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Quadratic constrained periodic optimisation for bandlimited

linear systems via the Fourier-based method

Giacomo Moretti, Luca Zaccarian, Franco Blanchini

Abstract

Motivated by two engineering applications, we address nonlinear bounded steady-state optimal
control of linear dynamical systems undergoing steady-state bandlimited periodic oscillations. The
optimisation can be cast as a minimisation problem by expressing the state and the input as finite
Fourier series expansions, and using the expansions coefficients as parameters to be optimised.
With this parametrisation we address linear quadratic (LQ) problems involving periodic bandlim-
ited dynamics by using quadratic minimisation with parametric time-dependent constraints. We
hence investigate the implications of a discretisation of linear continuous time constraints and
propose an algorithm that provides a feasible sub-optimal solution whose cost is arbitrarily close
to the optimal cost for the original constrained steady-state problem. Finally, we discuss practical
case studies that can be effectively tackled with the proposed framework, including optimal en-
ergy harvesting from pulsating mechanical energy sources, and optimal control of DC/AC power
converters.

Keywords Fourier series, frequency domain, dynamic programming, convex optimisation, periodic,
bandlimited

1 Introduction

Dynamic programming techniques aim at determining optimal inputs for a dynamical systems trajec-
tory tracking while minimising a performance index (namely, a cost) in the presence of constraints [1].
Since analytical solutions are limited to a small set of practical cases, optimal control problems are
most often tackled numerically.5

In this regard, two main classes of numerical methods for optimal control exist [2], namely, time-do-
main methods (also called time-marching methods) and functional-approximation methods (also called
collocation methods). Time-domain methods rely on the approximation of a continuous-time plant as
a discrete system. According to these approaches, the continuous-time control input is approximated
by a set of evaluations at a finite set of time instants. These evaluations are hence used as the un-10

known of a finite-dimensional minimisation problem. Functional-approximation methods, in contrast,
rely on the representation of the system state/input as a linear combination of independent functions
(either defined globally on the optimisation horizon, or locally on a set of time intervals), enforcing the
constraints at a set of intermediate points and reducing the optimisation problem to the calculation of
the combination coefficients [3]. As compared to time domain approaches, functional-approximation15

methods allow representing continuous-time control functions through a reduced number of param-
eters, hence limiting the computational burden and possibly rejecting non-smooth control solutions,
typical of time domain approaches.

A relevant class of dynamic programming problems concerns optimal control of steady-state oscillat-
ing systems in the periodic regime. These problems are of interest in different engineering fields, such as20

energy harvesting from oscillating sources (human walking, structural vibrations, ocean wave energy)
via mechanical oscillators [4], and driving of electrical circuits operating in alternated current [5]. This
paper deals with a theoretical framework for dynamic programming problems in steady-state periodic
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systems via a so-called Fourier-based method [6], i.e. a functional-approximation approach using a fi-
nite Fourier series (FS) expansion to represent the system states and inputs [7]. This method matches25

particularly well optimal control problems in dynamic periodic systems, as it provides an intrinsically
periodic representation of the states and of the inputs with no need for additional periodicity con-
straints.
The application of functional spectral methods based on the FS for optimisation problems is limited to
a few works. Yen & Nagurka [8, 6, 9] proposed for the first time a framework for optimisation problems30

with Fourier-based state parametrisation, first with reference to linear quadratic (LQ) problems [8, 9],
and then to the general case of systems with nonlinear dynamics [6]. Recently, Bacelli et al. [10, 11]
applied Fourier-based transcription for the identification of optimal control strategies for ocean wave
energy converters, aimed at maximising the harvested energy in the presence of operational constraints.
In those works [9, 11], continuous-time constraints are reformulated in a relaxed manner and enforced35

only at a finite number of points, generally leading to solutions which are not strictly feasible for the
original problem.

In this paper, we propose a Fourier-based framework that specifically applies to the case of periodic
oscillating systems. As in [8, 9], we address LQ problems involving the minimisation of a quadratic cost
in a system subject to hard constraints with linear dynamics, leading to nonlinear optimal responses.40

We first show that some optimisation problems of technical interest in different fields (namely, energy
harvesting from vibrating sources and control of inverters) can be reduced, in a first approximation
and for the sake of landscaping analysis, to a same LQ periodic convex formulation. With the aim
of realistically describing technical applications, we then set the attention on systems with smooth
bandlimited excitation, input and response. In this regard, we show that the optimisation problem45

can be cast using a finite-dimensional FS description of the system, leading to a convex quadratic
formulation. Finally, we propose a new algorithm for the identification of a sub-optimal strictly feasible
solution (respecting the constraint over the entire continuous time horizon) leading to an optimal cost
arbitrarily close to the optimal cost for the original problem.

The paper is organised as follows. Sect. 2 introduces the class of LQ problems under investigation50

and shows that a diversity of practically relevant problems belong to that class. Under the assumption
of bandlimited periodic input and excitation, Sect. 3 presents a compact transcription of the system
dynamics, the cost function and the constraints in terms of truncated FS, leading to a reformulation
of the original LQ problem as a convex quadratic minimisation problem with parametric constraints.
Sect. 4 provides a practical algorithm for the identification of a nearly-optimal feasible solution for the55

obtained minimisation problem through a finite-dimensional discretisation of the constraints. Sect. 5
illustrates the application of the proposed framework on a few numerical case studies. Finally, Sect. 6
draws the conclusions.

2 Linear quadratic optimisation of steady-state periodic re-
sponses60

We consider a class of LQ optimal control problems [12] involving a steady-state oscillating linear
dynamical system subject to a periodic excitation, a cost represented by a quadratic function of the
system inputs and states, and linear inequality constraints on the state and/or the input.

The dynamical system is asymptotically stable and described by:

ẋ(t) = Ax(t) +B(u(t) + d(t)), (1)

where t ≥ 0 is the continuous time, x ∈ Rm is a state vector, u ∈ Rp is a vector of p control inputs,
d ∈ Rp is a known input-matched bounded periodic excitation with period T , namely, d(t) = d(t+ T )65

for all t ≥ 0, A ∈ Rm×m is a Hurwitz matrix called the system matrix, and B ∈ Rm×p is called the
input matrix.
We consider LQ optimisation problems in the variable u involving a steady-state oscillatory response
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of the system. We thus restrict the analysis to a time interval with length T and functions d, u and
x belonging to the space L2([0, T ]), namely square integrable functions on [0, T ]. The optimisation70

problem that we address is defined below.

Problem 1 Continuous-time LQ periodic optimisation problem:
min

u∈L2([0,T ])
J(u) =

∫ T

0

(x(t)ᵀPx(t) + u(t)ᵀQu(t)) dt

subject to (1)
Axx(t) +Auu(t) + g(t) ≤ b, ∀t ∈ [0, T ]
x(0) = x(T ),

(2)

where P = P ᵀ ∈ Rm×m and Q = Qᵀ ∈ Rp×p are symmetric positive-semidefinite matrices; Ax ∈ Rl×m
and Au ∈ Rl×p, g : R 7→ Rl is a known, bounded and T−periodic function of time, and b ∈ Rl>0 is a
vector with positive entries. Parameters Ax, Au, g and b define a set of l linear inequalities that bound75

a feasible set for the problem. It is hereby assumed that such a feasible set has non-empty interior.
Since the constraint inequality has two intercepts (g(t) and b), b can be chosen to be positive-valued
with no loss of generality. This choice simplifies the use of restrictions of the feasible set that will be
exploited later on in the paper.
Problem 1 includes a terminal state constraint requiring the periodicity of x. Periodicity of x and d80

automatically guarantees periodicity of u. Since x and u are related through the linear differential
relationship (1), the integrands of both costs can be regarded as quadratic functions of u. Since steady-
state oscillations are investigated, no final-state cost is here considered. The cost J and the constraints
are convex, therefore the considered problem is a convex optimisation problem.

