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Insight into the stability analysis of the
reaction-diffusion equation interconnected with
a finite-dimensional system taking support on
Legendre orthogonal basis

M. Bajodek, A. Seuret, and F. Gouaisbaut

AbstractThe stability analysis of the reaction-diffusion subject to dynamic boundary
conditions is not straightforward. This chapter proposes a linear matrix inequality
criterion which ensures the stability of such infinite-dimensional system. By the
use of Fourier-Legendre series, the Lyapunov functional is split into an augmented
finite-dimensional state includingwithin it the first Fourier-Legendre coefficients and
the residual part. A link between this modelling and Padé approximation is briefly
highlighted. Then, from Bessel and Wirtinger inequalities applied to the Fourier-
Legendre remainder and using its orthogonality properties, a sufficient condition of
stability expressed in terms of linear matrix inequalities is obtained. This efficient
and scalable stability condition is finally performed on examples.

1 Introduction

The wide class of infinite-dimensional systems [6, 7, 10] generates issues to be an-
alyzed numerically. In most of the cases, when the eigenvalue decomposition of the
infinite-dimensional operator cannot be given analytically, the stability properties
of these systems remain unknown. For instance, the stability analysis of a system
coupled with a partial differential equation is tough task, which has been infrequently
studied. Most of recent studies bypass the problem by focusing on the stabilization
of such infinite-dimensional systems thanks to the design of infinite-dimensional
control laws [1, 22].
In the field of numerical analysis, researchers approximate the solutions from spa-
cial discretization [17] or the tau method [12]. Under dissipativity conditions [13],
convergence properties of the numerical schemes emerge. But, they never deal with
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the stability of the original system. Therefore, to rule on the stability of intercon-
nected ordinary-partial differential equations, input-to-state [15, 19, 20] or Lya-
punov [21, 26] approaches are privileged. For generic cases, quadratic constraints
and complete Lyapunov functionals lead to criteria solved be semi-definite pro-
gramming [8, 9, 25]. To refine, adjust and better understand this generic results,
works have been pursued on the model and the inequalities involved in the suffi-
cient condition of stability. For instance, with transport [23], heat [5] or wave [4]
equations, an augmented system enriched by Legendre polynomials coefficients of
the partial-differential part can be built. Applying Bessel-Legendre inequality, hi-
erarchical stability results are expressed in terms of linear matrix inequalities and
dedicated to each equation. Concerning the reaction-diffusion equation, the work is
slighty modified since the Wirtinger inequality has to be invoked. In this chapter,
one aims at simplifying the linear matrix inequality condition obtained enlightening
the Fourier-Legendre series, as done in [2] with other boundary conditions.
To sum up, a numerical approach to state on the stability of an ordinary differential
equation interconnected with a reaction-diffusion equation is proposed. The novelty
of this contribution comes from the model transformation which eases the expres-
sion and understanding of the stability analysis. Indeed, by defining signals derived
from Fourier-Legendre remainder, the Bessel-Legendre and the first Wirtinger in-
equalities can be rewritten in a nice formalism. Around these signals, the dynamical
model can be constructed and related to Padé (= − 1|=) approximant. It includes the
extended finite-dimensional based on the first Fourier-Legendre polynomials coef-
ficients. Taking a quadratic Lyapunov function based on this augmented system, a
tight linear matrix inequality condition of stability is obtained. Numerical results are
finally performed to show the effectiveness of the approximation and of the sufficient
stability criterion.

Notations : In this paper, the set of natural numbers, real numbers, real positive
numbers, matrices of size = × < and of symmetric positive definite matrices of size
= are respectively denoted N, R R≥0, R=×< and S=+, respectively. The identity matrix
of dimension = is denoted by �= and diag(30, ..., 3=) stands for the diagonal matrix
whose coefficients are (30, ..., 3=). For any matrix " , " 8, 9 refers to the coefficient
located on the 8Cℎ row and 9 Cℎ column. For any square matrix" , the transposematrix
is denoted ">, H(") = " + "> and " � 0 means that " is symmetric positive
definite. For any square matrix " , f(") denotes the spectrum of " . Furthermore,
if " is symmetric, f(") and f̄(") stands for its lower and larger eigenvalues,
respectively. For any analytic function �1 and �2, �1 (B) = $

B→_

(
�2 (B)

)
means that

the ratio �1
�2
(B) is finite for B tends to _ ∈ R. Moreover, the space of square integrable

functions L2 (0, 1;R) is associated to the scalar product 〈I1 |I2〉 =
∫ 1
0
I1 (\)I2 (\)d\

and the induced norm ‖I‖2 =
∫ 1
0
I2 (\)d\. Set H1 (0, 1;R) stands for the set of

functions I, such that I and m\ I are in L2 (0, 1;R). With a light abuse of notations,
the notation for inner product 〈I1 |I2〉will be usedwhen I1 and I2 are vector functions.
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2 Presentation of the system

2.1 Interconnected system

Consider the following system composed of an ordinary differential equation in-
terconnected with a reaction-diffusion partial differential equation with cross type
boundary conditions



¤G(C) = �G(C) + �I(C, 1), ∀C ∈ R≥0,

mC I(C, \) = (Xm\ \ + _)I(C, \), ∀(C, \) ∈ R≥0 × (0, 1),[
I (C ,0)
m\ I (C ,1)

]
=

[ 0
�G (C)

]
, ∀C ∈ R≥0,

(G(0), I(0, ·)) = (G0, I0).

