
HAL Id: hal-03428530
https://laas.hal.science/hal-03428530

Submitted on 15 Nov 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Task Offloading in Autonomous IoT Systems using Deep
Reinforcement Learning and ns3-gym

Abdel Kader Chabi Sika Boni, Hassan Hassan, Khalil Drira

To cite this version:
Abdel Kader Chabi Sika Boni, Hassan Hassan, Khalil Drira. Task Offloading in Autonomous IoT
Systems using Deep Reinforcement Learning and ns3-gym. IoT ’21: 11th International Conference on
the Internet of Things, Nov 2021, Saint Gallen, Switzerland. �hal-03428530�

https://laas.hal.science/hal-03428530
https://hal.archives-ouvertes.fr

Task Offloading in Autonomous IoT Systems using
Deep Reinforcement Learning and ns3-gym

Abdel Kader Chabi Sika Boni
LAAS-CNRS

University of Toulouse
Toulouse, France
akchabisik@laas.fr

Hassan Hassan
LAAS-CNRS

University of Toulouse
Toulouse, France
hhassan@laas.fr

Khalil Drira
LAAS-CNRS

University of Toulouse
Toulouse, France

khalil@laas.fr

Abstract—IoT systems grow quickly and are massively present
in urban areas. Their successful deployment requires autonomy
that can be built on automated learning technologies such as
Deep Learning. The IoT applications require important com-
putational resources, rarely available on devices. Autonomous
IoT systems require the computation power available on the
edge and cloud servers in order to offload some tasks related to
the supported applications and the underlying platforms. Task
offloading constitutes a big challenge in autonomous IoT systems
due to the huge number of IoT devices for scenarios of the
family of smart cities. Managing task offloading in such contexts
requires adaptive strategies capable of taking into consideration
the rapid evolution of available resources and proposing efficient
offloading solutions to all received requests. In this paper we
use a Deep Reinforcement Learning (DRL) approach capable of
handling large state spaces, and resolve the optimization problem
in this context, where other techniques can not scale efficiently.
Our solution is based on a DRL agent that was developed in
the ns3-gym framework and was tested on IoT system scenario
implemented in the NS3 simulator. The results obtained show
that the DRL agent can adapt quickly to resource evolution in
the IoT system and can handle big number of demands fulfilling
scalabilty requirements of autonomous IoT systems.

Index Terms—Autonomous IoT systems, Task offloading, Deep
Reinforcement Learning, optimization

I. INTRODUCTION

IoT devices are used widely in many environments: indus-
trial IoT, smart cities, transport networks, etc. New applica-
tions deployed in these environments constitute a big chal-
lenge as IoT devices are very constrained in resources (small
CPUs, limited memory, batteries...). Besides, new IoT systems
expand very quickly including a large number of devices with
heterogeneous capabilities and using smart applications based
on new techniques such as Deep Learning. The deployment
of modern IoT systems require an overall automation and
resources management. Autonomous IoT systems should be
able to propose new strategies of resource allocation and
management to deploy applications on all available devices in
the system. One of the strategies that can be used to achieve
this goal is task offloading.
Task offloading is the process or technique that is used to
improve the performance, quality or efficiency of a compu-
tational task by delegating that task completely or partially
to a remote computational machine that usually has a more
powerful computational capacity than the local machine [4].

This technique requires a close collaboration between IoT
devices, edge and cloud servers present in the autonomous IoT
system. IoT devices can rely on available servers in order to
offload heavy tasks. At the same time, servers should manage
requests from a huge number of IoT devices. Handling such
a complex problem requires adapting techniques capable of
managing an increasing number of demands based on available
resources. Although many techniques can be used to solve this
problem, a few are capable of managing large state spaces
such as in smart cities. In this work we explore the use of
Deep Reinforcement Learning technique to handle the task
offloading problem in autonomous IoT systems using ns3-gym
[13] simulator.
The rest of this paper is organized as follows: in section 2
we give a brief overview of related work, in section 3 we
state the problem, in section 4 we present the DRL model and
in section 5 the simulation tool, in section 6 we present the
simulation results and we conclude in section 7 with future
work.

