practical application has been discussed,
showing the effectiveness of the proposed approach.
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