The considered problem matches a number of physical cases of practical interest, which can be85

reshaped into the general convex form of (2) in Problem 1.
In the following, we discuss two applications that fit within the framework of Problem 1. The first

application regards energy harvesting from a mechanical oscillator, while the second one regards the
control of a single-phase inverter.

(a) (b)

Figure 1: Application examples. (a) Lumped parameter models of oscillating energy harvesters: inertial
generator (left), and direct-force generator (right). (b) Circuit schematization of a single-phase DC/AC
converter.

2.1 Application 1. Maximal energy harvesting from a harmonic oscillator90

with periodic excitation

The first problem under investigation concerns energy harvesting from pulsating sources of mechanical
energy. Mechanical energy harvesting is addressed in a considerable number of recent research works,
focused on different target applications at different scales and operating frequencies. Applications
include energy harvesting from vibrations (generated, e.g., by industrial machines) for self-powered95

wireless sensors [13]; energy harvesting from human walk to recharge low-power portable electronics [4];
and scavenging of sea waves power for large-scale electricity production [14].
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2.1.1 System model

An oscillating mechanical energy harvester can be modelled as a mass-spring-damper system subject
to a periodic excitation, as schematically shown in Fig. 1a. The excitation is provided either by
the periodic displacement of an inertial frame moved by external vibrations (Fig. 1a left), or by an
excitation force directly applied on the mass (Fig. 1a right). Energy extraction is performed by a
controllable power take-off (PTO) transducer. The first case (Fig. 1a left), referred to as inertial
energy harvester, suitably models energy scavenging devices from vibrations and human motion [13],
in which the displacement of the frame holding the device (e.g., a vibrating structure, a moving
human body surface) is assumed to be known and is not substantially altered by the dynamics of
the seismic mass. The second model (Fig. 1a right) roughly represents the operation of a sea wave
energy converter (WEC), consisting in a floating oscillating body subject to wave-induced loads [15].
In practice, the real dynamics of a WEC include a more sophisticated set of interactions (the system in
Fig. 1a-right only represents an approximation), including frequency-dependent dynamical parameters
and nonlinear hydrodynamic contributions [16].
With reference to the systems shown in Fig. 1a, we call M the inertia of the oscillator, k the stiffness
associated to the restoring forces (e.g., compliance of the joint between the oscillator and the frame in
inertial generators, hydrostatic forces in WECs), c the linearised external damping due to dissipative
forces. Coefficients M, c and k are positive. We indicate with u the controllable PTO load. Indicating
with z the displacement of the mass from its rest position, the following dynamic equation applies:

Mz̈(t) + cż(t) + kz(t) = u(t) + e(t), (3)

where e is an external excitation. In inertial generators (Fig. 1a left), e depends on the displacement y
of the vibrating frame: e = cẏ(t) +ky(t). In direct-force generators (Fig. 1a right), e simply represents100

the external excitation force.
We hereby consider periodic time-series for the excitation e and the steady-state response of the

system. This is a natural assumption in applications involving inertial oscillators: periodic displace-
ments y(t) of the moving frame (associated, e.g., with structural vibrations or human walk) indeed
lead to a periodic profile for e. In the case of sea WECs, in contrast, the excitation force due to real105

waves is not periodic and can be regarded as a superposition of harmonic contributions with random
phases. Nonetheless, the analysis of the WEC response and performance in regular sinusoidal waves
is a widely used tool for preliminary evaluations, and optimal control in regular waves is used to
extrapolate control heuristics for application in real conditions [17].

2.1.2 Optimisation problem formulation110

A relevant optimisation goal is to maximise the harvested energy in the presence of a given periodic
excitation. Indicating with Ẇu = −uż the instantaneous power output of the PTO (Ẇu > 0 if the PTO
is positively harvesting energy from the oscillating system), we consider the problem of optimising the
total harvested energy over one period in steady-state conditions, in the presence of bounds on the
maximum admissible oscillation amplitude z̄ of the moving mass and ū of the PTO load excitation:

min
u∈L2([0,T ])

J(u) =

∫ T

0

żudt

subject to (3)
|u(t)| ≤ ū, ∀t ∈ [0, T ]
|z(t)| ≤ z̄, ∀t ∈ [0, T ]
z(0) = z(T )

(4)

Problem (4) has been largely investigated in the field of energy harvesting [18, 19]. In the case
of monochromatic harmonic excitation, if no constraints ū on the PTO load and z̄ on the system
oscillation amplitude are present, energy transfer from the input mechanical energy source to the PTO

4



is maximized when the system response is resonant, i.e., when the system velocity ż is in phase with
the excitation d [18].115

The presence of constraints leads to nonlinear dynamics of the harvester with latched oscillatory
behaviours [20], whose solution has been tackled, in the past, using time domain dynamic programming
approaches [21] and Fourier-based approaches [11]. The instantaneous power Ẇu associated with the
optimal control u∗ is not always positive, i.e., the PTO is required to supply power to the oscillator
during certain time intervals, leading to some amount of reactive power to be injected in the system120

through the PTO. In general, the optimal solution u∗ to (4) is non-smooth.
Problem (4) has an objective function which is, in general, non convex. A convex reformulation

of (4) can be obtained in the frequency domain for the case of harmonic excitation e [18, 19]. In the
following, we consider the case of a generic periodic excitation and we show that the problem can
be conveniently resorted to a convex formulation. In particular, it can be cast in the form of (2) in125

Problem 1 through an appropriate selection of the state x.

Proposition 1 Problem (4) can be cast in terms of a convex quadratic cost.

We consider scalar equation (3) for the system dynamics. Multiplying both members of the equation
by ż and computing the integral over one time period allows rewriting the objective function of (4)
as follows:

J(u) =

∫ T

0

żudt =

∫ T

0

(
cż2 − że

)
dt =

∫ T

0

[
c
(
ż − e

2c

)2
− e2

4

]
dt, (5)

where the integrals of the terms Mz̈ż and kzż have been omitted since they are clearly equal to zero
due to the periodicity of z(t). Being e a fixed bounded function of time, minimisation of J in (5) is
equivalent to the minimisation of

J̄(u) =

∫ T

0

(
ż − e

2c

)2
dt, (6)

which is a convex function of ż. Due to the linear differential relationship between z and u, cost J̄ is
also as a convex function of u, hence proving Proposition 1.130

Eq. (6) clearly shows that, in the absence of constraints, the optimal velocity profile that maximises
energy harvesting is given by ż∗ = e/(2c). In this condition, also known as resonance condition, the
mass velocity is in phase with the excitation force.