II. RELATED WORK

Several recent works have proposed solutions to solve
the task offloading problem. The authors in [27], [11],
[24], [17], [6], [5], [30], [2], [33] and [1] formulated task
offloading as an optimization problem that they solved
using heuristic methods. However, these methods are not
very efficient or with an unacceptable resolution time when
considering offloading scenarios with very large state space.
This approach is the one adopted also in [10], [22], [9], [25],
[19], [31] and [20], as the authors have treated task offloading
in conjunction with the problem of resource allocation
in resource constrained networks. Task offloading can be
approached as a Markov Decision Process (MDP) problem as
suggested by the authors in [8], [34], [29], [32], [26], [7], [8],
[33] and [15]. To determine the optimal policy for the MDP
problem several works, [32], [26], [15], have implemented
strategies based on Q-learning, a classical reinforcement
learning algorithm. Meanwhile this algorithm suffers from
the same deficits of resolution time as the heuristic methods.
The authors of [8], [35], [16], and [29] have exploited the
power of neural networks with Deep Q-Networks to estimate
the value functions in a Deep Q-learning resolution. This is a

fairly promising approach and is considered robust. However,
in [8], an architecture is implemented where a mobile user
generates tasks following a Bernoulli distribution. These
tasks are independent of each other and can be executed
locally on mobile device or on a cloud. The transmission of
a task to the cloud is done via one of the N available base
stations. The energy model is based on wireless charging
of the mobile user, but this model is not very realistic. The
choice of offloading to a remote cloud is also questionable
because edge computing could be more efficient. Finally, the
scalability of the solution has not been demonstrated; this
makes it difficult to adopt in massive IoT systems. Zhang
et al. [35] designed an architecture where mobile devices,
in addition to executing locally, have the choice to offload
their tasks to a multitude of edge servers. Those servers do
not collaborate with each other. The authors have jointly
addressed the delay sensitivity problem by defining two types
of tasks, i.e., delay-constrained tasks and delay-sensitive tasks.
However, the authors did not address the energy consumption
problem at all, which is very important given the energy
constraints of mobile devices. Moreover, the formulation of
their task offloading model does not mention the size of
the tasks as a parameter and the scalability of their model
has been proven for a maximum of 500 mobile devices,
which is very low at the scale of large IoT scenarios i.e.
smart cities. Huang et al. [16] addressed the task offloading
problem together with resource allocation. They implemented
an architecture composed of wireless devices capable of
performing tasks locally or on a server. They equipped
each device with a time-division-multiplexing (TDD) circuit
that allows it to perform its task while charging itself via
wireless power transfer (WPT) technology. This makes
their solution very specific to WPT enabled devices. They
implement a reinforcement learning agent based on a single
neural network. This agent allowed them to demonstrate the
scalability of their solution for only about 30 devices. In the
state of the art of deep reinforcement learning, single neural
network agents are considered to be less efficient than dual
neural network agents (Double Deep Q-learning) [28].
The authors in [33] formulated the task offloading as a MDP
problem which they solved by a dynamic programming
heuristic algorithm. An idea that we had discarded in our
work especially since the efficiency of such algorithms is less
compared to Deep Q-learning in large state spaces.

From an architectural point of view, the majority of the
works ([16], [22], [25], [6], [2], [19], [31], [7], [8], [33],
[20], [15] and [1]) adopt a centralized architecture while
some others [36], [10], [6], [30], [32], [26] have implemented
a decentralized architecture. In the centralized architecture,
offloading decisions are made at a central point, whereas
in a decentralized architecture each IoT device implements
the decision making algorithm. Therefore, the decentralized
architecture seems more realistic. However, IoT devices that
lack resources to run the algorithm may be discarded from
the proposed solution. An IoT device that is discarded in