(1a)
(1b)

(1c)

(1d)

Coefficients X > 0, _ ∈ R, matrix � ∈ R=G×=G and vectors �,�> ∈ R=G are supposed
to be constant and known.

2.2 Existence and uniqueness of solutions

As a first step and before studying stability of such class of system, it is important
to show that system (1) is well-posed despite unbounded input and output operators
applied on the partial differential equation [18]. This is formulated in the next
proposition.

Proposition 1 Assuming that (G0, I0) belongs toR=G×L2 (0, 1;R), system (1) admits
a continuous and unique solution (G, I) ∈ R=G × L2 (0, 1;R).

Proof Let us define the energy of system (1) by E(C) = G) (C)G(C) + (2X)−1‖I(C)‖2.
Taking its derivatives, calculations lead to

d
dC E(C) = G

) (C) (�) + �)G(C) + 2G) (C)�I(C, 1) + _
X
‖I(C)‖2

−‖m\ I(C)‖2 + G) (C)�) I(C, 1).

Getting rid of the cross terms by application of Young’s inequality, one obtains

d
dC
E(C) ≤ G) (C)

(
H(�)+4��) +�)�

)
G(C) + _

X
‖I(C)‖2 − ‖m\ I(C)‖2 +

1
2
I(C, 1)2.

However, from Jensen’s inequality, one gets to

‖m\ I(C)‖2 ≥ I(C, 1)2, (2)

which simplifies the previous inequality on ¤E(C), leading to

d
dC E(C) ≤  E(C) −

1
2 ‖m\ I(C)‖

2 ≤  E(C),
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where  is a generic constant depending on �, �, �, _, n .
From Grönwall’s inequality, there exists a unique solution (G, I) in the continuous
space from R≥0 to R=G × L2 (0, 1;R). �

Remark 1 In Section 5, to deal with stability of system (1), a Lyapunov functional
is chosen to be equivalent to the energy E(C) in the sense of the R=G × L2 (0, 1;R).
In parallel with the calculations carried out here, the positive term in ‖I‖ is upper
bounded by Wirtinger inequality and Jensen’s inequality (2) is improved thanks to
Bessel-Legendre inequality.

2.3 Equilibrium point

As a second step, it is also important to characterize the equilibrium of (1). More
particularly, one has to understand under which conditions, system (1) admits a
unique equilibrium. This is formulated below.
Proposition 2 System (1) admits a unique equilibrium (0, 0) if and only if matrix Ω
given by (3) has a full rank.

Ω =



[
� � sinh(_̃)
� −_̃ cosh(_̃)

]
, if _ < 0,[

� �

� −1

]
, if _ = 0,[

� � sin(_̃)
� −_̃ cos(_̃)

]
, if _ > 0.

(3)

Proof Let (Ḡ, Ī) be an equilibrium of system (1), meaning that the following relations
hold.


�Ḡ + �Ī(1) = 0,

(Xm\ \ + _) Ī(\) = 0,
Ī(0) = 0,

m\ Ī(1) = �Ḡ.

(4a)
(4b)
(4c)
(4d)

By integration of the differential equation (4b) and under condition (4c), one obtains

Ī(\) =

W sinh(_̃\), if _ < 0,
W\, if _ = 0,
W sin(_̃\), if _ > 0,

where W in R to be fixed and _̃ =
√
|_ |/X. By re-injecting this expression into (4a)

and (4d), it yieldsΩ
[
Ḡ
W

]
= 0 withΩ given by (3). Hence, system (4) admits a unique

solution leading to the equilibrium (Ḡ, Ī) = (0, 0) if and only if det(Ω)≠0 which is
equivalent to have Ω a full matrix. �
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2.4 Expected results

Under the conditions stated above, the aim of this paper is to state accurately on the
stability of the equilibrium point (0, 0) using the linear matrix inequality framework.
More specifically the following results will be obtained:

• The main result is the proposition of a scalable stability analysis for this coupled
ordinary-partial differential equations based onLyapunov arguments. The analysis
is performed thanks to an accurate Lyapunov functional, which is build using
Legendre polynomials. The calculations developments are highly inspired by [2]
and have been simplified thanks to the consideration of easier boundary condition
applied to the reaction-diffusion equation.

• Contrary to a previous study provided in [5], the analysis will be performed
through the introduction of the remainder of Legendre-Fourier series, allowing
to simplify some technical aspects. Thanks to this remainder, it is possible to
rewrite the Wirtinger and the Bessel-Legendre inequalities in a simpler manner
compared to the formulation presented in [5].

• Moreover, thanks to the introduction of an augmented system, a necessary con-
dition for the stability condition emerges: a certain matrix A= has to be stable.
In Section 4, as a subsidiary result, it is shown that this matrix is the Redheffer
product between a realization of the Padé (= − 1|=) approximant of the reaction-
diffusion transfer function and the finite-dimensional system

[
� �
� 0

]
.

3 Fourier-Legendre remainder and inequalities

Based on the nature of the boundary conditions of the reaction-diffusion (1c), we
consider a function I in L2 (0, 1;R) such as I(0) = 0. To construct a complete
description of this function I, only odd polynomials on an extended interval [−1, 1]
need to be used. Then, after recalling the basics of Legendre polynomials and some of
their properties, this section provides the definition of Fourier-Legendre coefficients
and reaminder on the interval [−1, 1].
In a last step, several relevant inequalities are presented.

3.1 Fourier-Legendre coefficients and remainder

Legendre polynomials, denoted as ;: for any positive integer : , are given by

;: (\) =
:∑
8=0
(−1)8 (: + 8)!