Proposition 2 Problem (4) can be expressed in the general form (2) of Problem 1.

To prove Proposition 2 we introduce a convenient definition for the system state as follows:

x =

[
ż − e/(2c)
z − ep/(2c)

]
, (7)

where ep is any primitive of e (namely, ėp = e). In practice, the state of the system is defined here as135

the difference between the physical variables (z, ż) and their optimal unconstrained trends.
With choice (7) for the state x, Eq. (3) can be reduced to a differential equation of the form (1)

with m = 2 and a one-dimensional input (p = 1), with the following selections for the system and
input matrices:

A =

[
−c/M −k/M

1 0

]
, B =

[
1
0

]
, (8)

where u represents the PTO force and the following expression is used for the external excitation:

d =
e

2
− Mė

2c
− kep

2c
. (9)
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Since e(t) is periodic, d is also periodic.
Based on (6), optimisation problem (4) can be thus rewritten in the following LQ form:

min
u∈L2([0,T ])

J̄(u) =

∫ T

0

x21dt

subject to (1), (8), (9)
|u(t)| ≤ ū, ∀t ∈ [0, T ]∣∣∣∣x2 +

ep(t)

2c

∣∣∣∣ ≤ z̄, ∀t ∈ [0, T ]

x(0) = x(T )

(10)

Problem (10) corresponds to Problem 1 (hence proving Proposition 2) with the following equalities:

P =

[
1 0
0 0

]
, Q = 0, Ax =

[
0 0 0 0
0 0 1 −1

]ᵀ
, Au =

[
1 −1 0 0

]ᵀ
,

b =
[
ū ū z̄ z̄

]ᵀ
, g(t) =

[
0 0

ep(t)

2c
−ep(t)

2c

]ᵀ
.

(11)

2.2 Application 2. Optimal tracking of a reference output voltage in DC/AC
converters

The second problem regards optimal driving of DC/AC power converters, namely inverters. Although
the technology and control of inverters dates back to decades ago, a quest for improved regulation140

strategies is currently taking place as a result of new power resources intrinsically operating in DC
(such as photovoltaic systems) being connected to the grid [22]. Grid-tied inverters are required to
comply with stringent requirements in terms of power output quality. For this reason, the identification
of robust regulation strategies, providing limited harmonic distortion, is currently a relevant research
topic [5, 23].145

2.2.1 System model

We hereby consider a single-phase inverter, as schematically shown in Fig. 1b. The device consists
in a linear RLC filter in cascade with a bridge of switching components (namely, an H-bridge). We
call R, L and C the positive values of the resistance, inductance and capacitance in the RLC branch,
respectively. A DC input voltage withconstant amplitude ū is fed into the device on the H-bridge side
and converted into an average voltage profile u (with |u(t)| ≤ ū ∀t ∈ [0, T ]), supplied to the RLC
through a pulse width modulation (PWM) switching logic. The voltage drop over the capacitor is
the inverter output, denoted v. In practical applications, v is required to track a target signal (e.g., a
sinusoidal voltage with a frequency equal to the grid frequency).
We set our attention on the dynamics of the RLC filter, treating the voltage u as the input and v as
the output. The following dynamical model described the circuit of Fig. 1b:

Lq̈(t) +Rq̇(t) + q(t)/C = u, i(t) = q̇(t), v(t) = q(t)/C, (12)

where q is the charge on the capacitor and i is the current in the loop.

2.2.2 Optimisation problem formulation

The optimisation problem that we address for (12) regards the minimization of the difference be-
tween the output voltage v(t) and a target periodic trajectory vr(t). Since, in practice, the inverter
is controlled acting on the H-bridge switches, the problem can be tackled using two alternative ap-
proaches, as observed in [23]. An approach consists in employing the discrete states of the switches as
the problem variables. This monolithic approach provides a direct solution for the optimal sequence
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of the physical states of the switches, but has rather high computational burden since it involves a
finite-state formulation that should also incorporate technological constraints on dwell time between
consecutive switches. The second approach consists in initially restricting the attention to the average
current behaviour, using the profile of an electrical variable (e.g., the RLC filter input voltage) as the
unknown of the optimisation problem. The solution to this problem can be employed, in a second
phase, as a reference evolution to identify an appropriate switching strategy, e.g. by resorting to a
hybrid formulation for the circuit dynamics [5].
We hereby consider the first step of the second approach, and use the input voltage u of the RLC
filter as the unknown of the problem. The magnitude of this voltage is clearly required to be smaller
than the DC input voltage. The resulting optimisation problem is given by (13) below, where the cost
function is defined as the squared L2 norm of the difference between v and vr.

min
u∈L2([0,T ])

J(u) =

∫ T

0

[v(t)− vr(t)]2 dt

subject to (12)
|u(t)| ≤ ū, ∀t ∈ [0, T ]
v(0) = v(T )

(13)

The periodicity of v automatically guarantees that i and v are also periodic.
It is worth noticing that a perfect tracking of the reference trajectory (namely, v∗ = vr) is obtained

as the solution of (13) whenever the following condition is satisfied:

|Lv̈r +Rv̇r + Cvr| ≤ Cū (14)

Condition (14) guarantees that the input amplitude constraints are not active. Then the optimal150

solution coincides with that of the unconstrained scenario. Similarly to Application 1 in Sect. 2.1, in
the presence of constraints, the solution to (13) generally leads to non-smooth dynamics.

The following result holds for the general case, regardless of (14).

Proposition 3 Problem (13) can be expressed in the LQ form given by Problem 1.

We hereby define a set of state variables representing the tracking error of the state variables with
respect to a reference dynamics, in the same fashion as in Sect. 2.1.2. Similarly to [5], in addition to
the reference voltage vr on the capacitor, we define a corresponding reference current ir = Cv̇r and
we define the state of the system as x = [i− ir, v − vr]T .
Rewriting (12) in terms of x leads to a linear model of the form (1), with the following definitions for
the system matrix, the input matrix and the excitation signal:

A =

[
−R −1
1/C 0

]
, B =

[
1/L

0

]
, d = (LCω2

0 − 1)vr −Rir. (15)

Since vr and ir are periodic functions, d is also periodic.155

Using the above-defined error x, optimisation problem (13) takes the following form:
min

u∈L2([0,T ])
J(u) =

∫ T

0

x22dt

subject to (1), (15)
|u(t)| ≤ ū, ∀t ∈ [0, T ]
x(0) = x(T ).