this way and operates its offloading decisions poorly could
hinder the choices of other devices that run the algorithm.
The authors of [21], [17], [9] and [5] have conducted their
work on task offloading in a Software-Defined Networks
(SDN) context. In a task offloading problem, the type of
collaboration between the different entities can be horizontal
or vertical. This allows for different offloading scenarios [3].
A collaboration between IoT devices and an edge server is
implemented in [34], [23], [16], [9], [25], [32], [2], [19], [31],
[7], [8], [20], [15] and [1]. This is a vertical collaboration.
The authors demonstrated gain in response time as edge
servers are considered closer to IoT devices. Whereas in
[27], [18] and [30] the authors instead have IoT devices
collaborate directly with cloud servers. This means that a task
is always processed because cloud resources are considered
as unlimited. However, the priority is no longer put on the
response time. An intermediate collaboration between the
horizontal and vertical approach is used in [36] where an IoT
device can offload its task to an edge server which in turn
can distribute the task between itself and other edge servers.
Adding a central cloud server to this operation results in the
collaboration employed in [10], [29], [22], [6], [5], [14] and
[17].
We consider that the resolution of task offloading and
resource allocation problems can be done independently
of each other with the objective of simply adapting to the
available resources in order to make the right task offloading
choices. It is therefore not always relevant to manage resource
allocation in parallel with task offloading. In our approach, we
have therefore focused only on the task offloading problem
based on a Deep Q-Network approach. Moreover, to expand
the solution to all IoT devices in the system we adopted a
centralized architecture. Thus, the ability of the IoT device
to run the algorithm is no longer a hindrance. We chose
an IoT device-Edge server collaboration in order to have a
reasonable response time. To the best of our knowledge, our
work is the only one to use the ns3-gym framework [13] to
address the task offloading problem by deep reinforcement
learning. It is also one of the few works to consider the
resources of IoT systems as being very dynamic with frequent
random variations. The numerous simulations carried out
have shown that our solution converges faster and guarantees
good offloading decisions in near-real time compared to
existing solutions.

III. PROBLEM STATEMENT

A. IoT system model

We consider an IoT system consisting of an edge server
with which IoT devices communicate wirelessly via an AP
access point as depicted in figure 1. The system is composed
of N IoT devices each with M tasks to execute. We consider
a discrete time scale Dt = ti with i ∈ {1, 2, ...,M}. At each
time ti, each IoT device executes one and only one task among
the M tasks it has.
The nth IoT device has two possibilities of executing its mth

task at the discrete time ti : a local execution on the IoT

device or an offloading of the task to the edge server. A local
execution uses the limited device CPU and energy source. We
assume that the computing power of IoT devices is much lower
than edge server. The choice of execution type is made at the
beginning of each ti time and we assume that this choice does
not change during the same time ti. However, the choice can
be different for two different times ti.

B. Task model

We use Sn to represent the task in terms of the transferable
data size and Dn the size of the task expressed as the total
number of CPU cycles required to complete it. In other
words, Dn is the amount of computational resources needed
to complete the task. The relationship between Sn and Dn is
expressed as in equation (1)

Sn = θ ∗Dn (1)

We assume that a local computing or an offloading to the edge
server has no impact on Dn.
In our model, we assume that one task is indivisible and
can not be processed on different devices, i.e., an IoT device
must choose exclusively between local and edge computing to
execute its task.

C. Local computing

We denote by T loc
n the local execution delay for the nth

IoT device when it decides to execute its task locally. This
delay is considered as the processing delay by the local CPUs
and is expressed as in (2)

T loc
n =

Dn

f locn

(2)

Next, we define Eloc
n as the energy consumption during the

local execution of the task

Eloc
n = Dn ∗ elocn (3)

where elocn is the energy consumption per task bit processed
locally.

D. Edge computing

When the current task is to be offloaded, we denote by T edg
n

the temporal cost of offloading (edge computing) for the nth
IoT device. It is composed of the transmission delay T edg

n,t

i.e., the time needed for the task to be transmitted from the
IoT device to the edge server and the processing delay T edg

n,p

depending on the processing speed by the edge server CPUs.
These expressions are explained in equations (4), (5) and (6)

T edg
n,t = min(

Sn

dn
,
Sn

bn
) (4)

T edg
n,p =

Dn

fedgn

(5)

T edg
n = T edg

n,t + T edg
n,p (6)

Then, as for the local computing, we define Eedg
n as the energy

consumption during the execution of the task on the edge
server and express it by (7)

Eedg
n = Dn ∗ eedgn (7)

where eedgn is the energy consumption per bit of task processed
on the edge server.
Note that we consider the return time of the task execution
result as negligible.