(8!)2 (: − 8)!

(
1 − \

2

) 8
, ∀\ ∈ [−1, 1] . (5)
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The orthogonal family {;: }:∈N spans L2 (−1, 1;R). For writing comfort, let in-
troduce the notation ℓ= for any = ∈ N, which gathers the = first odd Legendre
polynomials in vector formulation, that is

ℓ= (\) =
[
;1 (\) ;3 (\) . . . ;2=−1 (\)

]> ∈ R=. (6)

Recall also some important properties of Legendre polynomials [11], that will be
useful along the paper, that are

〈ℓ= |ℓ=〉 = I−1
= ,

ℓ′′= (\) = L=ℓ= (\), ∀\ ∈ [−1, 1],
ℓ= (−\) = −ℓ= (\), ∀\ ∈ [0, 1],

(7a)
(7b)
(7c)

where matrices L= and I= are square matrices of dimension =, given by

I= =
1
2

diag(3, . . . , 4= − 1),

L8, 9= = (4 9 − 1)
8−1∑
?= 9

(4? + 1), ∀8, 9 ∈ {1, . . . , =}.
(8)

Functions ℓ= can be easily evaluated at \ ∈ {0, 1} and is given by

ℓ= (1) = [ 1 1 ... 1 ]> ∈ R=, ℓ= (0) = [ 0 0 ... 0 ]> ∈ R=,
ℓ′= (1) = [ 1 6 ... =(2=−1) ]> ∈ R=.

(9a)
(9b)

As stated in the previous section, we will define here the main features of this paper
in the following definition.

Definition 1 For any function I ∈ L2 (0, 1;R) such that I(0) = 0 and for integer =
in N, we define

• the state I on the extended interval [−1, 1] by

I(\) = −I(−\), ∀\ ∈ [−1, 0], (10)

• the = first Fourier-Legendre coefficients of I as

Z= =


∫ 1
−1 ;1 (\)I (\)d\

...∫ 1
−1 ;2=−1 (\)I (\)d\

 = 〈ℓ= |I〉 ∈ R
=, (11)

• the associated Fourier-Legendre remainder of I at order = as

F= (\) = I(\) − ℓ>= (\)I=Z=, ∀\ ∈ [−1, 1] . (12)
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It is worth noting thatF= is inL2 (−1, 1;R) and that the norm and scalar product used
in the sequel are considered in the interval [−1, 1]. The main interest for introducing
this remainder is stated in the two following lemmas.
Lemma 1 For any = in N, the Fourier-Legendre remainder F= given by (12) verifies

• 〈;: |F=〉 = 0, for any integer : ∈ {0, . . . , 2=}, which means in other words that
F= is orthogonal to the 2= + 1 first Legendre polynomials,

• F= (0) = 0, which guarantee that the boundary condition at \ = 0 satisfied by I
is maintained for F=.

Proof By symmetry of all even Legendre polynomials, one obtains directly that
〈;2: |F=〉 = 0, for all positive integers : . Moreover, thanks to the orthogonality (7a)
of the Legendre polynomials, re-injecting the definition of F= into 〈ℓ= |F=〉 yields

〈ℓ= |F=〉= 〈ℓ= |I〉 − 〈ℓ= |ℓ=〉 I= 〈ℓ= |I〉= 〈ℓ= |I〉 − 〈ℓ= |I〉=0,

which lead to the orthogonality on the = first odd Legendre polynomials. Lastly,
thanks to the value at \ = 0 given by (9a), we have

F= (0) = I(0) − ℓ>= (0)I=Z= = I(0) = 0.

which concludes the proof. �

In the next subsections, Bessel andWirtinger inequalities are rewritten in an adequate
manner to be consistent with the Fourier-Legendre remainder introduced above. The
forthcoming Lyapunov analysis could then be pursued on an augmented system
which takes aside the Fourier-Legendre remainder F= of the signal I.

3.2 Bessel inequalities

Let us first recall the Bessel-Legendre inequality.
Lemma 2 For any function I ∈ L2 (−1, 1;R) and for any integer = inN, the following
inequality holds:

‖I‖2 ≥
=∑
:=0

(
2: + 1

2

)
〈;: |I〉2 . (13)

Proof The proof can be found in [2, 5]. It is directly derived from the positivity of
the L2 (−1, 1;R) norm of the Fourier-Legendre remainder of the function I. �

The application of Lemma 2 on Fourier-Legendre remainder yields ‖F=‖2 ≥ 0, since
the remainder is orthogonal to the first Legendre polynomials, i.e. 〈ℓ= |F=〉 = 0. This
means that the information encapsulated in the Bessel inequality is already included
in the remainder.

The interest of using the remainder is related to the formulation of this inequality
when it is applied to its derivatives ‖F′=‖ that is presented in the next lemma.
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Lemma 3 For any function I inH1 (0, 1;R) such that I(0) = 0 and any integer = in
N, the derivatives of the remainder F= given by (12) verifies

‖F′=‖2 ≥ ^�= F2
= (1), with ^�= = 2(= + 1) (2= + 1). (14)

Proof Thanks to the Bessel-Legendre inequality at order 2= + 1, the following
inequality holds

‖F′=‖2 ≥
2=+1∑
:=0

(
2: + 1

2

) 〈
;:

��F′=〉2
. (15)

In addition, performing an integration by parts yields〈
;:

��F′=〉 = (
;: (1) + ;: (−1)

)
F= (1) −

〈
; ′:

��F=〉 .
Then, we recall that F= is the remainder of the Fourier-Legendre series, which is
consequently orthogonal to the 2=+1 first Legendre polynomials. Therefore, the last
term of the previous equality is zero so that

‖F′=‖2 ≥
©«2

=∑
?=0
(4? + 1)ª®¬F2

= (1).