(16)

The problem, in this form, clearly belongs to the class of problems defined by (2) in Problem 1
(hence proving Proposition 3), with the following definitions:

P =

[
0 0
0 1

]
, Q = 0, Ax = 02×2, Au =

[
1
−1

]
, g(t) = 02×1, b =

[
ū
ū

]
, (17)

where 0i×j indicates a matrix of zeros in Ri×j .
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3 Fourier-based dynamic programming for bandlimited peri-
odic systems

The solution to (2) in Problem 1 generally leads to non-smooth periodic dynamics, such that the
optimal input and the state evolution include high-frequency harmonics, as it can be verified by160

applying Pontryagin’s maximum principle. Practical applications typically involve smooth bandlimited
excitations d and control inputs u, compatible with the physical mechanisms or the machinery through
which they are generated. Owing to linear model (1), this results in a smooth bandlimited evolution of
the state x. Instead of pursuing a Pontryagin-based approach or a time-domain numerical approach,
which would provide non-smooth solutions, in this section we discuss a methodology to cast the165

optimisation problems discussed in the previous section in a bandlimited fashion, using a FS approach.
The idea behind the proposed method is to express u as a FS with a finite number of harmonics

and to recast the original optimisation problem as a finite-dimensional minimisation problem holding
the Fourier coefficients of u as the unknown variables.
With reference to linear dynamics (1), we call un, dn and xn the parametrisation of u, d and x as a170

set of FS with a finite number n of harmonics of the fundamental frequency ω0 = 2π/T , where T is
the period in optimisation (2):

u(t) ≈ un(t) = cu0 +

n∑
k=1

cuk cos (kω0t) + suk sin (kω0t) ,

d(t) ≈ dn(t) = cd0 +

n∑
k=1

cdk cos (kω0t) + sdk sin (kω0t) ,

x(t) ≈ xn(t) = cx0 +

n∑
k=1

cxk cos (kω0t) + sxk sin (kω0t) ,

(18)

where cuk , s
u
k , c

d
k, s

d
k ∈ Rp, cxk, sxk ∈ Rm are Fourier coefficients. Substituting the previous expansions

in (1) provides

[
Acx0 +B(cu0 + cd0)

]
+

n∑
k=1

[
Acxk − kω0s

x
k +B(cuk + cdk)

]
cos (kω0t)

+
[
Asxk + kω0c

x
k +B(suk + sdk)

]
sin (kω0t) = 0m×1.

(19)

Due to the orthogonality of the Fourier basis functions, for (19) to hold for all t ∈ [0, T ], each one of
the terms in square brackets must be equal to 0m×1, leading to the following set of linear equalities
(which must hold for all k = 1, . . . , n):

−A︸︷︷︸
M0

cx0 = B(cu0 + cd0)

[
−A kω0I

m×m

−kω0I
m×m −A

]
︸ ︷︷ ︸

Mk

[
cxk
sxk

]
=

[
B 0m×p

0m×p B

]([
cuk
suk

]
+

[
cdk
sdk

])
,

(20)

where Im×m stands for an m × m identity matrix. Equations (20) guarantees that un, dn and xn
satisfy the dynamics (1) at all times, hence representing a consistent dynamic evolution for the system.
We introduce the following vectors of Fourier coefficients:

u = [cu0
ᵀ, cu1

ᵀ, su1
ᵀ . . . , cun

ᵀ, sun
ᵀ]ᵀ,

d = [cd0
ᵀ
, cd1

ᵀ
, sd1

ᵀ
. . . , cdn

ᵀ
, sdn

ᵀ
]ᵀ,

x = [cx0
ᵀ, cx1

ᵀ, sx1
ᵀ . . . , cxn

ᵀ, sxn
ᵀ]ᵀ,

(21)
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and express equalities (20) in the following compact form:

Mex = Be (u + d ) , (22)

where Me and Be are sparse block matrices defined as

Me = diag (M0,M1, . . . ,Mn) , Be = diag (B,B, . . . , B) . (23)

3.1 Cost function

Expressing the system state, input and excitation as a finite sum of harmonic terms, the cost function
of (2) in Problem 1 can be rewritten as a quadratic function of u, x and d which, using (22), can be
reduced to u and d only.
In particular, indicating with J̃ the value of the cost function associated to the case of bandlimited
dynamics discussed in the previous section (see (22)) and noticing that the harmonic terms in the FS
are orthogonal functions in L2([0, T ]) leads to the following equality:

J̃ =

∫ T

0

(xᵀnPxn + uᵀnQun) dt = T

[
cx0

ᵀPcx0 + cu0
ᵀQcu0+

+
1

2

n∑
k=1

cxk
ᵀPcxk + sxk

ᵀPsxk + cuk
ᵀQcuk + suk

ᵀQsuk

] (24)

Using the coefficient vectors defined in (21), J̃ can be rewritten as follows:

J̃ =
T

2
(x ᵀDP x + uᵀDQu) , (25)

where DP and DQ are block-diagonal sparse matrices defined as

DP = diag (2P, P, . . . , P ) , DQ = diag (2Q,Q, . . . , Q) . (26)

Since P and Q are symmetric and positive semidefinite, DP and DQ are also symmetric.
Expressing x as a function of u and d through (22), and omitting additive terms and constant positive
factors, minimisation of J̃ in (25) is equivalent to the minimisation of a quadratic function Ĵ of u, with
hessian H and linear term coefficient f defined as follows:

Ĵ(u) =
1

2
uᵀHu + uᵀf, with

H =Bᵀ
eM

−ᵀ
e DPM

−1
e Be +DQ, f = Bᵀ

eM
−ᵀ
e DPM

−1
e Bed ,

(27)

where matrix Me is invertible because A is Hurwitz (a detailed proof of this fact is given in Appendix
A).175

The following important property holds.

Proposition 4 The discretised cost function Ĵ(u) in (27) is convex with respect to u.

Based on (27) we may verify that H is positive semidefinite. Indeed, the first term in the expression
of H is positive semidefinite (it is in the form (.)ᵀDP (.), with DP positive semidefinite) and the second
term DQ is positive semidefinite. Therefore, H is the sum of positive semidefinite matrices, thus180

immediately proving Proposition 4.
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3.2 Inequality constraints

A reformulation of the inequality constraints of (2) in Problem 1 in (2) in terms of the problem
unknown u is presented in this section.

To this end, we approximate the constraint function g(t) as a finite sum of harmonic terms, in the
same fashion as the state, the input, and the excitation:

g(t) ≈ gn(t) = cg0 +

n∑
k=1

cgk cos (kω0t) + sgk sin (kω0t) , (28)

with cgk ∈ Rl, sgk ∈ Rl being a set of Fourier coefficients stacked in the following vector:

g = [cg0
ᵀ
, cg1

ᵀ
, sg1

ᵀ
. . . , cgn

ᵀ, sgn
ᵀ]ᵀ. (29)

Furthermore, we introduce matrix Tn(t), whose elements are functions of time:

Tn(t) =
[
I l×l, cos(ω0t)I

l×l, sin(ω0t)I
l×l, . . . , cos(nω0t)I

l×l, sin(nω0t)I
l×l]. (30)

Using (29) and (30) and rewriting the constraints of (2) in Problem 1 with the finite FS expansions
of u and x in (18) we obtain:

Tn(t)An,xx + Tn(t)An,uu + Tn(t)g ≤ b, (31)

where An,x and An,u are defined as

An,x = diag (Ax, . . . , Ax) , An,u = diag (Au, . . . , Au) . (32)

Substituting (22) in (31), the constraint can be finally rewritten in terms of u as follows:

An(t)u + ĝn(t) ≤ b, with

An(t) = Tn(t)
(
An,xM

−1
e Be +An,u

)
, ĝn(t) = Tn(t)

(
An,xM

−1
e Bed + g

)
.

(33)

3.3 Frequency-discrete optimisation problem185

Based on the recasting of the system state, input, excitation and the cost function discussed above,
the LQ optimisation problem in (2) takes the form of a finite-dimensional minimisation problem, as
expressed in the following.