E. Problem formulation

According to the previous notations, at time ti, the total
cost J of processing the current mth task of N IoT devices
is expressed as (8)

J(xnm) =

N∑
n=1

[Eloc
n (1− xn) + Eedg

n xn + wn(xnT
edg
n +

(1− xn)T loc
n)]

(8)

where xn represents the execution choice of the current task;
xn = 0 for local execution and xn = 1 for edge computing
and wn is a priority parameter for energy or computing power.
Extending the cost J to the discrete time scale Dt yields the
overall cost of executing all M IoT device tasks. Minimizing
this cost with constraints on energy consumption, computation
time and variable xnm, defines the optimization problem (9)
related to the IoT system depicted in figure 1

min J(xnm) =

N∑
n=1

[

M∑
m=1

[Eloc
nm(1− xnm)+

Eedg
nmxnm + wn(xnmT

edg
nm + (1− xnm)T loc

nm)]]

s.t. Eloc
nm > 0

T loc
nm > 0

Eedg
nm > 0

T edg
nm > 0

xnm ∈ {0, 1}

(9)

All the notations useful for understanding the formulation
of the problem are shown in table I. To solve the above
problem, we introduce a resolution technique based on deep
reinforcement learning. This technique is presented in the next
section.

IV. DRL MODEL

We solve the problem of task offloading (9) using a deep
reinforcement learning (DRL) agent. Our agent is based on a
double deep Q-Network. This structure constitutes the state of
the art in reinforcement learning [28].
The DRL agent is in charge of mapping between the state of
the IoT system resources and the optimal execution choices.
To do so, it learns the policy defined by (10).

π : st → XN (10)

where st = {vi}, i ∈ {1, 2, 3, ...} with vi values characterizing
the current state of the IoT system resources. We detail the

Fig. 1. IoT system

Sn size of the task in terms of transferable data
Dn size of the task expressed in terms of the total number of CPU

cycles required to perform it
T loc
n local computing delay
T edg
n cost in time of an execution on the edge server when the task

is offloaded
Eloc

n energy consumed in performing the task locally
Eedg

n energy consumed by running the task on the edge server
f locn number of CPU cycles required to process one bit of the task

locally
fedgn number of CPU cycles required to process one bit of the task

on the edge server
elocn energy consumed to process one bit of the task locally
eedgn energy consumed to process a fragment of the task on the edge

server
dn average available bandwidth between the access point AP and

the edge server
bn average available bandwidth between the IoT device and the

access point AP
θ definition parameter of proportionality between task size and

number of CPU cycles required
N number of IoT devices with tasks to perform in the IoT system
M number of tasks per IoT device
xnm decision to offload the mth task from the nth IoT device

0 = local computing
1 = edge computing

TABLE I
NOTATIONS OF THE OPTIMIZATION PROBLEM

vi values in the following sections. And XN = {xn}, n ∈
{1, 2, ..., N} where xn is the current task execution decision of
the nth IoT device. From a reinforcement learning perspective,
st and XN represent the state space and the action space,
respectively. The π policy of mapping between these two
spaces is exploited at each ti. We associate a reward rt with
each of the xn values of XN . The reward indicates to the agent
whether the decided action was right or not. This reward is
based on an evaluation at time ti of the cost J and represents

an important part of the efficiency of the agent, especially since
it ensures its convergence. We express this reward function as
in (11).

If J(xnm) < J(xnm,alt)
r(t) = −1

Else If J(xnm) > J(xnm,alt)
r(t) = +1

Else
r(t) = 0

(11)

where J(xnm,alt) represents the cost J for alternative action.
We denote by et (12) the tuple containing the state of the
environment st, the action at ∈ XN performed from this state,
the reward rt+1 given to the agent at time t+1 following the
previous state-action pair (st, at), and the next state of the
environment st+1 . This tuple indeed gives us a summary of
the agent’s experience at time ti.

et = (st, at, rt+1, st+1) (12)

Figure 2 shows the structure of the agent and the learning
process based on experiences. The successive experiments are
indeed stored in the replay memory. At each time ti, a sample
is then taken from this memory for training. The structure is
composed of two neural networks, the evaluation network and
the target network. In the Double Deep Q-Network algorithm
as presented in [28], the evaluation network is used only to
select the optimal action at ∈ XN and the target network
to generate the right output labels Qlab for neural network
training. The generation of labels can be summarized by the
Bellman’s equation (13) where θt and θ′t represent respectively
the weights of the evaluation network and the target network.

Qlab = rt + γQ(st+1, argmaxQ(st, at; θt); θ
′
t) (13)

Fig. 2. Double Deep Q-Network-based agent structure

We provide in the algorithm 1 the pseudo-code for the DRL
agent learning policy π.