To complete the proof, we have

=∑
:=0
(4? + 1) = 4

=(= + 1)
2

+ (= + 1) = (= + 1) (2= + 1).

which yields the result. �

Remark 2 It is worth noticing that the error made in this new Bessel-inequality is
equal to the L2 (−1, 1;R) norm of the Fourier-Legendre remainder of I′. Then, this
error converges to zero since I′ belongs to L2 (0, 1;R).

It is important to note that the previous lemma allows to express a lower bound on
the derivative with respect to \ of the Fourier-Legendre series, which only depends
on the evaluation of F= at the boundary \ = 1. This bound does not depends on the
first Fourier-Legendre coefficients, since we have chosen to consider the remainder
only, which is orthogonal to the 2= + 1 first Legendre polynomial. This will simplify
many technical calculations in the next developments.

3.3 Modified Wirtinger’s inequality

In the literature [14], Wirtinger’s inequalities refer to inequalities which estimate the
integral of the derivative function with the help of the integral of the function. These
inequalities have been widely used in the context of analysis, control and observation
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of time-delay and reaction-diffusion systems [24]. In this paper, one proposes to use
Wirtinger’s inequality of the first type, stated as follows.

Lemma 4 For any function Ĩ in H1 (−1, 1;R) such that Ĩ(−1) = Ĩ(1) and that
〈Ĩ |1〉 = 0, the following inequality holds:

‖ Ĩ′‖ ≥ c‖ Ĩ‖. (16)

Proof The proof comes along the arguments provided in [14]. Relying on the

Fourier series of Ĩ given by
∞∑
:=0

2:4
9: c \ with 2: =

〈
Ĩ(\)

��4− 9: c \ 〉, it follows
‖ Ĩ‖2 =

∞∑
:=0

22
: . Moreover, taking also the Fourier series of Ĩ′(\) as

∞∑
:=0

3:4
9: c \

with 3: =
〈
Ĩ′(\)

��4 9: c \ 〉, we also have ‖ Ĩ′‖2 =
∞∑
:=0

32
: . The result is then obtained

by integration by parts, noticing that 3: = 9 :c2: . �

The next lemma is an application of the previous Wirtinger inequality to the Fourier-
Legendre remainder F= given by (12).

Lemma 5 For any function I inH1 (0, 1;R) and for any = inN, the Fourier-Legendre
remainder F= given by (12) verifies

‖F′=‖2 − c2‖F=‖2≥ ^,= F2
= (1), with ^,= = 2=(2= − 1) + 2c2

4= − 1
. (17)

Proof In order to apply Lemma 4, let us introduce function F̃=, defined by

F̃= (\) = F= (\) − ;2=−1 (\)F= (1), ∀\ ∈ [−1, 1] . (18)

First, one has to verify the assumptions of the Wirtinger inequality of the first kind,
that is F̃= (−1) = F̃= (1) = 0 and 〈F̃= |1〉 = 0. Recalling that ;2=−1 (1) = 1 and that
;2=−1 (−1) = −1, we have

F̃= (1) = F= (1) − F= (1) = 0, F̃= (−1) = F= (−1) + F= (1) = 0.

Furthermore, one directly obtains 〈F̃= |1〉 = 0 from the orthogonality of the Fourier-
Legendre remainder F= with ;0 (\) = 1 (see Lemma 1). Therefore, Wirtinger’s first
inequality (16) states that, under the equality and integral conditions, the inequality
‖F̃′=‖≥ c‖F̃=‖ holds. It remains to compute ‖F̃′=‖ and ‖F̃=‖. On the first hand,

‖F̃′=‖2 =
∫ 1

−1

(
F′= (\) − ; ′2=−1 (\)F= (1)

)2d\,

= ‖F′=‖2 − 2
〈
; ′2=−1

��F′=〉 F= (1) + 〈
; ′2=−1

��; ′2=−1
〉
F2
= (1).

By integration by parts, we can write
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‖F̃′=‖2= ‖F′=‖2 + 2
(〈
; ′′2=−1

��F=〉 − [; ′2=−1F=]
1
−1

)
F= (1) +

〈
; ′2=−1

��; ′2=−1
〉
F2
= (1).

Using Lemma 1 verified by F=, we can get rid of the second term and say that

‖F̃′=‖2 = ‖F′=‖2 −
=−1∑
?=0

2(4? + 1)F2
= (1),

The last term of the previous expression has already been computed in (15), and we
know that

‖F̃′=‖2= ‖F′=‖2 − 2=(2= − 1)F2
= (1), (19)

On the other hand, the norm of F̃= can be computed as follows. Due to the orthogo-
nality the Legendre polynomials provided by Lemma 1, we have

‖F̃=‖2 = ‖F=‖2 +
2

4= − 1
F2
= (1). (20)

Thus, the proof is concluded by merging the two expressions given in (19) and (20)
into ‖F̃′=‖≥ c‖F̃=‖. �

The previous lemma extends the Wirtinger inequality, in the situation where I is
equal to 0 at \ = 0. The main advantages of using the Fourier-Legendre remainder
appears in the simple formulation of the lower bound in (17). It is important to stress
that the orthogonality condition 〈ℓ= |F=〉 = 0 drastically simplifies the expression
and the calculations.