Problem 2 Frequency-discrete LQ periodic optimisation problem: min
u∈Rp(2n+1)

Ĵ(u) =
1

2
uᵀHu + uᵀf subj. to:

An(t)u + ĝn(t) ≤ b, ∀t ∈ [0, T ]
(34)

Problem 2 is a QP problem in the variable u subject to infinitely many linear parametric constraints190

to be verified for each value of the parameter, t, within the interval [0, T ].
The solution to Problem 2 represents a suboptimal feasible solution to (2) in Problem 1. In contrast

to the solution to Problem 1, the solution to Problem 2 produces a smooth bandlimited evolution
of the system, hence providing relevant target optimal dynamics for practical systems, governed by
technological constraints.195

With this motivation, we hereby focus on the solution of (34) in Problem 2. In principle, under the
assumption of H being positive definite, one could reduce the problem into a constrained minimum
norm problem over a convex set defined by infinite inequalities. The dual of this problem consists
in the maximization of the concave support functional associated to the constraint set over the unit
ball, which in principle might seem to be a simpler problem. Besides the strong requirement of strict200

convexity of the cost function, the computation of that support functional is not trivial, therefore there
is no apparent advantage in pursuing this approach.
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(a) (b)

Figure 2: (a) Approximating Problem 2 with (P1) leads to constraint violation. (b) Solving (Pα)
provides a feasible solution to Problem 2 for an appropriate choice of the CSTS.

4 Problem reformulation with finite-dimensional constraints

Problem 2 is subject to linear continuous-time constraints that need to be verified over a continuous set
of time instants t. To enable a computationally efficient solution to the problem, it is hence necessary to205

further reshape it, e.g., by replacing the infinite dimensional constraints with a finite set of constraints.
Regarding this, a numerical approach has been developed in previous works [9, 11] that relies on a
relaxation of the constraints. According to that approach, the original constraints are only applied in
a finite set of time instants, hence introducing a discretisation of the considered time horizon [0, T ]
(i.e., one period). The number of the resulting constraints depends on the number of time-samples of210

the considered time grid, which is independent of the dimension of the unknown variable u. Using a
fine discretisation of a time period with a large number of time samples provides a good approximation
of the original continuous-time constraints, but it leads to a significant number of constraints (with
consequent computational burden) and possible constraint violations in the intersample intervals.

With reference to optimisation (34) in Problem 2, rather than simply using a uniformly spaced grid215

we adapt a nonuniform grid where we impose a restricted versions of the constraints to get a feasible
solution. The corresponding optimisation problem is given next.

Problem 3 Parametric periodic optimisation problem with discretised α−restricted constraints

(Pα)

 min
u∈Rp(2n+1)

Ĵ(u) =
1

2
uᵀHu + uᵀf subj. to

An(tk)u + ĝn(tk) ≤ αb, k = 1, . . . , q
(35)

where {tk}qk=0 ⊂ [0, T ] is a finite set of q + 1 time samples, and 0 < α ≤ 1 is a real parameter.

The set Tαq = {tk}qk=0 is hereby called the constrained set of time samples (CSTS) for problem220

(Pα). Since b is positive-valued, reducing α leads to a restriction of the set of the feasible solutions.
Nonetheless, if the feasible region for Problem 1 (and, hence, Problem 2) has non empty interior, then
there exists a minimum value for α above which the feasible region for (Pα) is non-empty.

A special case for the previous problem is α = 1. (P1) has the same objective function as Problem 2
and a wider set of feasible solutions (the inequality constraints are imposed only on a finite set of225

instants, thus they are less stringent than in the original problem). The optimal solution to (P1) leads
to continuous time-series un and xn that generally violate the constraints of Problem 2 outside of the
CSTS (see Fig. 2a).

In contrast, we hereby show that solving (Pα) (with α sufficiently close to 1) potentially allows
finding a solution that satisfies to the original finite-dimensional constraints (see Fig. 2b), provided230

that a suitable CSTS is built.
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4.1 Some properties of discrete-time constraint approximation

In this section, we discuss the implications of imposing the constraints of Problem 2 over a finite set
Tαq.

The right-hand side term of the constraint in (33) can be expressed as a finite sum of harmonics235

as follows:

h(t) = An(t)u + ĝn(t) = Tn(t)
[
An,xM

−1
e Be (d + u) +An,uu + g

]
, (36)

where the factor into square brackets represents the vector of the Fourier coefficients of h.
The component-wise representation of the constraint in Problem 2 can be thus rewritten in the

following form:

hi(t) ≤ bi, with hi(t) = chi0 +

n∑
k=1

chik cos (kω0t) + shik sin (kω0t) , (37)

where hi(t) and bi, with i = 1, . . . , l, are the i−th component of h(t), and b, respectively.
With reference to (37), we consider two consecutive time instants tk and tk+1 at which the constraint

is respected, and investigate the conditions that prevent constraint violations in the interval [tk, tk+1].240

Figure 3: Constraint violation in a time interval between two points tk and tk+1 where constraint (37)
is respected.

Function hi(t) is smooth (it is a finite sum of harmonic terms). Therefore, in case a constraint
violation occurs in the interval [tk, tk+1], there must exist a point tM in that interval such that ḣi(tM ) =
0 (see Fig. 3), where the violation is maximum.
In order to deduce an expression for fi(tM ), we use a Taylor series expansion with Lagrange remainder
around tM . Using a first-order Taylor expansion and evaluating it in tk and tk+1 leads to the following
expressions:

hi(tk) = hi(tM ) + ḣi(tν1)(tk − tM ), hi(tk+1) = hi(tM ) + ḣi(tν2)(tk+1 − tM ) (38)

with tν1 , tν2 ∈ [tk, tM ] (according to Lagrange theorem).
In a similar manner, using a second-order Taylor expansion around tM (where ḣi(tM ) = 0) evaluated
at tk and tk+1 leads to the following expressions:

hi(tk) = hi(tM ) +
ḧi(tν3)

2
(tk − tM )2, hi(tk+1) = hi(tM ) +

ḧi(tν4)

2
(tk+1 − tM )2 (39)

with tν3 , tν4 ∈ [tk, tM ].
Using (37), the following conditions for the first and second order derivatives of hi can be deduced:

|ḣi(t)| ≤ ω0

n∑
k=1

k

√
(chik )2 + (shik )2 = Fin, |ḧi(t)| ≤ ω2

0

n∑
k=1

k2
√

(chik )2 + (shik )2 = Lin. (40)
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Using these inequalities, a set of sufficient conditions for (37) to hold over each time interval [tk, tk+1]
can be found.

Proposition 5 Denoting mik = min {hi(tk), hi(tk+1)} and Mik = max {hi(tk), hi(tk+1)}, each one of
the following set of inequalities is sufficient for inequality (37) to hold for all t ∈ [tk, tk+1]:

mik + Fin · (tk+1 − tk) ≤ bi, Mik +
Fin
2
· (tk+1 − tk) ≤ bi,

mik +
Lin
2
· (tk+1 − tk)2 ≤ bi, Mik +

Lin
8
· (tk+1 − tk)2 ≤ bi.