Algorithm 2 Pseudo-code of DRL agent learning policy π
1: Initialize replay memory capacity
2: Initialize the policy network with random weights
3: Clone the policy network, and call it the target network
4: For each episode:
5: Initialize the starting state
6: For each time step:
7: Select an action
8: Via exploration ou exploitation
9: Execute selected action in an emulator

10: Observe reward and next state
11: Store experience in replay memory
12: Sample random batch from replay memory
13: Preprocess states from batch
14: Pass batch of preprocessed states to policy network
15: Calculate loss between output Q-values (Qpre) and

target Q-values (Qtar)
16: Requires a pass to the target network for the next

state
17: Gradient descent updates weights in the policy net-

work to minimize loss
18: After time steps, weights in the target network are

updated to the weights in the policy network

V. SIMULATION TOOL

To implement the proposed scenario of the IoT system in
figure 1 and to validate the effectiveness of the DRL agent,
we use the ns3-gym framework [13]. ns3-gym is a toolkit that
consists of two software components: Environment Gateway
written in C++ and the Environment Proxy written in Python.
Both components are add-ons to the existing ns-3 and OpenAI
Gym frameworks as depicted in figure 3. The main objective is
to facilitate and shorten the time required for prototyping new

RL-based networking solutions. In the framework, the ns-3
simulator implements environments, while the OpenAI Gym
unifies their interface. As ns-3 and OpenAI Gym are some
already existing frameworks, the implementation of a generic
interface between OpenAI Gym and ns-3 allows seamless
integration of these two frameworks. That generic interface,
figure 3, interconnects ns-3 network simulator and OpenAI
Gym framework by transferring states and actions between the
Gym agent and the simulation environment. The main strength
of this framework is that it makes it possible to turn any ns-3
scenario into an OpenAI Gym compatible environment and use
the flexibility of RL agent implementation in OpenAI Gym to
interact with the ns-3 scenario. We implement our IoT system
scenario in ns-3.

A. NS3-based environment

We classify the nodes in the IoT system in figure 1 into
three categories. The first one is the set of IoT devices having
tasks to execute. Each of these devices can execute a task
locally with dynamic f locn CPU cycles per task fragment; this
generates an energy consumption of elocn per executed task bit.
The total cost of a task execution by the IoT device is equal to
the execution time T loc

n added to an energy consumption Eloc
n .

Figure 4 illustrates the template used to instantiate each of the
IoT devices. The second category is the edge server, which
is able to receive, execute and return the execution result of
tasks sent to it. Each received task is executed with dynamic
fedgn CPU cycles per bit with an energy consumption per bit
of elocn . An execution on the server generates an execution
time of T edg

n and an overall energy consumption of Eedg
n . The

third category includes the wireless access point AP. It was
modeled using a standard ns-3 simulator node implementing
the TCP/IP protocol stack and capable of forwarding tasks
from IoT devices to the edge server and vice versa.
Note the state of the entire IoT system is a composed of the
states of its nodes. The ns-3 simulator provides node state

Fig. 3. ns3-gym framework architecture

retrieval functions by default. We made use of them to speed
up the characterization of the state st of the IoT system.

Fig. 4. Template for instantiating IoT devices

B. OpenAI Gym-based agent

Using the ns3-gym framework, we implement the deep
reinforcement learning agent. With ns3-gym we can work with
any learning framework. Thus, in order to build the Deep Q-
Networks, we use tensorflow 2.2.0-rc1. We then pre-processed
the raw data of the st states using scikit-learn 0.24.1 and
numpy 1.20.1.
We implemented the replay memory using the data structure
deque of the Python library collections [12]. Deque is a gener-
alization of stacks and queues: it is possible to add and remove

elements from both ends. This data structure handles multiple,
memory-efficient additions and deletions with approximately
the same performance O(1) in both directions.
In the next section, we will provide details about the Deep Q-
Networks hyper parameters and the size of the data structure
used.

VI. EXPERIMENTATION

We use the ns-3 simulator to implement the IoT system.
This simulator provides state retrieval functions for each node.
To make explicit the vi values of the st state of the IoT
system, we noted, among the metrics recoverable from ns-
3, those that change at each time ti and thus can characterize
the state of the resources during the same time. We realize
that considering an IoT subsystem consisting of the nth IoT
device, the AP wireless access point and the edge server, eight
values manage to characterize it: the execution capacity per
task bit on the IoT device, the energy consumption per task
bit on the IoT device, the size of the task to be executed,
the packet transmission rate of the IoT device, the available
bandwidth between the IoT device and the AP wireless access
point, the available bandwidth between AP wireless access
point and the edge server, the execution capacity per task bit
on the edge server, and the energy consumption per task bit on
the edge server. Those values constitutes the state st = {vi},
with i ∈ {1, 2, ..., 8}.
In the Deep Q-Network implementation of our DRL agent
structure, we use Dense neural networks with an input layer,
three hidden layers and an output layer of 8, 120, 50, 50
and 2 neurons respectively. We use the Adam optimizer with
lr=0.001 for back-propagation of neural networks with a loss
function mse.