It is worth mentioning that both constants ^�= and ^,= = ^�
=−1 +

2c2

4=−1 increase in a
quadratic manner with respect to =. This information will not be used in this paper
but could be a key point in the proof of the convergence of the sufficient stability
criterion developed in the last section.

4 Modeling of an augmented system

In this section, one proposes the design of an augmented model issued from the
interconnected system (1). The introduction of such model will allow to perform an
assurate stability test.

4.1 Transfer function of the reaction-diffusion equation

Take the reaction-diffusion equation with cross type boundary conditions:
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mC I(C, \) = (Xm\ \ + _)I(C, \), ∀(C, \) ∈ R≥0 × (0, 1),[
I (C ,0)
m\ I (C ,1)

]
=

[ 0
4 (C)

]
, ∀C ∈ R≥0,

(21a)

(21b)

where 4(C) is an input signal.

In the following, system (21) is transformed in Laplace domain where B ∈ C is
the Laplace variable and where variables in capital letters represents the Laplace
transform associated with variable in non-capital letters. As an infinite-dimensional
system, the irrational transfer function between � (B) = m

m\
/ (B, 1) and / (B, \) can

be expressed as in [16] by

� (B, \) =
sh

(
\

√
B−_
X

)
√
B−_
X

ch
(√

B−_
X

) , ∀(B, \) ∈ C × [−1, 1] . (22)

The main issue is to approximate this infinite-dimensional part in a specific manner
and to highlight the link with Legendre approximation methods.
As � (B, \) is an odd analytical function, it is possible to define Fourier-Legendre
remainder �̃= done by truncation at order = of the Legendre-Fourier series of � on
Legendre polynomials coefficients which is, for all B ∈ C,

�̃= (B, \) = � (B, \) −
=−1∑
:=0

4: + 3
2

;2:+1 (\) 〈;2:+1 |� (B)〉 , ∀\ ∈ [−1, 1] . (23)

Remark 3 This remainder (23) is well-defined on the segment [−1, 1] with respect to
\ by the fact that� (B) belongs to C∞ ( [−1, 1],C) for any B inC and�= (B) converges
uniformly on any compact subset of C [27].

Then, error (23) can be rewritten as

�̃= (B, \) =
∞∑
:==

4: + 3
2

;2:+1 (\)
∫ 1

−1
� (B, \);2:+1 (\)3\, ∀\ ∈ [−1, 1], (24)

and an estimation of its value around B = _ can be proposed.

Lemma 6 Error (23) is $
B→_
(B=), for all \ ∈ [−1, 1].

Proof Lemma 6 means that �̃= (B, \) has its = − 1 first derivatives with respect to
B evaluated at B = _ equal to zero and this is proven herafter. From the Maclaurin
development of � around B = _ with an infinite radius of convergence, for all
\ ∈ [−1, 1],

� (B, \) = 1

ch
(√

B−_
X

) ∞∑
:==

\2:+1

(2: + 1)!

(
B − _
X

) :
.
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The ? successive derivations of � with respect to B evaluated at B = _ give

m ?

mB?
� (_, \) =

?∑
:=0

:!\2:+1

(2: + 1)! .

Regarding (24), one obtains zero for ? < = because \2? can be decomposed on the
2? + 1 first Legendre polynomials. �

This error is close to zero for B near _ and allows us to expect that it leads to accurate
models, which satisfy the definition of the Padé approximants [3].

4.2 Realization of the (n − 1|n) Padé approximant of the transfer
function taking support on the first Legendre polynomials

In this part, with the measurement H(C) = I(C, 1), the irrational transfer function
� (B) of the reaction-diffusion equation from � (B) to . (B)

� (B) = � (B, 1) =
th

(√
B−_
X

)
√
B−_
X

, ∀B ∈ C, (25)

is considered. We show the relation between the modeling inspired by tau meth-
ods [13] on Legendre polynomials basis and the (=−1|=) Padé approximated transfer
function �= of the irrational transfer function � (B). Particular state form represen-
tation of this nice Padé approximated model is provided. Indeed, the states of this
realization are Fourier-Legendre polynomials coefficients of the distributed state
I(C, \) under the following definition.
Definition 2 For any signal I(C) ∈ L2 (0, 1;R) satisfying (21) and for integer = in N,
we define,
• the state I(C) on the extended interval [−1, 1] by

I(C, \) = −I(C,−\), ∀(C, \) ∈ R≥0 × [−1, 0], (26)

• the = first Fourier-Legendre coefficients of I as

Z= (C) =


∫ 1
−1 ;1 (\)I (C , \)d\

...∫ 1
−1 ;2=−1 (\)I (C , \)d\

 = 〈ℓ= |I(C)〉 ∈ R
=, ∀C ∈ R≥0, (27)

• the associated Fourier-Legendre remainder of I(C) at order = as

F= (C, \) = I(C, \) − ℓ>= (\)I=Z= (C), ∀(C, \) ∈ R≥0 × [−1, 1] . (28)
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Then, we build a finite-dimensional approximation of system (21) taking support on
Legendre polynomials coefficients and certify that the approximated model matches
with Padé approximants, thanks to Lemmas 6 and 7.

Proposition 3 System
(
A= B=
C= 0

)
is a realization of the (= − 1|=) Padé approximant

of the transfer function � (B) given by (25) with

A= = _�= + XL= + B∗=C=,
B= = 2Xℓ= (1), B∗= = −2Xℓ′= (1), C= = ℓ= (1))I=, C∗= = −ℓ

′>
= (1)I=,

(29)

where L=,I= are given in (8) and ℓ= (1), ℓ′= (1) recalled in (9).