(41)

To prove Proposition 5, we first notice that a sufficient condition ensuring constraint (37) in [tk, tk+1] is:
hi(tM ) ≤ bi. Following this, the first and the third conditions in (41) are easily obtained from Eqs. (38-245

39) replacing the derivatives with their upper-bounds in (40) and noticing that (tM−tk), (tk+1−tM ) ≤
(tk+1 − tk). The second and the fourth conditions in (41) are obtained in a similar manner, noticing
that min{tM − tk, tk+1 − tM} ≤ (tk+1 − tk)/2.

4.2 An algorithm for the identification of a suboptimal feasible solution to
Problem 2250

In this section we present a procedure allowing to iteratively build a feasible solution to (34) in
Problem 2, based on a sequence of solutions to different instances of (35) in Problem 3. The proposed
algorithm relies on a given choice for α < 1 (close to 1) and employs sufficient conditions (41) of
Proposition 5 to iteratively build a CSTS such that the chosen solution to (Pα) is feasible for Problem 2.
The steps of the procedure are summarised in Algorithm 1. At each iteration, Algorithm 1 solves (35)255

in Problem 3 using the current CSTS candidate; sufficient conditions (41) are then tested for each
constraint in each interval between consecutive time samples; whenever the test fails, the midpoints of
those intervals are added to the CSTS, and the algorithm is iterated until at least a sufficient condition
holds in each interval for each of the constraints.

The algorithm clearly provides a solution within the feasible region of Problem 2 in (34), since260

sufficient conditions (41) guarantee the constraints of Problem 2 over the entire time interval [0, T ].
The outputs of the algorithm are: the CSTS Tαq∗ at the last step, the optimal input coefficients
u∗α|Tαq∗ , and the optimal value of the cost function J∗α|Tαq∗ .

Proposition 6 Let J∗ be the optimal cost resulting from the solution to (34) in Problem 2, then

lim
α→1

J∗α|Tαq∗ = J∗. (42)

To prove this statement, we consider the following frequency-discrete LQ optimisation problem
with α−parametric continuous-time constraints: J∗α = min

u∈Rp(2n+1)
Ĵ(u) =

1

2
uᵀHu + uᵀf

subect to An(t)u + ĝn(t) ≤ αb, ∀t ∈ [0, T ]
(43)

Eq. (43) is a reformulation of (34) in Problem 2 with restricted constraints. The following inequality
holds:

J∗ ≤ J∗α|Tαq∗ ≤ J
∗
α, ∀α < 1. (44)

The application of Algorithm 1 leads to a feasible solution to (34) in Problem 2, thereby justifying
the left-hand-side inequality. The problem given in (43), in turns, has a smaller feasible region as
compared to Problem 2, thus proving the right-hand side inequality in (44).
Note also that Problem 2 is a special case of (43) (with α = 1). The problems in (43) are a class
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Algorithm 1: Computation of a suboptimal feasible solution to (34) in Problem 2

Input: α, Tαq1 ⊇ {0, T} . choose α ∈ (0, 1) and an initial CSTS candidate Tαq1 with 1 + q1 ≥ 2 samples

satisfying to t0 = 0, tq1 = T .

j ← 1 . Initialise iteration counter

repeat
uαqj ← solution to (Pα) with Tαqj as the CSTS . Solve Problem 3

Use uαqj to evaluate h(t) (Eq. (36)) at each sample in Tαqj
Tαqj+1

← {t0} . Initialise next-step CSTS

for k ← 1 to qj − 1 do
if ∃ i ∈ {1, . . . , l} s.t. none of suff. cond. (41) holds then

Tαqj+1
← Tαqj+1

∪
{
tk + tk+1

2
, tk+1

}
. Include interval midpoint in the CSTS

else
Tαqj+1

← Tαqj+1
∪ {tk+1} . Do not include the midpoint in the CSTS

end

end

qj+1 ←
∣∣∣Tαqj+1

∣∣∣ . Update the cardinality of the CSTS

j ← j + 1
until qj = qj−1

return Tαq∗ ← Tαqj , u∗α|Tαq∗ ← uαqj , J
∗
α|Tαq∗ ← Ĵ

(
u∗α|Tαq∗

)

of convex problems, whose feasible (convex) set continuously depends on α, and whose optimal cost
consequently is a continuous function satisfying

lim
α→1

J∗α = J∗. (45)

Combining this condition with (44) immediately proves Proposition 6.

Proposition 7 Denote by uαqj the solution to (Pα) at the generic j−th step of Algorithm 1. If ||uαqj ||265

is uniformly bounded for all j (namely, ∃ U > 0 : ||uαqj || < U ∀j) then Algorithm 1 converges in a
finite number of steps.

Based on (36), since d and g are bounded, if u is also bounded, then the coefficients of hi(t) are
bounded. Hence, Fin and Lin in (40) are also bounded (e.g., ∃ F̄in such that Fin < F̄in at each
step). If the algorithm was iterated indefinitely, the lengths of the intervals [tk, tk+1] where none of
the sufficient conditions (41) hold would decrease and become indefinitely small. In particular, after a
finite number of steps, the following condition would hold on each one of the intervals where none of
(41) applies:

tk+1 − tk ≤
2(1− α)bi

F̄in
, ∀ i = 1, . . . , l. (46)

Noticing that Mik ≤ αbi, (46) immediately implies that the second condition in (41) holds in the above
mentioned time intervals, causing the algorithm to stop. Proposition 7 is then proven by contradiction.

270

Whether or not u satisfies the boundedness assumption in Proposition 7 depends on the problem-
specific form of the cost function and the constraints. Two scenarios in which the boundedness condi-
tion in Proposition 7 holds are as follows.
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• If Ĵ(u) is strictly convex (i.e., H is positive definite), then ||uαqj || is uniformly bounded.
The solution to (Pα) at each step of Algorithm 1 provides a sequence of values for the cost
function which are upper bounded by the optimal cost for (43):

Ĵ(uαqj ) ≤ J
∗
α. (47)

Being H positive definite, the following inequality holds:

Ĵ(uαqj ) ≥
λH,min

2
||uαqj ||

2 − ||f || · ||uαqj ||, (48)

where λH,min > 0 is the smallest eigenvalue of H. Combining (47) with (48) immediately proves
that ||uαqj || is uniformly bounded.275

• It might happen that the constraints in (34) imply that

−ū ≤ u ≤ ū. (49)

In this case the constraints of (35) in Problem 3 may be augmented with (49) to also force
the sampled problem to satisfy those uniform bounds for any CSTS candidate, in addition to
imposing the hypothesis of Proposition 7. Since the feasible set in Problem 2 is included within
the set defined by (49), conditions (42), (44) and (45) still hold, in spite of the considered recasting
of Problem 3.280

Proposition 8 For a given choice of α, denote by Tαq∗ the CSTS resulting from the application of
Algorithm 1 to (Pα) in (35), and with J∗α|Tαq∗ the resulting optimal cost. Denoting by J∗1 |Tαq∗ the

optimal cost for problem (P1) in (35) solved using Tαq∗ as the CSTS, the following inequalities hold:

J∗1 |Tαq∗ ≤ J
∗ ≤ J∗α|Tαq∗ , (50)

where J∗ is the optimal cost for (34) in Problem 2.