A. Convergence performance

Unlike supervised learning techniques, in reinforcement
learning there is no distinction between the training phase
and the test phase. Thus, one of the most used methods to
measure performance is to follow the evolution of the rewards
accumulated by the agent during several simulations. Each
simulation is then considered as an episode. We consider M =
29 computational tasks per IoT device and a performance
condition of our DRL agent when it perfectly realizes a good
execution of about 28 tasks during 30 successive episodes. The
simulations conducted generated the cumulative reward curve
illustrated in figure 5.

We see that at the beginning of the simulations, the agent,
less efficient, accumulates rewards between 1 and 26 during
the first 20 episodes. From the 20th episode, a global con-
vergence is observed until the 40th episode. This is explained
by the beginning of self-learning thanks to the experiences
stored in the replay memory. The filling of this memory from
the 110th episode onwards has allowed an efficient learning
of the agent implying a stability of the rewards accumulation.
The defined stopping condition is thus satisfied, translating the
convergence of our DRL agent.

Fig. 5. Cumulative reward curve for the DRL agent

B. Scalability

To measure the scalability of our solution, we vary the
number N of IoT devices and observe the time required for
the DRL agent to apply the π offloading policy to each IoT
device. The results obtained for this batch of simulations can
be seen in figure 6. We see that for a number of IoT devices

Fig. 6. Decision making time vs number of IoT devices

of about 500, the average time of application of the policy
and thus of generations of offloading decisions by the agent
is 20ms. And even multiplying this number by 4, which is
conceivable at the scale of large IoT system, we obtain an
average application time less than 45ms, showing that our
proposed DRL agent scale quite well with the increase of IoT
devices involved.

C. Computing performance

In previous simulations, we evaluate the gain in task exe-
cution time over existing execution strategies namely always

local execution - strategy 1 - (on the IoT device) and always
execution on the edge server - strategy 2. We define the
optimal execution time Topt of formula (14) as the best feasible
execution time. We make explicit the execution time formulas
for strategy 1, strategy 2 and our solution by equations (15),
(16) and (17) respectively.

Topt =

M∑
m=1

[min(T loc
n , T edg

n)] (14)

Tstrg1 =

M∑
m=1

[T loc
n] (15)

Tstrg2 =

M∑
m=1

[T edg
n] (16)

Tagt =

M∑
m=1

[(1− xnm)T loc
n + xnmT

edg
n] (17)

Fig. 7. Task execution time device-only vs edge-only vs agent

The plot of these curves is shown in figure 7. We can see
that although at the beginning the agent is not performing
very well almost as good as executing all tasks locally, it ends
up being in phase with the optimal solution after about 110
episodes outperforming by far the solution of all offloading
to the edge server. This is due to the self-adapting ability of
the DRL agent. It is dynamic and develops the best offloading
strategy.

VII. CONCLUSION

In this paper, we used a Deep Reinforcement Learning agent
in order to solve the task offloading problem in autonomous
IoT systems. Our simulations were done using the framework
ns3-gym which make it possible to simulate very realistic
IoT environments while deploying efficient DRL agents in
the Gym framework. Our results show that this technique is

very promising and scale very well in large IoT environments
such as smart cities. The architecture deployed is based on a
centralized DRL agent handling task offloading requests from
IoT devices to edge servers. In our future work, we would
like to generalize the task offloading to horizontal and vertical
collaborations, making it possible to offload tasks between IoT
devices besides offloading to servers. A more distributed DRL
architecture based on multi-agents collaboration in different
parts of the autonomous IoT system will also be explored.

REFERENCES

[1] Hyame Assem Alameddine, Sanaa Sharafeddine, Samir Sebbah, Sara
Ayoubi, and Chadi Assi. Dynamic task offloading and scheduling for
low-latency iot services in multi-access edge computing. IEEE Journal
on Selected Areas in Communications, 37(3):668–682, 2019.