Proof By two successive integrations by parts, the dynamics of the = coefficients
Z= (C) defined by (27) lead to

d
dC Z= (C) = X 〈ℓ= |m\ \ I(C)〉 + _Z= (C),

= −X
〈
ℓ′=

��m\ I(C)〉 + X [ℓ= (\)m\ I(C, \)]1−1+_z= (C),
= X

〈
ℓ′′=

��I(C)〉 + _Z= (C) + X [
ℓ= (\) mm\ I(C, \)

]1
−1 − X

[
ℓ′= (\)I(C, \)

]1
−1 ,

= (_�= + XL=)Z= (C) + 2Xℓ= (1)4(C) − 2Xℓ′= (1)I(C, 1).

The signal H(C) = I(C, 1) can be approximated by its the truncated Fourier-Legendre
series at order = and called F= (C, 1). That implies

d
dC
Z= (C) = A=Z= (C) + B=4(C) + B∗=F= (C, 1),

H(C) = I(C, 1) = C=z= (C) + F= (C, 1).
(30)

In Laplace domain, the errorW= (B, 1) = �̃= (B)* (B) with

�̃= (B) = �̃= (B, 1) = � (B) − C= 〈ℓ= |� (B)〉 . (31)

It is the remainder of the truncated Fourier-Legendre series of � evaluated at \ = 1.
System (30) leads to{

Z= (B) = (B�= − A=)−1 (B= + B∗=�̃= (B))* (B),
. (B) = C=Z= (B) + �̃= (B)* (B).

The transfer function � (B) from � (B) to . (B) is

� (B) = C= (B�= − A=)−1B= +
(
1 + C= (B�= − A=)−1B∗=

)
�̃= (B).

Thanks to Lemma 6, we already have �̃= (B) = $
B→_
(B=). Then, by application of

Lemma 7 given in Appendix with vectors D = −B∗=, E) = C= and matrix ! = −XL=
which satisfy the expected assumptions, we find

� (B) − C= (B�= − A=)−1B= = $
B→_
(B2=).
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According to the definition of Padé approximations given in [3], the rational function
�= (B) = C= (B�= − A=)−1B= is a (= − 1|=) Padé approximant of � (B) at B = _. �

4.3 Modeling of the interconnected system

Consider now (G, I), solution to system (1) and, resuming Definition 2, denote the
first Fourier-Legendre coefficients by Z= and the Fourier-Legendre remainder F=,
for any = in N. The objective of this section is to rewrite system (1) by exhibiting
a finite-dimensional part composed of the b= =

[
Z=
G

]
and an infinite-dimensional

part represented by the Fourier-Legendre remainder F=. This is formulated in the
following proposition.

Proposition 4 If (G, I) is a solution of system (1), then (b= =
[
Z=
G

]
, F=) defined

by (27),(28) verifies the following dynamics



¤b= (C) = A=b= (C) + B=F= (C, 1),
mCF= (C, \) = (Xm\ \ + _)F= (C, \) − ℓ>= (\)I=

(
E=b= (C) + F=F= (C, 1)

)
,[

F= (C ,0)
m\F= (C ,1)

]
=

[ 0
C= b= (C)

]
,

(b= (0), F= (0)) =
( [ G0
Z0,=

]
, F0,=

)
,

(32a)
(32b)

(32c)

(32d)

where the matrices that defined this model are given by

A= =
[
A= B=�
�C= �

]
, B= =

[
B∗=
�

]
, C= =

[
C∗= �

]
, E= = B=C=, F= = B∗=, (33)

with matrices A=, B=, B∗=, C= and C∗= are given by (29).

Proof The proof is also split into three parts referring to each equation in (32).
Proof of (32a): According to the proof Proposition 3, we already have Z= = 〈ℓ= |I〉
which satisfies (30). Then, adding the dynamics of the ordinary differential equation
given by (1a), the dynamics of the finite dimensional state are

d
dC

[
Z= (C)
G(C)

]
︸      ︷︷      ︸

d
dC b= (C)

=

[
A= B=�
�C= �

]
︸         ︷︷         ︸

A=

[
Z= (C)
G(C)

]
︸  ︷︷  ︸
b= (C)

+
[
B∗=
�

]
︸︷︷︸

B=

F= (C, 1), (34)

which corresponds to the first equation (32a).
Proof of (32b): Let us now focus in the second equation (32b), which refers to the
partial differential equation resulting from the changes of variable I to F=. To do
so, differentiating with respect to time of the Fourier-Legendre remainder F= given



Stability analysis of ODE-reaction-diffusion interconnection 15

in (28) yields mCF= (C, \) = mC I(C, \) − ℓ>= (\)I= d
dC Z= (C). From one side, we need to

express mC I using the new system of coordinates, that is reflected in

mC I(C, \) = Xm\ \ I(C, \) + _I(C, \)
= (Xm\ \ + _)F= (C, \) +

(
Xm\ \ℓ

>
= (\) + _ℓ>= (\)

)
I=Z= (C).