The right-hand side inequality in (50) has been previously proven (see (44)). Problem (P1) has the
same objective function as (34) in Problem 2, but it has a larger feasible set (i.e., a solution to Prob-
lem 2 is always feasible for (P1) but not vice-versa), hence proving the left-hand-side inequality and
the proposition.285

In practice, solving (Pα) with Algorithm 1 and using the resulting CSTS to solve (P1) provides
an upper and a lower bound for the optimal cost of the problem in (34). Eq. (50), combined with
Proposition 6, provides a tool to achieving an increasingly accurate estimate of J∗, which can be
obtained by iteratively applying Algorithm 1 with increasing values of α.290

5 Case studies

In this section, we present two numerical case studies involving the applications discussed in Sect. 2.1
(mechanical energy harvester) and Sect. 2.2 (inverter control). With reference to a sinusoidal excitation
d, bandlimited solutions are investigated via the application of Algorithm 1 and the sandwich bound
in (50).295
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5.1 Case study 1 - Mechanical oscillator energy harvester

Consider a direct-force energy harvester (Fig. 1a right) and a harmonic excitation force e = ē cos(ω0t),
with ω0 = 2π/T .
For the sake of generality, we introduce the following set of dimensionless variables:

t =
t

T
, z =

k

ē
z, ż =

kT

ē
ż, z̈ =

kT 2

ē
z̈, u =

u

ē
, e =

e

ē
. (51)

With these definitions, the equations of motion (3) can be rewritten in a dimensionless form:

γ1z̈ + γ2ż + z = cos(2πt) + u, with γ1 = M/(kT 2), γ2 = c/(kT ), (52)

and are fully characterised by the dimensionless numbers γ1 and γ2.

Table 1: Numerical parameters of the first case study - mechanical oscillator energy harvester.

γ1 γ2 z̄ n α
0.1 0.2 0.15 10 0.99

With reference to (4), we consider a constraint on the maximum dimensionless oscillation amplitude
(|z| ≤ z̄), with no constraints on the control amplitude. With these assumptions, the problem is in the
same form as (34) in Problem 2. As an example, we consider the numerical parameters reported in300

Tab. 1. The considered system has an excitation frequency larger than the natural frequency (i.e., the
ratio of the excitation and the natural frequencies, 2πγ0.51 , is greater than 1) and it is underdamped
(i.e., the damping ratio 0.5γ−0.51 γ2 is lower than 1). These conditions are representative of some
practical applications, e.g., some families of WEC [24].
Owing to the symmetry of the excitation, the problem can be formulated by omitting zero-order305

harmonics (i.e., cu0 = 0) and redefining the matrices of the cost and the constraints (Eq. (22) and
(33)) by omitting the corresponding zero-order blocks. With this assumption, it can be easily verified
that the hessian H of cost (27) (defined as in Appendix B, but without the diagonal block H0) is
positive definite, hence guaranteeing convergence of Algorithm 1 in a finite number of steps according
to Proposition 7.310

We apply Algorithm 1 with α = 0.99 and an initial set of time instants Tαq1 with 5 equally-spaced
time samples. The numerical solution of problem (Pα) at the different iterations is tackled using the
quadprog command in Matlab. The algorithm converges after 5 iterations. The profiles of the natural
variables of the problem (z, e and u) at each iteration are shown in Fig. 4.

It is worth noticing that at the first iterations, due to the large oscillations in the profile of z, the315

sufficient conditions in (41) do not hold anywhere, and the algorithm uniformly increases the grid of
the constrained time samples. In the last few iterations, since the control profile is close to the limiting
solution, the algorithm only introduces extra time samples in the intervals where the constraint is
active (i.e., |z| ' z̄), in order to enforce the sufficient conditions. The number of constrained time
samples at convergence is 1 + q∗ = 36 (see Fig. 4e).320

The optimal solution (Fig. 4e) shows a well-known behaviour, referred to as latching [19] in control
theory of mechanical energy harvesters with bounded oscillations [20]. This behaviour holds the os-
cillator fixed at the maximum-displacement positions during certain time intervals, so as to bring the
optimal position profile z(t) into phase opposition with respect to the excitation e, mimicking the
unconstrained solution.325

Based on (50), we used the CSTS Tαq∗ resulting from the application of Algorithm 1 to solve (P1)
(i.e., (34) in Problem 2 with α = 1), and we found that the maximum error in the estimate of J∗

(optimal cost for Problem 2) is

(
J∗α|Tαq∗ − J∗1 |Tαq∗

)
/
∣∣∣J∗α|Tαq∗ ∣∣∣ = 0.7%, as proven in Proposition 8.

Fig. 4f shows the trend of the amplitudes of the harmonic components of u (i.e., the output of Algo-
rithm 1). Even order terms have an amplitude equal to zero, i.e., the optimal control enjoys a half-wave330
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(a) iteration 1 (b) iteration 2

(c) iteration 3 (d) iteration 4

(e) iteration 5 (f) FS harmonic coefficients

Figure 4: (a-e) Profiles of z, e and u at each iteration (1 to 5) of Algorithm 1. The green dashed
lines represent the constraint level z̄ ≥ |z|. The asterisks on the time axis represent the elements of
the CSTS at each iteration. Figure e) also reports a non-smooth numerical solution obtained with a
time domain formulation with no restrictions on the control bandwidth (purple dashed line). Figure
f) shows the amplitude of the ten harmonic coefficients in the FS of the output u of Algorithm 1.
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(a) iteration 1 (b) iteration 3

(c) iteration 5 (d) iteration 7

Figure 5: (a-d) Profiles of z, e and u at different iterations (1 to 7) of Algorithm 1. The green dashed
lines represent the constraint level ū ≥ |u|. The asterisks on the time axis represent the elements of the
CSTS at the different iterations. Figure d) also reports a numerical solution to the problem obtained
from a time domain formulation with no restrictions on the control bandwidth (purple dashed line).

symmetry, namely u(t+T/2) = −u(t). The amplitude of the odd coefficients decreases with increasing
order, exception made for the last term (k = 9) which is larger than the preceding one (k = 7). In
practice, the solution algorithm compensates for the truncated number of harmonic components (with
respect to the frequency-unbounded solution) through an increase of the highest order term.
In Fig. 4e, the optimal solution provided by Algorithm 1 is compared to a numerical solution to (4)335

obtained using a time domain method with a terminal state constraint [17]. This numerical solution
has been obtained using a discretisation of the system dynamics in the time domain (with a fixed
time-step ∆t = 5 · 10−3), and using a formulation of the problem similar to the one traditionally used
in model predictive control [25]. A comparison of the time and the frequency domain solutions shows
that, in spite of similar trends and peak values of the controlled force u, the time domain solution has340

a non-smooth profile with discontinuities in the force values, which are in fact not implementable with
practical PTO transducers. The optimal profiles for z, in contrast, are indistinguishable in the two
cases: the frequency response of the damped oscillator indeed limits the extent to which higher-order
harmonics in the control input can affect the system dynamics.
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(a) (b)

Figure 6: (a) Amplitude of the harmonic terms in the FS of u (output of Algorithm 1). (b) Optimal
profiles of z, e and u obtained using Algorithm 1 with n = 60 harmonics.