[2] Ibrahim Alghamdi, Christos Anagnostopoulos, and Dimitrios P. Pezaros.
On the optimality of task offloading in mobile edge computing environ-
ments. In 2019 IEEE Global Communications Conference (GLOBE-
COM), pages 1–6, 2019.

[3] Saif Aljanabi and Abdolah Chalechale. Improving iot services using a
hybrid fog-cloud offloading. IEEE Access, 9:13775–13788, 2021.

[4] Majid Altamimi. A Task Offloading Framework for Energy Saving on
Mobile Devices using Cloud Computing. PhD thesis, University of
Waterloo, 2014.

[5] Min Chen and Yixue Hao. Task offloading for mobile edge computing in
software defined ultra-dense network. IEEE Journal on Selected Areas
in Communications, 36(3):587–597, 2018.

[6] Weiwei Chen, Dong Wang, and Keqin Li. Multi-user multi-task
computation offloading in green mobile edge cloud computing. IEEE
Transactions on Services Computing, 12(5):726–738, 2019.

[7] Xianfu Chen, Honggang Zhang, Celimuge Wu, Shiwen Mao, Yusheng
Ji, and Medhi Bennis. Optimized computation offloading performance in
virtual edge computing systems via deep reinforcement learning. IEEE
Internet of Things Journal, 6(3):4005–4018, 2019.

[8] Xianfu Chen, Honggang Zhang, Celimuge Wu, Shiwen Mao, Yusheng
Ji, and Mehdi Bennis. Performance optimization in mobile-edge com-
puting via deep reinforcement learning. In 2018 IEEE 88th Vehicular
Technology Conference (VTC-Fall), pages 1–6, 2018.

[9] Sukjin Choo, Joonwoo Kim, and Sangheon Pack. Optimal task of-
floading and resource allocation in software-defined vehicular edge
computing. In 2018 International Conference on Information and
Communication Technology Convergence (ICTC), pages 251–256, 2018.

[10] Chongwu Dong and Wushao Wen. Joint optimization for task offloading
in edge computing: An evolutionary game approach. Sensors, 19(3):1–
23, 20.

[11] Mohamed El Ghmary, Tarik Chanyour, Youssef Hmimz, and Mohammed
Ouçamah Cherkaoui Malki. Efficient multi-task offloading with energy
and computational resources optimization in a mobile edge computing
node. International Journal of Electrical and Computer Engineering,
9(6):4908–4919, 2019.

[12] Python Software Foundation. deque.
[13] Piotr Gawłowicz and Anatolij Zubow. Ns-3 meets openai gym: The

playground for machine learning in networking research. In Proceedings
of the 22nd International ACM Conference on Modeling, Analysis and
Simulation of Wireless and Mobile Systems, MSWIM ’19, page 113–120,
New York, NY, USA, 2019. Association for Computing Machinery.

[14] Yixue Hao, Yingying Jiang, Tao Chen, Donggang Cao, and Min Chen.
itaskoffloading: Intelligent task offloading for a cloud-edge collaborative
system. IEEE Network, 33(5):82–88, 2019.

[15] Md. Sajjad Hossain, Cosmas Ifeanyi Nwakanma, Jae Min Lee, and
Dong-Seong Kim. Edge computational task offloading scheme using
reinforcement learning for iiot scenario. ICT Express, 6(4):291–299,
2020.

[16] Liang Huang, Suzhi Bi, and Ying-Jun Angela Zhang. Deep reinforce-
ment learning for online computation offloading in wireless powered
mobile-edge computing networks. IEEE Transactions on Mobile Com-
puting, 19(11):2581–2593, 2020.

[17] Mingfeng Huang, Wei Liu, Tian Wang, Anfeng Liu, and Shigeng
Zhang. A cloud–mec collaborative task offloading scheme with service
orchestration. IEEE Internet of Things Journal, 7(7):5792–5805, 2020.

[18] Abdullah Lakhan and Xiaoping Li. Mobility and fault aware adaptive
task offloading in heterogeneous mobile cloud environments. ICST
Transactions on Mobile Communications and Applications, 5:159947,
01 2019.

[19] Chen-Feng Liu, Mehdi Bennis, Mérouane Debbah, and H. Vincent
Poor. Dynamic task offloading and resource allocation for ultra-reliable
low-latency edge computing. IEEE Transactions on Communications,
67(6):4132–4150, 2019.