Applying the differentiation rules of the Legendre polynomials in (7b), the previous
expression resumes to

mC I(C, \) = (Xm\ \ + _)F= (C, \) + ℓ>= (\)
(
XL>= + _�=

)
I=Z= (C). (35)

On the other side, the expression of d
dC Z= (C) given by (30) leads to

d
dC
Z= (C) = I−1

= (XL>= + _�=)I=Z= (C) + B= [ C∗= � ]︸      ︷︷      ︸
E=

[
Z= (C)
G (C)

]
+ B∗=︸︷︷︸

F=

F= (C, 1), (36)

and calcultation details can be found in [2]. Thus, collecting (35),(36) and simplifying
the term in XL>= + _�=, the partial differential equation verified by F= is recognized.
Proof of (32b): Finally, the first boundary condition is already verified according
to Lemma 1 and the second boundary condition is directly obtained by derivation
of (28) and evaluation at \ = 1. �

Remark 4 Matrix A= given by (33) is equal to

A= =
(
A= B=
C= 0

)
⊗

(
� �
� 0

)
= �= (B) ⊗

(
� �
� 0

)
, (37)

where ⊗ denotes the Redheffer product and �= (B) the Padé (= − 1|=) approximant
of � (B) given by (25) at B = _.

In the new formulation, the reaction-diffusion equation, which characterizes the
dynamics ofF=, is similar to the one of the original system. The only difference relies
on the last term in (32b). Even though, it seems at a first sight more complicated,
it will appear in the next developments that this new term has no impact on the
complexity of the analysis. This is due to the orthogonality of this new term with the
Fourier-Legendre remainder, F=.

5 Stability analysis

This last section is dedicated to the construction of a numerical tractable stability
criterion for system (1), based on Lemmas 3 and 5 and highly related to the properties
of the augmented model (32).

Theorem 1 For a given integer = in N and any _, X satisfying _
X
< c2, assume that

there exists P= in S=G+=+1+ such that matrix
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Ξ= =


[
H(P=A=) P=B= + C>=
∗ −^�=

]
, if _ ≤ 0,[

H(P=A=) P=B= + C>=
∗ −

(
1 − _

Xc2

)
^�= − _

Xc2 ^
,
=

]
, if _ > 0.

(38)

is negative definite, where constants ^�= , ^,= are defined respectively by (14),(17)
and matrices A=, B=, C= and D= are defined by (33). Then, under the conditions
prescribed by Propositions 1 and 2, the equilibrium (0, 0) of system (1) is globally
exponentially stable, in the sense of the R=G × L2 (0, 1;R) norm.

Proof Consider the Lyapunov functional given by

V= (G, I) = b>= P=b=︸  ︷︷  ︸
V0

= (G,I)

+ (2X)−1‖F=‖2︸          ︷︷          ︸
V1

= (G,I)

, (39)

with P= in S=G+=+1+ . It is a Lyapunov candidate functional for both systems (1),(32).
Differentiation of +0= (C) = V0

= (G, I) (C) along the trajectories of the system (1) using
the dynamics given by (32) yields

d
dC
+0= (C) = b>= (C)H (P=A=)b= (C) + 2b>= (C)P=B=F= (C, 1).

Secondly, from the dynamics of the Fourier-Legendre remainder in (32), denoting
+1= (C) = V1

= (G, I) (C) , we find

d
dC
+1= (C) =

∫ 1

−1
m\ \F= (C, \)F= (C, \)d\ +

_

X

∫ 1

−1
F2
= (C, \)d\.

Using integration by parts, this expression is decomposed in L2 (−1, 1;R) norms of
signals F= and m\F= as

d
dC
+1= (C) =

_

X
‖F= (C)‖2 − ‖m\F= (C)‖2 + 2m\F= (C, 1)F= (C, 1),

=
_

X
‖F= (C)‖2 − ‖m\F= (C)‖2 + 2b>= (C)C>=F= (C, 1).

Thereafter, the proof is split into two cases. If _ ≤ 0, the proof is a straightforward
application of Bessel-Legendre inequality given by (14). Indeed, we have

d
dC
+= (C) ≤ −

|_ |
X
‖F= (C)‖2 +

[
b= (C)
F= (C ,1)

]>
Ξ=

[
b= (C)
F= (C ,1)

]
,

Assuming Ξ= ≺ 0, application of Lyapunov theorem leads to Theorem 1.
For the case 0 < _ < Xc2, we apply first the adapted Wirtinger inequality (17) on
the Fourier-Legendre remainder F= to obtain
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d
dC
+1= (C) ≤ − nc2‖F= (C)‖2 −

(
1 − _

Xc2 − n
)
‖m\F= (C)‖2

+ 2b>= (C)C>=F= (C, 1) −
(
_

Xc2 + n
)
^,= F

2
= (C, 1),

for any sufficiently small n > 0 such that (1 − _

Xc2 − n) > 0. By application of the
Bessel-Legendre inequality given by (14), we finally get to

d
dC
+1= (C) ≤ − nc2‖F=‖2 + 2b>= (C)C>=F= (C, 1)

−
(
(1 − _

Xc2 − n)^
�
= + (

_

Xc2 + n)^
,
=

)
F2
= (C, 1).

Merged with d
dC+

0
= (C), it gives

d
dC
+= (C) ≤ −nc2‖F= (C)‖2 +

[
b= (C)
F= (C ,1)

]>
Ξ=

[
b= (C)
F= (C ,1)

]
+ n^�= F2

= (C, 1).

If the linear matrix inequalityΞ= ≺ 0 holds, it is possible to take n small enough such
that −|f̄(Ξ=) | + n^�= < 0. Then, there exists d > 0 such that the derivatives d

dC+= (C)
satisfies d

dC+= (C) ≤ −d+= (C). One concludes by application of Lyapunov theorem on
the exponential stability at the equilibrium point. �

Remark 5 Notice thatA= Hurwitz is a necessary condition for the feasibility of linear
matrix inequality Ξ= ≺ 0 where Ξ= defined by (38). This is promising to the matter
of fact that A= is an approximated model for the original system (1).