5.2 Case study 2 - Output voltage tracking in DC/AC converters345

We consider a single-phase inverter (Fig. 1b) that is required to track a sinusoidal output voltage
set-point vr = v̄ cos(ω0t). As in the previous example, we define a set of dimensionless variables:

t =
t

T
, q =

q

v̄C
, q̇ = i =

T

v̄C
i, q̈ =

T 2

v̄C
q̈, u =

u

v̄
, v =

v

v̄
, vr =

vr
v̄
. (53)

The dynamics (12) of the circuit can be thus expressed in terms of the following dimensionless form:

γ1q̈ + γ2q̇ + q = u, with γ1 =
LC

T 2
, γ2 =

RC

T
. (54)

In the following, we investigate the optimal bandlimited input voltage u for the RLC circuit (Eq. (13))
subject to an amplitude constraint (u ≤ ū) (resorting to the form (34) in Problem 2).
We consider the numerical data reported in Tab. 2, i.e., an underdamped system (0.5γ−0.51 γ2 < 1)
that, in contrast with the previous example, has a natural frequency which is larger than the excitation
frequency (2πγ0.51 < 1).350

As in the previous example, we cast the problem as (35) in Problem 3, omitting zero-order harmonic
terms and obtaining a positive definite hessian H for cost function (27).

Table 2: Numerical parameters of the second case study - voltage tracking in inverters.

γ1 γ2 ū n α
8 · 10−3 0.06 0.55 10 0.99

We apply Algorithm 1 considering an initial CSTS Tαq1 with 5 equally-spaced time samples. The
algorithm converges after 7 iterations. The number of elements in the CSTS Tαq∗ at the last iteration
is 1 + q∗ = 98. The profiles of the dimensionless voltages of the circuit (v, vr and u) at different355

iterations are shown in Fig. 5.
As in the previous example, the algorithm uniformly increases the number of constrained samples

during the first iterations (when significant constraint violations occur outside of the constrained set)
and then adds samples in the time intervals in which the constraint is active. Since in the considered
scenario the condition given by (14) is not satisfied, the optimal solution of the problem is non-trivial360

(i.e., a perfect tracking of the reference trajectory is impossible). Similarly to the previous example,
the resulting optimal control has a piecewise-constant profile, assuming the maximum/minimum values
(set by the constraint) over finite time intervals.
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Following the approximated solution of the problem through Algorithm 1, the resulting CSTS Tαq∗

is used to solve (P1) (see Proposition 8) and to quantify the maximum error in the estimate of J∗365

(optimal cost for (34) in Problem 2), namely:

(
J∗α|Tαq∗ − J∗1 |Tαq∗

)
/
∣∣∣J∗α|Tαq∗ ∣∣∣ = 0.2%, as proven in

Proposition 8.
In Fig. 6a, we report the amplitudes of the harmonic components of u resulting from the application
of Algorithm 1. The optimal control input has a half-wave symmetry (i.e., even order harmonics’
amplitudes are equal to zero) and the coefficients’ amplitude shows a smooth decreasing trend with370

increasing order.
In Fig. 5d, the discussed solution is compared with that obtained via a time domain approach

(using a discretisation of the dynamics with a time-step ∆t = 5 · 10−3). The two numerical procedures
(frequency and time domain) provide sensibly different profiles of the input u. In particular, the time
domain solution includes some high-frequency oscillations (around t = 0.17 s and t = 0.67 s) between375

the limit admissible values (|u| = ū), which do not appear in the frequency domain solution as a
consequence of the finite number of harmonics. Such differences in the input, however, do not generate
significant differences in terms of the system output v and its distance from the reference trajectory.
Solving the frequency domain problem (via Algorithm 1) with a larger number of harmonics leads to
a solution with high-frequency oscillations in the optimal profile of u, similarly to the optimal time380

domain solution. As an example, Fig. 6b compares the numerical solutions of the problem in the case
of a time domain approach and a frequency domain approach with maximum order of the Fourier
coefficients n = 60 (as opposed to n = 10 used in Fig. 5). This example clearly shows that the
frequency domain approach provides a smoother solution for the control input (easier to pursue in
practice) as compared to the time domain approach, while preserving the features of the time domain385

optimal solution in terms of the system output response.

6 Conclusions

We addressed dynamic programming in periodic systems via a functional approach based on the
Fourier series (FS). As compared to time domain methods, which rely on a discretisation of the dy-
namics through the state and input evaluation over a finite grid of time instants, frequency domain390

methods based on the FS provide smooth optimal profiles that can be practically employed to develop
control heuristics for real systems.
Motivated by two technical applications, we addressed linear quadratic problems on periodic steady-
state responses. We provided a general formulation that allows casting the optimisation problem as an
equivalent minimisation problem with parametric constraints, whose unknowns are the coefficients of395

a FS with a finite number of elements. Solving this minimisation problem leads to smooth bandlimited
control inputs.
As compared to previous works, this paper extends the framework of Fourier-based optimisation meth-
ods in a rigorous way by carefully discussing the implications of a convex frequency domain formulation
for the periodic problem, and proposes a new numerical procedure providing approximated globally-fea-400

sible solutions. The proposed procedure relies on the iterative solution of a set of quadratic problems,
whose constraints are built by sequentially restricting the constraints of the original optimisation prob-
lem and relaxing the set of time instants in which such constraints are enforced.
Two case studies have been discussed, which show that the proposed framework can be applied to solve
problems of actual interest in research and engineering (optimal control of vibrating energy harvesters405

and of DC/AC converters) which can be represented in a simplified and essential way as periodic LQ
problems.
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APPENDICES

A Proof of the invertibility of Me

We hereby prove that if A is a Hurwitz matrix (i.e., its eigenvalues have strictly negative real part)
then Me is invertible.
Me is a block-diagonal matrix defined as in (23). Since the eigenvalues of A are different from zero,
M0 is invertible (see (20)). Matrices Mk are invertible provided that the following condition holds for
all k = 1, . . . , n:

det (Ak) 6= 0, with Ak = A2 + k2ω2
0I
m×m, (A.1)

as this ensures the existence of the inverse matrices for Mk:

M−1k =

[
−AA−1k −kω0A

−1
k

kω0A
−1
k −AA−1k

]
. (A.2)

Since A is Hurwitz, the eigenvalues of A2 (i.e., the squares of the eigenvalues of A) are either positive415

real numbers or complex numbers, hence automatically satisfying condition (A.1).
Finally, Me is invertible since each of its diagonal blocks is invertible.

B Explicit expression for H

Based on (27), matrix H is block diagonal and it has the explicit expression given by (B.1), where the
first diagonal block (H0) belongs to Rp×p, and the other blocks (Hk) belong to R2p×2p.

H =


H0 0p×2p . . . 0p×2p

02p×p H1

...
...

. . .

02p×p . . . Hn

 , with H0 = 2BᵀA−ᵀPA−1B + 2Q,

Hk =

[
BᵀA−ᵀk

(
AᵀPA+ k2ω2

0P
)
A−1k B +Q kω0B

ᵀA−ᵀk ((PA)ᵀ − PA)A−1k B

kω0B
ᵀA−ᵀk (PA− (PA)ᵀ)A−1k B BᵀA−ᵀk

(
AᵀPA+ k2ω2

0P
)
A−1k B +Q

]
∀ k = 1, . . . , n.

(B.1)
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