[20] Chen-Feng Liu, Mehdi Bennis, and H. Vincent Poor. Latency and
reliability-aware task offloading and resource allocation for mobile edge
computing. In 2017 IEEE Globecom Workshops (GC Wkshps), pages
1–7, 2017.

[21] Sudip Misra and Niloy Saha. Detour: Dynamic task offloading in
software-defined fog for iot applications. IEEE Journal on Selected
Areas in Communications, 37(5):1159–1166, 2019.

[22] Mithun Mukherjee, Suman Kumar, Mohammad Shojafar, Qi Zhang, and
Constandinos X. Mavromoustakis. Joint task offloading and resource
allocation for delay-sensitive fog networks. In ICC 2019 - 2019 IEEE
International Conference on Communications (ICC), pages 1–7, 2019.

[23] Samrat Nath and Jingxian Wu. Deep reinforcement learning for dynamic
computation offloading and resource allocation in cache-assisted mobile
edge computing systems. Intelligent and Converged Networks, 1(2):181–
198, 2020.

[24] Salman Raza, Wei Liu, Manzoor Ahmed, Muhammad Rizwan Anwar,
Muhammad Ayzed Mirza, Qibo Sun, and Shangguang Wang. An
efficient task offloading scheme in vehicular edge computing. Journal
of Cloud Computing, 9, 2020.

[25] Jinke Ren, Guanding Yu, Yunlong Cai, and Yinghui He. Latency
optimization for resource allocation in mobile-edge computation offload-
ing. IEEE Transactions on Wireless Communications, 17(8):5506–5519,
2018.

[26] Yuxuan Sun, Xueying Guo, Jinhui Song, Sheng Zhou, Zhiyuan Jiang,
Xin Liu, and Zhisheng Niu. Adaptive learning-based task offloading
for vehicular edge computing systems. IEEE Transactions on Vehicular
Technology, 68(4):3061–3074, 2019.

[27] Sowndarya Sundar and Ben Liang. Offloading dependent tasks with
communication delay and deadline constraint. In IEEE INFOCOM 2018
- IEEE Conference on Computer Communications, pages 37–45, 2018.

[28] Hado van Hasselt, Arthur Guez, and David Silver. Deep reinforcement
learning with double q-learning, 2015.

[29] Jin Wang, Jia Hu, Geyong Min, Albert Y. Zomaya, and Nektarios
Georgalas. Fast adaptive task offloading in edge computing based
on meta reinforcement learning. IEEE Transactions on Parallel and
Distributed Systems, 32(1):242–253, 2021.

[30] Yi Yang, Yeli Geng, Li Qiu, Wenjie Hu, and Guohong Cao. Context-
aware task offloading for wearable devices. In 2017 26th International
Conference on Computer Communication and Networks (ICCCN), pages
1–9, 2017.

[31] Zhaohui Yang, Cunhua Pan, Jiancao Hou, and Mohammad Shikh-
Bahaei. Efficient resource allocation for mobile-edge computing net-
works with noma: Completion time and energy minimization. IEEE
Transactions on Communications, 67(11):7771–7784, 2019.

[32] Bingxin Zhang, Guopeng Zhang, Weice Sun, and Kun Yang. Task of-
floading with power control for mobile edge computing using reinforce-
ment learning-based markov decision process. In Mobile Information
Systems, pages 1–6, 2020.

[33] C. Zhang, Bo Gu, Zhi Liu, K. Yamori, and Y. Tanaka. Cost- and energy-
aware multi-flow mobile data offloading using markov decision process.
IEICE Trans. Commun., 101-B:657–666, 2018.

[34] Cheng ZHANG, Zhi Liu, Bo Gu, Kyoko Yamori, and Yoshiaki
TANAKA. A deep reinforcement learning based approach for cost- and
energy-aware multi-flow mobile data offloading. IEICE Transactions on
Communications, E101.B, 01 2018.

[35] Tianyu Zhang, Yi-Han Chiang, Cristian Borcea, and Yusheng Ji.
Learning-based offloading of tasks with diverse delay sensitivities for
mobile edge computing. In 2019 IEEE Global Communications Con-
ference (GLOBECOM), pages 1–6, 2019.

[36] Zhenjiang Zhang, Chen Li, ShengLung Peng, and Xintong Pei. A new
task offloading algorithm in edge computing. EURASIP Journal on
Wireless Communications and Networking, 2021(1):17, Jan 2021.