Remark 6 Compared to generalized linear matrix inequality formulations based on
sum of squares [9], the result is condensed, more appropriate to the application
and numerical burden are improved. This optimization is due to the transformations
made to obtain our linear matrix inequality, highly correlated to the system under
study. Nevertheless, to the best of our knowledge, we are not aware of stability
condition adressing this particular class of system and this is the reason why no
further comparison will be presented.

6 Application to numerical examples

6.1 On Padé approximations

Without loss of generalization, let take _ = 0 and X = 1. The approximated model(
A= B=
C= 0

)
leads to a transfer function �=. For low orders, the corresponding matrices

and approximated transfer functions have been stored in Table 1.
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Order = 1 2 3 4

A= −3
[ −3 −7
−3 −42

] [ −3 −7 −11
−3 −42 −66
−3 −42 −165

] [ −3 −7 −11 −15
−3 −42 −66 −90
−3 −42 −165 −225
−3 −42 −165 −420

]
B= 2 [ 2 2 ]> [ 2 2 2 ]> [ 2 2 2 2 ]>
C= 3

2 [ 3
2

7
2 ] [ 3

2
7
2

11
2 ] [ 3

2
7
2

11
2

15
2 ]

�= (B) 3
B+3 5 2B+21

B2+45B+105 21 B2+60B+495
B3+210B2+4725B+10395 9 4B3+770B2+30030B+225225

B4+630B3+51975B+2027025

Table 1 Padé (= − 1 |=) approximants of transfer function � (B) .

Order = 1 2 3 4 Expected
� = 2 −3.751 −3.668 −3.668 −3.668 −3.668
� = 0 2.461 2.467 2.467 2.467 ( c2 )

2 = 2.467
� = 0.1 2.258 2.263 2.263 2.263 2.263
� = −1 3.176 3.672 3.685 3.685 3.685

Table 2 Maximal allowable reaction coefficient _<0G guaranteed by Theorem 1.

By comparison with the Padé approximant of � (B) = � (B, 1) = sh(
√
B)√

Bch(
√
B) at B = 0

computed by Matlab pade tool, the same transfer function �= are recognized.
Then, according to Remark 4, the approximated model A= will be equivalent to the
star product of the finite-dimensional model with this Padé (=−1|=) transfer function
of the reaction-diffusion equation.

6.2 On stability results

In this subsection, a standard example is chosen. The stability properties with respect
to _ are investigated with the method proposed in this chapter.

Example 1 Let system (1) with � = −1, � taking values in [−1, 2], � = 1 and X = 1.

The feasibility of linearmatrix inequalityΞ= ≺ 0withΞ= given by (38) is determined
with feasp function and tested for = = 2. The maximal bound _<0G which ensures the
stability of the system is collected in Table 2 for several values of �. One compares
this result with expected bounds coming from the stability of an approximated model
at order 100 (see tau methods [12]).
According to Table 2, we can see that an upper bound for parameter _ has been found
to guarantee exponential stability of the origin of system (1). Based on cases � < 0,
it is important to note that the classical upper bound ( c2 )

2 can be exceeded thanks to
the stabilizable properties of � < 0. It is also worth noticing that the proposed test
seem to be hierarchical and to converge toward the expected bound of the region of
stability in a fast manner (from order = ' 3). At last, the required order = seems to
be larger as _<0G increases (i.e. � decreases).
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7 Conclusions

From a Lyapunov approach, a new sufficient condition of stability for a system cou-
pled with a reaction diffusion process is presented in the linear matrix framework.
Our work focused on the rewriting of Bessel and Wirtinger inequalities involved
in the Lyapunov analysis of the reaction-diffusion equation and signals linked with
Legendre remainder emerged. Then, a dynamical model has been constructed to
highlight these signals and the extended state composed of the first Legendre poly-
nomials coefficients. Finally, taking a classical quadratic Lyapunov functional fitted
to this new modeling, a linear matrix inequality is directly obtained.
Based on the structure of the result, robust approach could be pursued to construct
finite-dimensional controllers stabilizing the original infinite-dimensional system.
Observer design by early-lumping might also be investigated.

Appendix

Derived from the matrix inversion and determinant lemmas, a usefull lemma can
also be formulated.

Lemma 7 For any D ∈ R= with a non-zero first component, E ∈ R= not equal to the
zero vector and ! ∈ R=×= a strictly lower triangular matrix with non-zero under
diagonal coefficients (i.e. !8+1,8 ≠ 0 ∀8 ∈ {1, . . . = − 1}), one obtains

1 − E) ((B − _)�= + ! + DE) )−1D = $
B→_
(B=). (40)

Proof The matrix inversion lemma applied to vectors D ∈ R=, E ∈ R= and non
singular matrix " = B�= + ! ∈ R=×= gives, for any B ∈ C\{0},

1 − E) ((B − _)�= + ! + DE) )−1D = (1 + E) ((B − _)�= + !)−1D)−1,

and the matrix determinant lemma leads to

1 − E) ((B − _)�= + ! + DE) )−1D =
det((B − _)�= + !)

det((B − _)�= + ! + DE) )
.

Then, since ! is strictly lower triangular, we have

det((B − _)�= + !) = det((B − _)�=) = (B − _)=.

and, because ! has non-zero under diagonal coefficients and under the hypothesis
done on vectors D, E, matrix ! + DE) has full rank which means det(! + DE) ) ≠ 0.
That yields the result for B tending to _. �
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